1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
use crate::math::Vect;
use bevy::{prelude::*, reflect::FromReflect};
use rapier::prelude::{
    Isometry, LockedAxes as RapierLockedAxes, RigidBodyActivation, RigidBodyHandle, RigidBodyType,
};

/// The Rapier handle of a rigid-body that was inserted to the physics scene.
#[derive(Copy, Clone, Debug, Component)]
pub struct RapierRigidBodyHandle(pub RigidBodyHandle);

/// A rigid-body.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Component, Reflect, FromReflect)]
#[reflect(Component, PartialEq)]
pub enum RigidBody {
    /// A `RigidBody::Dynamic` body can be affected by all external forces.
    Dynamic,
    /// A `RigidBody::Fixed` body cannot be affected by external forces.
    Fixed,
    /// A `RigidBody::KinematicPositionBased` body cannot be affected by any external forces but can be controlled
    /// by the user at the position level while keeping realistic one-way interaction with dynamic bodies.
    ///
    /// One-way interaction means that a kinematic body can push a dynamic body, but a kinematic body
    /// cannot be pushed by anything. In other words, the trajectory of a kinematic body can only be
    /// modified by the user and is independent from any contact or joint it is involved in.
    KinematicPositionBased,
    /// A `RigidBody::KinematicVelocityBased` body cannot be affected by any external forces but can be controlled
    /// by the user at the velocity level while keeping realistic one-way interaction with dynamic bodies.
    ///
    /// One-way interaction means that a kinematic body can push a dynamic body, but a kinematic body
    /// cannot be pushed by anything. In other words, the trajectory of a kinematic body can only be
    /// modified by the user and is independent from any contact or joint it is involved in.
    KinematicVelocityBased,
}

impl Default for RigidBody {
    fn default() -> Self {
        RigidBody::Dynamic
    }
}

impl From<RigidBody> for RigidBodyType {
    fn from(rigid_body: RigidBody) -> RigidBodyType {
        match rigid_body {
            RigidBody::Dynamic => RigidBodyType::Dynamic,
            RigidBody::Fixed => RigidBodyType::Fixed,
            RigidBody::KinematicPositionBased => RigidBodyType::KinematicPositionBased,
            RigidBody::KinematicVelocityBased => RigidBodyType::KinematicVelocityBased,
        }
    }
}

/// The velocity of a rigid-body.
///
/// Use this component to control and/or read the velocity of a dynamic or kinematic rigid-body.
/// If this component isn’t present, a dynamic rigid-body will still be able to move (you will just
/// not be able to read/modify its velocity).
#[derive(Copy, Clone, Debug, Default, PartialEq, Component, Reflect, FromReflect)]
#[reflect(Component, PartialEq)]
pub struct Velocity {
    /// The linear velocity of the rigid-body.
    pub linvel: Vect,
    /// The angular velocity of the rigid-body.
    #[cfg(feature = "dim2")]
    pub angvel: f32,
    /// The angular velocity of the rigid-body.
    #[cfg(feature = "dim3")]
    pub angvel: Vect,
}

impl Velocity {
    /// Initialize a velocity set to zero.
    pub fn zero() -> Self {
        Self::default()
    }

    /// Initialize a velocity with the given linear velocity, and an angular velocity of zero.
    pub fn linear(linvel: Vect) -> Self {
        Self {
            linvel,
            ..Self::default()
        }
    }

    /// Initialize a velocity with the given angular velocity, and a linear velocity of zero.
    #[cfg(feature = "dim2")]
    pub fn angular(angvel: f32) -> Self {
        Self {
            angvel,
            ..Self::default()
        }
    }

    /// Initialize a velocity with the given angular velocity, and a linear velocity of zero.
    #[cfg(feature = "dim3")]
    pub fn angular(angvel: Vect) -> Self {
        Self {
            angvel,
            ..Self::default()
        }
    }
}

/// Mass-properties of a rigid-body, added to the contributions of its attached colliders.
#[derive(Copy, Clone, Debug, Default, PartialEq, Component, Reflect, FromReflect)]
#[reflect(Component, PartialEq)]
pub struct AdditionalMassProperties(pub MassProperties);

