logo
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
//! Interval tree, a data structure for efficiently storing and searching intervals.
//!
//! This data structure uses an `Interval` type to define the intervals. It is implemented by
//! wrapping the `std::ops::Range` in a newtype. An interval must have a positive with and the interval bounds
//! may be specified by any type satisfies both the `std::cmp::Ord` and `Clone` trait. Because
//! `Interval` implements `From<Range>` you can also uses normal `Range` arguments in the
//! `insert` and `find` functions. This implicit conversion will panic if a negative-width range is
//! supplied.
//!
//! Upon inserting an interval may be associated with a data value. The intervals are stored in
//! an augmented AVL-tree which allows for efficient inserting and querying.
//!
//! # Example
//! ```
//! use bio::data_structures::interval_tree::IntervalTree;
//! use bio::utils::Interval;
//!
//! let mut tree = IntervalTree::new();
//! tree.insert(11..20, "Range_1");
//! tree.insert(25..30, "Range_2");
//! for r in tree.find(15..25) {
//!     assert_eq!(r.interval().start, 11);
//!     assert_eq!(r.interval().end, 20);
//!     assert_eq!(r.interval(), &(Interval::from(11..20)));
//!     assert_eq!(r.data(), &"Range_1");
//! }
//! ```

use crate::utils::Interval;
use std::cmp;
use std::iter::FromIterator;
use std::mem;
/// An interval tree for storing intervals with data
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct IntervalTree<N: Ord + Clone, D> {
    root: Option<Node<N, D>>,
}

impl<N: Ord + Clone, D> Default for IntervalTree<N, D> {
    fn default() -> Self {
        Self { root: None }
    }
}

/// A `find` query on the interval tree does not directly return references to the nodes in the tree, but
/// wraps the fields `interval` and `data` in an `Entry`.
#[derive(PartialEq, Eq, Debug, Clone)]
pub struct Entry<'a, N: Ord + Clone, D> {
    data: &'a D,
    interval: &'a Interval<N>,
}

impl<'a, N: Ord + Clone + 'a, D: 'a> Entry<'a, N, D> {
    /// Get a reference to the data for this entry
    pub fn data(&self) -> &'a D {
        self.data
    }

    /// Get a reference to the interval for this entry
    pub fn interval(&self) -> &'a Interval<N> {
        self.interval
    }
}

/// An `IntervalTreeIterator` is returned by `Intervaltree::find` and iterates over the entries
/// overlapping the query
pub struct IntervalTreeIterator<'a, N: Ord + Clone, D> {
    nodes: Vec<&'a Node<N, D>>,
    interval: Interval<N>,
}

impl<'a, N: Ord + Clone + 'a, D: 'a> Iterator for IntervalTreeIterator<'a, N, D> {
    type Item = Entry<'a, N, D>;

    fn next(&mut self) -> Option<Entry<'a, N, D>> {
        loop {
            let candidate = match self.nodes.pop() {
                None => return None,
                Some(node) => node,
            };

            // stop traversal if the query interval is beyond the current node and all children
            if self.interval.start < candidate.max {
                if let Some(ref left) = candidate.left {
                    self.nodes.push(left);
                }

                // don't traverse right if the query interval is completely before the current
                // interval
                if self.interval.end > candidate.interval.start {
                    if let Some(ref right) = candidate.right {
                        self.nodes.push(right);
                    }

                    // overlap is only possible if both tests pass
                    if intersect(&self.interval, &candidate.interval) {
                        return Some(Entry {
                            data: &candidate.value,
                            interval: &candidate.interval,
                        });
                    }
                }
            }
        }
    }
}

/// A `find_mut` query on the interval tree does not directly return references to the nodes in the tree, but
/// wraps the fields `interval` and `data` in an `EntryMut`. Only the data part can be mutably accessed
/// using the `data` method
#[derive(PartialEq, Eq, Debug)]
pub struct EntryMut<'a, N: Ord + Clone, D> {
    data: &'a mut D,
    interval: &'a Interval<N>,
}

impl<'a, N: Ord + Clone + 'a, D: 'a> EntryMut<'a, N, D> {
    /// Get a mutable reference to the data for this entry
    pub fn data(&'a mut self) -> &'a mut D {
        self.data
    }

