logo
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
//! Interval tree, a data structure for efficiently storing and searching intervals.
//!
//! This implementation is based on the sorted array version as described/given in
//! https://github.com/lh3/cgranges / https://github.com/lh3/cgranges/blob/master/cpp/IITree.h
//!
//! It uses the same conventions as `crate::data_structures::interval_tree::IntervalTree`.
//! Note that if you do not use the `ArrayBackedIntervalTree::from_iter` constructor, you have to call `index(&mut self)`
//! first before `find()`-ing overlaps.
//!
//! # Example
//! ```
//! use bio::data_structures::interval_tree::ArrayBackedIntervalTree;
//! use bio::utils::Interval;
//! use std::iter::FromIterator;
//!
//! let mut tree = ArrayBackedIntervalTree::new();
//! tree.insert(12..34, 0);
//! tree.insert(0..23, 1);
//! tree.insert(34..56, 2);
//! // since we did at least one manual insert, we have to index the tree
//! tree.index();
//! let i1 = &tree.find(22..25)[0];
//! assert_eq!(i1.interval().start, 0);
//! assert_eq!(i1.interval().end, 23);
//! assert_eq!(i1.data(), &1u32);
//!
//! let tree =
//!     ArrayBackedIntervalTree::from_iter(vec![(12..34, 0), (0..23, 1), (34..56, 2)].into_iter());
//! // no call to `index` needed here, since that happens in `from_iter` already
//! let i2 = &tree.find(22..25)[1];
//! assert_eq!(i2.interval().start, 12);
//! assert_eq!(i2.interval().end, 34);
//! assert_eq!(i2.data(), &0u32);
//! ```

use crate::utils::Interval;
use std::cmp::min;
use std::iter::FromIterator;

/// A `find` query on the interval tree does not directly return references to the intervals in the
/// tree but wraps the fields `interval` and `data` in an `Entry`.
#[derive(PartialEq, Eq, Debug, Clone)]
struct InternalEntry<N: Ord + Clone + Copy, D> {
    data: D,
    interval: Interval<N>,
    max: N,
}

/// A `find` query on the interval tree does not directly return references to the nodes in the tree, but
/// wraps the fields `interval` and `data` in an `Entry`.
#[derive(PartialEq, Eq, Debug, Clone)]
pub struct Entry<'a, N: Ord + Clone, D> {
    data: &'a D,
    interval: &'a Interval<N>,
}

impl<'a, N: Ord + Clone + 'a, D: 'a> Entry<'a, N, D> {
    /// Get a reference to the data for this entry
    pub fn data(&self) -> &'a D {
        self.data
    }

    /// Get a reference to the interval for this entry
    pub fn interval(&self) -> &'a Interval<N> {
        self.interval
    }
}

impl<N: Ord + Clone + Copy, D> Default for ArrayBackedIntervalTree<N, D> {
    fn default() -> Self {
        ArrayBackedIntervalTree {
            entries: vec![],
            max_level: 0,
            indexed: false,
        }
    }
}

pub struct ArrayBackedIntervalTree<N: Ord + Clone + Copy, D> {
    entries: Vec<InternalEntry<N, D>>,
    max_level: usize,
    indexed: bool,
}

impl<N, D, V> FromIterator<(V, D)> for ArrayBackedIntervalTree<N, D>
where
    V: Into<Interval<N>>,
    N: Ord + Clone + Copy,
    D: Clone,
{
    fn from_iter<T: IntoIterator<Item = (V, D)>>(iter: T) -> Self {
        let mut tree = Self::new();
        iter.into_iter()
            .for_each(|(interval, data)| tree.insert(interval, data));
        tree.index();
        tree
    }
}

impl<N: Ord + Clone + Copy, D: Clone> ArrayBackedIntervalTree<N, D> {
    pub fn new() -> Self {
        Default::default()
    }

    pub fn insert<I: Into<Interval<N>>>(&mut self, interval: I, data: D) {
        let interval = interval.into();
        let max = interval.end;
        self.entries.push(InternalEntry {
            interval,
            data,
            max,
        });
        self.indexed = false;
    }

    pub fn index(&mut self) {
        if !self.indexed {
            self.entries.sort_by_key(|e| e.interval.start);
            self.index_core();
            self.indexed = true;
        }
    }

    fn index_core(&mut self) {
        let a = &mut self.entries;
        if a.is_empty() {
            return;
        }

        let n = a.len();
        let mut last_i = 0;
        let mut last_value = a[0].max;
        (0..n).step_by(2).for_each(|i| {
            last_i = i;
            a[i].max = a[i].interval.end;
            last_value = a[i].max;
        });
        let mut k = 1;
        while (1 << k) <= n {
            // process internal nodes in the bottom-up order
            let x = 1 << (k - 1);
            let i0 = (x << 1) - 1; // i0 is the first node
            let step = x << 2;
            for i in (i0..n).step_by(step) {
                // traverse all nodes at level k
                let end_left = a[i - x].max; // max value of the left child
                let end_right = if i + x < n { a[i + x].max } else { last_value }; // max value of the right child
                let end = max3(a[i].interval.end, end_left, end_right);
                a[i].max = end;
            }
            last_i = if (last_i >> k & 1) > 0 {
                last_i - x
            } else {
                last_i + x
            };
            if last_i < n && a[last_i].max > last_value {
                last_value = a[last_i].max
            }
            k += 1;
        }
        self.max_level = k - 1;
    }