/// Center-of-mass, mass, and angular inertia.
///
/// When this is used as a component, this lets you read the total mass properties of
/// a rigid-body (including the colliders contribution). Modifying this component won’t
/// affect the mass-properties of the rigid-body (the attached colliders’ `ColliderMassProperties`
/// and the `AdditionalMassProperties` should be modified instead).
#[derive(Copy, Clone, Debug, Default, PartialEq, Component, Reflect, FromReflect)]
#[reflect(Component, PartialEq)]
pub struct MassProperties {
    /// The center of mass of a rigid-body expressed in its local-space.
    pub local_center_of_mass: Vect,
    /// The mass of a rigid-body.
    pub mass: f32,
    /// The principal angular inertia of the rigid-body.
    #[cfg(feature = "dim2")]
    pub principal_inertia: f32,
    /// The principal vectors of the local angular inertia tensor of the rigid-body.
    #[cfg(feature = "dim3")]
    pub principal_inertia_local_frame: crate::math::Rot,
    /// The principal angular inertia of the rigid-body.
    #[cfg(feature = "dim3")]
    pub principal_inertia: Vect,
}

impl MassProperties {
    /// Converts these mass-properties to Rapier’s `MassProperties` structure.
    #[cfg(feature = "dim2")]
    pub fn into_rapier(self, physics_scale: f32) -> rapier::dynamics::MassProperties {
        rapier::dynamics::MassProperties::new(
            (self.local_center_of_mass / physics_scale).into(),
            self.mass,
            #[allow(clippy::useless_conversion)] // Need to convert if dim3 enabled
            (self.principal_inertia / (physics_scale * physics_scale)).into(),
        )
    }

    /// Converts these mass-properties to Rapier’s `MassProperties` structure.
    #[cfg(feature = "dim3")]
    pub fn into_rapier(self, physics_scale: f32) -> rapier::dynamics::MassProperties {
        rapier::dynamics::MassProperties::with_principal_inertia_frame(
            (self.local_center_of_mass / physics_scale).into(),
            self.mass,
            (self.principal_inertia / (physics_scale * physics_scale)).into(),
            self.principal_inertia_local_frame.into(),
        )
    }

    /// Converts Rapier’s `MassProperties` structure to `Self`.
    pub fn from_rapier(mprops: rapier::dynamics::MassProperties, physics_scale: f32) -> Self {
        #[allow(clippy::useless_conversion)] // Need to convert if dim3 enabled
        Self {
            mass: mprops.mass(),
            local_center_of_mass: (mprops.local_com * physics_scale).into(),
            principal_inertia: (mprops.principal_inertia() * (physics_scale * physics_scale))
                .into(),
            #[cfg(feature = "dim3")]
            principal_inertia_local_frame: mprops.principal_inertia_local_frame.into(),
        }
    }
}

bitflags::bitflags! {
    #[derive(Default, Component, Reflect, FromReflect)]
    #[reflect(Component, PartialEq)]
    /// Flags affecting the behavior of the constraints solver for a given contact manifold.
    pub struct LockedAxes: u8 {
        /// Flag indicating that the rigid-body cannot translate along the `X` axis.
        const TRANSLATION_LOCKED_X = 1 << 0;
        /// Flag indicating that the rigid-body cannot translate along the `Y` axis.
        const TRANSLATION_LOCKED_Y = 1 << 1;
        /// Flag indicating that the rigid-body cannot translate along the `Z` axis.
        const TRANSLATION_LOCKED_Z = 1 << 2;
        /// Flag indicating that the rigid-body cannot translate along any direction.
        const TRANSLATION_LOCKED = Self::TRANSLATION_LOCKED_X.bits | Self::TRANSLATION_LOCKED_Y.bits | Self::TRANSLATION_LOCKED_Z.bits;
        /// Flag indicating that the rigid-body cannot rotate along the `X` axis.
        const ROTATION_LOCKED_X = 1 << 3;
        /// Flag indicating that the rigid-body cannot rotate along the `Y` axis.
        const ROTATION_LOCKED_Y = 1 << 4;
        /// Flag indicating that the rigid-body cannot rotate along the `Z` axis.
        const ROTATION_LOCKED_Z = 1 << 5;
        /// Combination of flags indicating that the rigid-body cannot rotate along any axis.
        const ROTATION_LOCKED = Self::ROTATION_LOCKED_X.bits | Self::ROTATION_LOCKED_Y.bits | Self::ROTATION_LOCKED_Z.bits;
    }
}

impl From<LockedAxes> for RapierLockedAxes {
    fn from(locked_axes: LockedAxes) -> RapierLockedAxes {
        RapierLockedAxes::from_bits(locked_axes.bits()).expect("Internal conversion error.")
    }
}

/// Constant external forces applied continuously to a rigid-body.
///
/// This force is applied at each timestep.
#[derive(Copy, Clone, Debug, Default, PartialEq, Component, Reflect, FromReflect)]
#[reflect(Component, PartialEq)]
pub struct ExternalForce {
    /// The linear force applied to the rigid-body.
    pub force: Vect,
    /// The angular torque applied to the rigid-body.
    #[cfg(feature = "dim2")]
    pub torque: f32,
    /// The angular torque applied to the rigid-body.
    #[cfg(feature = "dim3")]
    pub torque: Vect,
}