    /// Get a reference to the interval for this entry
    pub fn interval(&self) -> &'a Interval<N> {
        self.interval
    }
}

/// An `IntervalTreeIteratorMut` is returned by `Intervaltree::find_mut` and iterates over the entries
/// overlapping the query allowing mutable access to the data `D`, not the `Interval`.
pub struct IntervalTreeIteratorMut<'a, N: Ord + Clone, D> {
    nodes: Vec<&'a mut Node<N, D>>,
    interval: Interval<N>,
}

impl<'a, N: Ord + Clone + 'a, D: 'a> Iterator for IntervalTreeIteratorMut<'a, N, D> {
    type Item = EntryMut<'a, N, D>;

    fn next(&mut self) -> Option<EntryMut<'a, N, D>> {
        loop {
            let candidate = match self.nodes.pop() {
                None => return None,
                Some(node) => node,
            };

            // stop traversal if the query interval is beyond the current node and all children
            if self.interval.start < candidate.max {
                if let Some(ref mut left) = candidate.left {
                    self.nodes.push(left);
                }

                // don't traverse right if the query interval is completely before the current interval
                if self.interval.end > candidate.interval.start {
                    if let Some(ref mut right) = candidate.right {
                        self.nodes.push(right);
                    }

                    // overlap is only possible if both tests pass
                    if intersect(&self.interval, &candidate.interval) {
                        return Some(EntryMut {
                            data: &mut candidate.value,
                            interval: &candidate.interval,
                        });
                    }
                }
            }
        }
    }
}

impl<N: Clone + Ord, D> IntervalTree<N, D> {
    /// Creates a new empty `IntervalTree`
    pub fn new() -> Self {
        Default::default()
    }

    /// Inserts an `Interval` into the tree and associates it with `data`
    pub fn insert<I: Into<Interval<N>>>(&mut self, interval: I, data: D) {
        let interval = interval.into();
        match self.root {
            Some(ref mut n) => n.insert(interval, data),
            None => self.root = Some(Node::new(interval, data)),
        };
    }

    /// Uses the provided `Interval` to find overlapping intervals in the tree and returns an
    /// `IntervalTreeIterator`
    pub fn find<I: Into<Interval<N>>>(&self, interval: I) -> IntervalTreeIterator<'_, N, D> {
        let interval = interval.into();
        match self.root {
            Some(ref n) => IntervalTreeIterator {
                nodes: vec![n],
                interval,
            },
            None => {
                let nodes = vec![];
                IntervalTreeIterator { nodes, interval }
            }
        }
    }

    /// Uses the provided `Interval` to find overlapping intervals in the tree and returns an
    /// `IntervalTreeIteratorMut` that allows mutable access to the `data`
    pub fn find_mut<I: Into<Interval<N>>>(
        &mut self,
        interval: I,
    ) -> IntervalTreeIteratorMut<'_, N, D> {
        let interval = interval.into();
        match self.root {
            Some(ref mut n) => IntervalTreeIteratorMut {
                nodes: vec![n],
                interval,
            },
            None => {
                let nodes = vec![];
                IntervalTreeIteratorMut { nodes, interval }
            }
        }
    }
}

impl<N: Clone + Ord, D, R: Into<Interval<N>>> FromIterator<(R, D)> for IntervalTree<N, D> {
    fn from_iter<I: IntoIterator<Item = (R, D)>>(iter: I) -> Self {
        let mut tree = IntervalTree::new();
        for r in iter {
            tree.insert(r.0, r.1);
        }
        tree
    }
}

#[derive(Debug, Clone, Serialize, Deserialize)]
struct Node<N: Ord + Clone, D> {
    // actual interval data
    interval: Interval<N>,
    value: D,
    // tree metadata
    max: N,
    height: i64,
    left: Option<Box<Node<N, D>>>,
    right: Option<Box<Node<N, D>>>,
}

impl<N: Ord + Clone, D> Node<N, D> {
    fn new(interval: Interval<N>, data: D) -> Self {
        let max = interval.end.clone();
        Node {
            interval,
            max,
            height: 1,
            value: data,
            left: None,
            right: None,
        }
    }