    /// Find overlapping intervals in the index.
    /// Returns a vector of entries, consisting of the interval and its associated data.
    ///
    /// # Arguments
    ///
    /// * `interval` - The interval for which overlaps are to be found in the index. Can also be a `Range`.
    ///
    /// # Panics
    ///
    /// Panics if this `IITree` instance has not been indexed yet.
    pub fn find<I: Into<Interval<N>>>(&self, interval: I) -> Vec<Entry<N, D>> {
        let mut buf = Vec::with_capacity(512);
        self.find_into(interval, &mut buf);
        buf
    }

    /// Find overlapping intervals in the index
    ///
    /// # Arguments
    ///
    /// * `interval` - The interval for which overlaps are to be found in the index. Can also be a `Range`.
    /// * `results` - A reusable buffer vector for storing the results.
    ///
    /// # Panics
    ///
    /// Panics if this `IITree` instance has not been indexed yet.
    pub fn find_into<'b, 'a: 'b, I: Into<Interval<N>>>(
        &'a self,
        interval: I,
        results: &'b mut Vec<Entry<'a, N, D>>,
    ) {
        if !self.indexed {
            panic!("This IITree has not been indexed yet. Call `index()` first.")
        }

        let interval = interval.into();
        let (start, end) = (interval.start, interval.end);
        let n = self.entries.len() as usize;
        let a = &self.entries;
        results.clear();
        let mut stack = [StackCell::empty(); 64];
        // push the root; this is a top down traversal
        stack[0].k = self.max_level;
        stack[0].x = (1 << self.max_level) - 1;
        stack[0].w = false;
        let mut t = 1;
        while t > 0 {
            t -= 1;
            let StackCell { k, x, w } = stack[t];
            if k <= 3 {
                // we are in a small subtree; traverse every node in this subtree
                let i0 = x >> k << k;
                let i1 = min(i0 + (1 << (k + 1)) - 1, n);
                for (i, node) in a.iter().enumerate().take(i1).skip(i0) {
                    if node.interval.start >= end {
                        break;
                    }
                    if start < node.interval.end {
                        // if overlap, append to `results`
                        results.push(Entry {
                            interval: &self.entries[i].interval,
                            data: &self.entries[i].data,
                        });
                    }
                }
            } else if !w {
                // if left child not processed
                let y = x - (1 << (k - 1)); // the left child of x; NB: y may be out of range (i.e. y>=n)
                stack[t].k = k;
                stack[t].x = x;
                stack[t].w = true; // re-add node x, but mark the left child having been processed
                t += 1;
                if y >= n || a[y].max > start {
                    // push the left child if y is out of range or may overlap with the query
                    stack[t].k = k - 1;
                    stack[t].x = y;
                    stack[t].w = false;
                    t += 1;
                }
            } else if x < n && a[x].interval.start < end {
                // need to push the right child
                if start < a[x].interval.end {
                    results.push(Entry {
                        interval: &self.entries[x].interval,
                        data: &self.entries[x].data,
                    });
                }
                stack[t].k = k - 1;
                stack[t].x = x + (1 << (k - 1));
                stack[t].w = false;
                t += 1;
            }
        }
    }
}

fn max3<T: Ord>(a: T, b: T, c: T) -> T {
    a.max(b.max(c))
}

#[derive(Clone, Copy)]
struct StackCell {
    // node
    x: usize,
    // level
    k: usize,
    // false if left child hasn't been processed
    w: bool,
}

impl StackCell {
    fn empty() -> Self {
        Self {
            x: 0,
            k: 0,
            w: false,
        }
    }
}

#[cfg(test)]
mod tests {
    use proptest::prelude::*;

    use super::*;

    #[test]
    fn test_example() {
        let mut tree = ArrayBackedIntervalTree::new();
        tree.insert(12..34, 0);
        tree.insert(0..23, 1);
        tree.insert(34..56, 2);
        tree.index();
        let overlap = tree.find(22..25);

        let e1 = Entry {
            interval: &(0..23).into(),
            data: &1,
        };
        let e2 = Entry {
            interval: &(12..34).into(),
            data: &0,
        };
        let expected = vec![e1, e2];
        assert_eq!(overlap, expected);
    }

    /// Regression test: catch a scenario where the `max` value of an entry
    /// wasn't extended to take into account all of the leaf nodes it contained
    /// when indexing
    #[test]
    fn test_disjoint_two_element_search() {
        let mut tree = ArrayBackedIntervalTree::new();
        tree.insert(12..34, 0);
        tree.insert(40..56, 1);
        tree.index();
        let overlap = tree.find(40..41);

        let e1 = Entry {
            interval: &(40..56).into(),
            data: &1,
        };
        let expected = vec![e1];
        assert_eq!(overlap, expected);
    }

    proptest! {
        /// Given a query interval in the format `(start, len)` and a sequence
        /// of intervals `(start, len)` to index, assert that
        /// `ArrayBackedIntervalTree::find` returns all the intervals which
        /// overlap the query.
        #[test]
        fn find_arbitrary(
            query in (0u32..1001, 0u32..1001),
            intervals in prop::collection::vec((0u32..1000, 0u32..1000), 0..1000)
        ) {
            let tree = ArrayBackedIntervalTree::from_iter(
                intervals
                    .into_iter()
                    .enumerate()
                    .map(|(i, (start, len))| (start..start + len, i)),
            );

            let (start, len) = query;
            let end = start + len;

            let expected: Vec<_> = tree
                .entries
                .iter()
                .filter_map(|internal| {
                    if internal.interval.start < end && start < internal.interval.end {
                        Some(Entry {
                            interval: &internal.interval,
                            data: &internal.data,
                        })
                    } else {
                        None
                    }
                })
                .collect();

            prop_assert_eq!(
                tree.find(start..end),
                expected,
                "{:?} in {:?}",
                start..end,
                tree.entries
            );
        }
    }
}