/// Instantaneous external impulse applied continuously to a rigid-body.
///
/// The impulse is only applied once, and whenever it it modified (based
/// on Bevy’s change detection).
#[derive(Copy, Clone, Debug, Default, PartialEq, Component, Reflect, FromReflect)]
#[reflect(Component, PartialEq)]
pub struct ExternalImpulse {
    /// The linear impulse applied to the rigid-body.
    pub impulse: Vect,
    /// The angular impulse applied to the rigid-body.
    #[cfg(feature = "dim2")]
    pub torque_impulse: f32,
    /// The angular impulse applied to the rigid-body.
    #[cfg(feature = "dim3")]
    pub torque_impulse: Vect,
}

/// Gravity is multiplied by this scaling factor before it's
/// applied to this rigid-body.
#[derive(Copy, Clone, Debug, PartialEq, Component, Reflect, FromReflect)]
#[reflect(Component, PartialEq)]
pub struct GravityScale(pub f32);

impl Default for GravityScale {
    fn default() -> Self {
        Self(1.0)
    }
}

/// Information used for Continuous-Collision-Detection.
#[derive(Copy, Clone, Debug, Default, PartialEq, Component, Reflect, FromReflect)]
#[reflect(Component, PartialEq)]
pub struct Ccd {
    /// Is CCD enabled for this rigid-body?
    pub enabled: bool,
}

impl Ccd {
    /// Enable CCD for a rigid-body.
    pub fn enabled() -> Self {
        Self { enabled: true }
    }

    /// Disable CCD for a rigid-body.
    ///
    /// Note that a rigid-body without the Ccd component attached
    /// has CCD disabled by default.
    pub fn disabled() -> Self {
        Self { enabled: false }
    }
}

/// The dominance groups of a rigid-body.
#[derive(Copy, Clone, Debug, Default, PartialEq, Component, Reflect, FromReflect)]
#[reflect(Component, PartialEq)]
pub struct Dominance {
    // FIXME: rename this to `group` (no `s`).
    /// The dominance groups of a rigid-body.
    pub groups: i8,
}

impl Dominance {
    /// Initialize the dominance to the given group.
    pub fn group(group: i8) -> Self {
        Self { groups: group }
    }
}

/// The activation status of a body.
///
/// This controls whether a body is sleeping or not.
/// If the threshold is negative, the body never sleeps.
#[derive(Copy, Clone, Debug, PartialEq, Component, Reflect, FromReflect)]
#[reflect(Component, PartialEq)]
pub struct Sleeping {
    /// The threshold linear velocity bellow which the body can fall asleep.
    pub linear_threshold: f32,
    /// The angular linear velocity bellow which the body can fall asleep.
    pub angular_threshold: f32,
    /// Is this body sleeping?
    pub sleeping: bool,
}

impl Sleeping {
    /// Creates a components that disables sleeping for the associated rigid-body.
    pub fn disabled() -> Self {
        Self {
            linear_threshold: -1.0,
            angular_threshold: -1.0,
            sleeping: false,
        }
    }
}

impl Default for Sleeping {
    fn default() -> Self {
        Self {
            linear_threshold: RigidBodyActivation::default_linear_threshold(),
            angular_threshold: RigidBodyActivation::default_angular_threshold(),
            sleeping: false,
        }
    }
}

/// Damping factors to gradually slow down a rigid-body.
#[derive(Copy, Clone, Debug, PartialEq, Component, Reflect, FromReflect)]
#[reflect(Component, PartialEq)]
pub struct Damping {
    // TODO: rename these to "linear" and "angular"?
    /// Damping factor for gradually slowing down the translational motion of the rigid-body.
    pub linear_damping: f32,
    /// Damping factor for gradually slowing down the angular motion of the rigid-body.
    pub angular_damping: f32,
}

impl Default for Damping {
    fn default() -> Self {
        Self {
            linear_damping: 0.0,
            angular_damping: 0.0,
        }
    }
}

/// If the `TimestepMode::Interpolated` mode is set and this component is present,
/// the associated rigid-body will have its position automatically interpolated
/// between the last two rigid-body positions set by the physics engine.
#[derive(Copy, Clone, Debug, Default, PartialEq, Component)]
pub struct TransformInterpolation {
    /// The starting point of the interpolation.
    pub start: Option<Isometry<f32>>,
    /// The end point of the interpolation.
    pub end: Option<Isometry<f32>>,
}

impl TransformInterpolation {
    /// Interpolates between the start and end positions with `t` in the range `[0..1]`.
    pub fn lerp_slerp(&self, t: f32) -> Option<Isometry<f32>> {
        if let (Some(start), Some(end)) = (self.start, self.end) {
            Some(start.lerp_slerp(&end, t))
        } else {
            None
        }
    }
}