    fn insert(&mut self, interval: Interval<N>, data: D) {
        if interval.start <= self.interval.start {
            if let Some(ref mut son) = self.left {
                son.insert(interval, data);
            } else {
                self.left = Some(Box::new(Node::new(interval, data)));
            }
        } else if let Some(ref mut son) = self.right {
            son.insert(interval, data);
        } else {
            self.right = Some(Box::new(Node::new(interval, data)));
        }
        self.repair();
    }

    fn update_height(&mut self) {
        let left_h = self.left.as_ref().map_or(0, |n| n.height);
        let right_h = self.right.as_ref().map_or(0, |n| n.height);
        self.height = 1 + cmp::max(left_h, right_h);
    }

    fn update_max(&mut self) {
        self.max = self.interval.end.clone();
        if let Some(ref n) = self.left {
            if self.max < n.max {
                self.max = n.max.clone();
            }
        }
        if let Some(ref n) = self.right {
            if self.max < n.max {
                self.max = n.max.clone();
            }
        }
    }

    fn repair(&mut self) {
        let left_h = self.left.as_ref().map_or(0, |n| n.height);
        let right_h = self.right.as_ref().map_or(0, |n| n.height);
        // each case - update both height and max
        if (left_h - right_h).abs() <= 1 {
            self.update_height();
            self.update_max();
        } else if right_h > left_h {
            {
                let right = self
                    .right
                    .as_mut()
                    .expect("Invalid tree: leaf is taller than its sibling.");
                let right_left_h = right.left.as_ref().map_or(0, |n| n.height);
                let right_right_h = right.right.as_ref().map_or(0, |n| n.height);
                if right_left_h > right_right_h {
                    right.rotate_right();
                }
            }
            self.rotate_left();
        } else {
            {
                let left = self
                    .left
                    .as_mut()
                    .expect("Invalid tree: leaf is taller than its sibling.");
                let left_right_h = left.right.as_ref().map_or(0, |n| n.height);
                let left_left_h = left.left.as_ref().map_or(0, |n| n.height);
                if left_right_h > left_left_h {
                    left.rotate_left();
                }
            }
            self.rotate_right();
        }
    }

    fn rotate_left(&mut self) {
        let mut new_root = self.right.take().unwrap();
        let t1 = self.left.take();
        let t2 = new_root.left.take();
        let t3 = new_root.right.take();
        swap_interval_data(self, &mut *new_root);

        new_root.left = t1;
        new_root.right = t2;
        new_root.update_height();
        new_root.update_max();

        self.right = t3;
        self.left = Some(new_root);
        self.update_height();
        self.update_max();
    }

    fn rotate_right(&mut self) {
        let mut new_root = self.left.take().unwrap();
        let t1 = new_root.left.take();
        let t2 = new_root.right.take();
        let t3 = self.right.take();
        swap_interval_data(self, &mut *new_root);

        new_root.left = t2;
        new_root.right = t3;
        new_root.update_height();
        new_root.update_max();

        self.left = t1;
        self.right = Some(new_root);
        self.update_height();
        self.update_max();
    }
}

fn swap_interval_data<N: Ord + Clone, D>(node_1: &mut Node<N, D>, node_2: &mut Node<N, D>) {
    mem::swap(&mut node_1.value, &mut node_2.value);
    mem::swap(&mut node_1.interval, &mut node_2.interval);
}

fn intersect<N: Ord + Clone>(range_1: &Interval<N>, range_2: &Interval<N>) -> bool {
    range_1.start < range_1.end
        && range_2.start < range_2.end
        && range_1.end > range_2.start
        && range_1.start < range_2.end
}

#[cfg(test)]
mod tests {
    use super::{Entry, IntervalTree, Node};
    use crate::utils::Interval;
    use std::cmp;
    use std::cmp::{max, min};
    use std::ops::Range;

    fn validate(node: &Node<i64, String>) {
        validate_height(node);
        validate_intervals(node);
        validate_string_metadata(node);
        if let Some(n) = node.left.as_ref() {
            validate(n)
        }
        if let Some(n) = node.right.as_ref() {
            validate(n)
        }
    }

    fn validate_height(node: &Node<i64, String>) {
        let left_height = node.left.as_ref().map_or(0, |n| n.height);
        let right_height = node.right.as_ref().map_or(0, |n| n.height);
        assert!((left_height - right_height).abs() <= 1);
        assert_eq!(node.height, cmp::max(left_height, right_height) + 1)
    }

    fn validate_intervals(node: &Node<i64, String>) {
        let mut reached_maximum: bool = false;
        if node.interval.end == node.max {
            reached_maximum = true;
        }
        if let Some(ref son) = node.left {
            assert!(
                son.max <= node.max,
                "left max invariant violated:\n{:?} -> {:?}",
                node,
                son
            );
            assert!(
                son.interval.start <= node.interval.start,
                "left ord invariant violated\n{:?} -> {:?}",
                node,
                son
            );
            if node.max == son.max {
                reached_maximum = true;
            }
        }
        if let Some(ref son) = node.right {
            assert!(
                son.max <= node.max,
                "right max invariant violated\n{:?} -> {:?}",
                node,
                son
            );
            assert!(
                son.interval.start >= node.interval.start,
                "right ord invariant violated\n{:?} -> {:?}",
                node,
                son
            );
            if node.max == son.max {
                reached_maximum = true;
            }
        }
        assert!(reached_maximum, "maximum invariant violated: {:?}", node);
    }

    fn validate_string_metadata(node: &Node<i64, String>) {
        let mut name: String = "".to_string();
        name.push_str(&node.interval.start.to_string());
        name.push(':');
        name.push_str(&node.interval.end.to_string());
        assert_eq!(name, node.value, "Invalid metadata for node {:?}", node);
    }

    fn insert_and_validate(tree: &mut IntervalTree<i64, String>, start: i64, end: i64) {
        let mut name: String = "".to_string();
        name.push_str(&start.to_string());
        name.push(':');
        name.push_str(&end.to_string());
        tree.insert(start..end, name);
        if let Some(ref n) = tree.root {
            validate(n);
        }
    }

    fn make_entry_tuples(intervals: Vec<Range<i64>>) -> Vec<(Interval<i64>, String)> {
        let mut entries = vec![];
        for interval in intervals {
            let mut data: String = "".to_string();
            data.push_str(&interval.start.to_string());
            data.push(':');
            data.push_str(&interval.end.to_string());
            entries.push((interval.into(), data));
        }
        entries.sort_by(|x1, x2| x1.1.cmp(&x2.1));
        entries
    }

    fn assert_intersections(
        tree: &IntervalTree<i64, String>,
        target: Range<i64>,
        expected_results: Vec<Range<i64>>,
    ) {
        let mut actual_entries: Vec<Entry<'_, i64, String>> = tree.find(&target).collect();
        println!("{:?}", actual_entries);
        actual_entries.sort_by(|x1, x2| x1.data.cmp(&x2.data));
        let expected_entries = make_entry_tuples(expected_results);
        assert_eq!(actual_entries.len(), expected_entries.len());
        for (actual, expected) in actual_entries.iter().zip(expected_entries.iter()) {
            assert_eq!(*actual.interval, expected.0);
            assert_eq!(actual.data, &expected.1);
        }
    }

    fn assert_not_found(tree: &IntervalTree<i64, String>, target: Range<i64>) {
        assert_intersections(tree, target, vec![]);
    }

    #[test]
    fn test_insertion_and_intersection() {
        let mut tree: IntervalTree<i64, String> = IntervalTree::new();
        assert_eq!(tree.find(1..2).count(), 0);
        assert_eq!(tree.find_mut(1..2).count(), 0);
        tree.insert(50..51, "50:51".to_string());
        assert_not_found(&tree, 49..50);
        assert_intersections(&tree, 49..55, vec![50..51]);
        assert_not_found(&tree, 51..55);
        assert_not_found(&tree, 52..55);
        assert_not_found(&tree, 40..45);
        insert_and_validate(&mut tree, 80, 81);
        assert_intersections(&tree, 80..83, vec![80..81]);
        assert_intersections(&tree, 1..100, vec![50..51, 80..81]);
        assert_not_found(&tree, 82..83);
        insert_and_validate(&mut tree, 30, 35);
        assert_intersections(&tree, 25..33, vec![30..35]);
        assert_intersections(&tree, 1..100, vec![30..35, 50..51, 80..81]);
        assert_not_found(&tree, 42..43);
        assert_not_found(&tree, 35..36);
        assert_not_found(&tree, 22..29);
        insert_and_validate(&mut tree, 70, 77);
        assert_intersections(&tree, 75..79, vec![70..77]);
        assert_intersections(&tree, 1..100, vec![30..35, 50..51, 70..77, 80..81]);
        assert_not_found(&tree, 62..68);
        assert_intersections(&tree, 75..77, vec![70..77]);
        assert_not_found(&tree, 78..79);
        assert_intersections(&tree, 49..51, vec![50..51]);
        assert_intersections(&tree, 49..55, vec![50..51]);
        assert_not_found(&tree, 51..55);
        assert_not_found(&tree, 52..55);
        assert_not_found(&tree, 40..45);
        insert_and_validate(&mut tree, 101, 102);
        insert_and_validate(&mut tree, 103, 104);
        insert_and_validate(&mut tree, 105, 106);
        insert_and_validate(&mut tree, 107, 108);
        insert_and_validate(&mut tree, 111, 112);
        insert_and_validate(&mut tree, 113, 114);
        insert_and_validate(&mut tree, 115, 116);
        insert_and_validate(&mut tree, 117, 118);
        insert_and_validate(&mut tree, 119, 129);
        assert_not_found(&tree, 112..113);
        assert_not_found(&tree, 108..109);
        assert_intersections(&tree, 106..108, vec![107..108]);
        assert_intersections(&tree, 1..100, vec![30..35, 50..51, 70..77, 80..81]);
        assert_intersections(&tree, 1..101, vec![30..35, 50..51, 70..77, 80..81]);
        assert_intersections(
            &tree,
            1..102,
            vec![30..35, 50..51, 70..77, 80..81, 101..102],
        );
        assert_intersections(
            &tree,
            100..200,
            vec![
                101..102,
                103..104,
                105..106,
                107..108,
                111..112,
                113..114,
                115..116,
                117..118,
                119..129,
            ],
        );
    }

    #[test]
    fn test_insertion_and_intersection_2() {
        let mut tree: IntervalTree<i64, String> = IntervalTree::new();
        // interval size we'll insert into the tree
        let k = 10;
        for i in 100..200 {
            insert_and_validate(&mut tree, i, i + k);
        }
        for i in 90..210 {
            // "random" interval length we'll search against.
            // the exact formula doesn't matter; the point is
            // it will vary from 0.5 * k to 1.5 * k
            let l = k / 2 + i % k;
            let lower_bound = i;
            let upper_bound = i + l;
            let smallest_start = max(lower_bound - k + 1, 100);
            let largest_start = min(upper_bound, 200);
            let mut expected_intersections = vec![];
            for j in smallest_start..largest_start {
                expected_intersections.push(j..j + k);
            }
            assert_intersections(&tree, lower_bound..upper_bound, expected_intersections);
        }
    }

    #[test]
    fn zero_width_ranges() {
        let mut tree: IntervalTree<i64, String> = IntervalTree::new();
        tree.insert(10..10, "10:10".to_string());

        assert_not_found(&tree, 5..15);
        assert_not_found(&tree, 10..10);

        insert_and_validate(&mut tree, 50, 60);
        assert_not_found(&tree, 55..55);
    }

    #[test]
    fn from_iterator() {
        let tree: IntervalTree<i64, ()> = vec![(10..100, ()), (10..20, ()), (1..8, ())]
            .into_iter()
            .collect();
        assert_eq!(tree.find(&(0..1000)).count(), 3);
        let tree2: IntervalTree<_, _> = tree
            .find(&(11..30))
            .map(|e| (e.interval().clone(), *e.data()))
            .collect();
        assert_eq!(tree2.find(&(0..1000)).count(), 2);
    }

    #[test]
    fn iter_mut() {
        let mut tree: IntervalTree<i64, usize> = vec![(10..100, 0), (10..20, 0), (1..8, 0)]
            .into_iter()
            .collect();
        let q = Interval::new(11..30).unwrap();
        for mut e in tree.find_mut(q.clone()) {
            *e.data() += 1;
        }
        assert!(tree
            .find(0..100)
            .all(|e| if super::intersect(e.interval(), &q) {
                *e.data() == 1
            } else {
                *e.data() == 0
            }));
    }
}