1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
use bit_vec::{self, BitVec};
use ff::{Field, PrimeField, PrimeFieldRepr, ScalarEngine};
use futures::Future;
use groupy::{CurveAffine, CurveProjective};
use log::{info, warn};
use std::io;
use std::iter;
use std::sync::Arc;

use super::multicore::Worker;
use super::SynthesisError;
use crate::gpu;

/// An object that builds a source of bases.
pub trait SourceBuilder<G: CurveAffine>: Send + Sync + 'static + Clone {
    type Source: Source<G>;

    fn new(self) -> Self::Source;
    fn get(self) -> (Arc<Vec<G>>, usize);
}

/// A source of bases, like an iterator.
pub trait Source<G: CurveAffine> {
    /// Parses the element from the source. Fails if the point is at infinity.
    fn add_assign_mixed(
        &mut self,
        to: &mut <G as CurveAffine>::Projective,
    ) -> Result<(), SynthesisError>;

    /// Skips `amt` elements from the source, avoiding deserialization.
    fn skip(&mut self, amt: usize) -> Result<(), SynthesisError>;
}

impl<G: CurveAffine> SourceBuilder<G> for (Arc<Vec<G>>, usize) {
    type Source = (Arc<Vec<G>>, usize);

    fn new(self) -> (Arc<Vec<G>>, usize) {
        (self.0.clone(), self.1)
    }

    fn get(self) -> (Arc<Vec<G>>, usize) {
        (self.0.clone(), self.1)
    }
}

impl<G: CurveAffine> Source<G> for (Arc<Vec<G>>, usize) {
    fn add_assign_mixed(
        &mut self,
        to: &mut <G as CurveAffine>::Projective,
    ) -> Result<(), SynthesisError> {
        if self.0.len() <= self.1 {
            return Err(io::Error::new(
                io::ErrorKind::UnexpectedEof,
                "expected more bases from source",
            )
            .into());
        }

        if self.0[self.1].is_zero() {
            return Err(SynthesisError::UnexpectedIdentity);
        }

        to.add_assign_mixed(&self.0[self.1]);

        self.1 += 1;

        Ok(())
    }

    fn skip(&mut self, amt: usize) -> Result<(), SynthesisError> {
        if self.0.len() <= self.1 {
            return Err(io::Error::new(
                io::ErrorKind::UnexpectedEof,
                "expected more bases from source",
            )
            .into());
        }

        self.1 += amt;

        Ok(())
    }
}

pub trait QueryDensity {
    /// Returns whether the base exists.
    type Iter: Iterator<Item = bool>;

    fn iter(self) -> Self::Iter;
    fn get_query_size(self) -> Option<usize>;
}

#[derive(Clone)]
pub struct FullDensity;

impl AsRef<FullDensity> for FullDensity {
    fn as_ref(&self) -> &FullDensity {
        self
    }
}

impl<'a> QueryDensity for &'a FullDensity {
    type Iter = iter::Repeat<bool>;

    fn iter(self) -> Self::Iter {
        iter::repeat(true)
    }

    fn get_query_size(self) -> Option<usize> {
        None
    }
}

pub struct DensityTracker {
    bv: BitVec,
    total_density: usize,
}

impl<'a> QueryDensity for &'a DensityTracker {
    type Iter = bit_vec::Iter<'a>;

    fn iter(self) -> Self::Iter {
        self.bv.iter()
    }

    fn get_query_size(self) -> Option<usize> {
        Some(self.bv.len())
    }
}

impl DensityTracker {
    pub fn new() -> DensityTracker {
        DensityTracker {
            bv: BitVec::new(),
            total_density: 0,
        }
    }

    pub fn add_element(&mut self) {
        self.bv.push(false);
    }

    pub fn inc(&mut self, idx: usize) {
        if !self.bv.get(idx).unwrap() {
            self.bv.set(idx, true);
            self.total_density += 1;
        }
    }

    pub fn get_total_density(&self) -> usize {
        self.total_density
    }
}

fn multiexp_inner<Q, D, G, S>(
    pool: &Worker,
    bases: S,
    density_map: D,
    exponents: Arc<Vec<<<G::Engine as ScalarEngine>::Fr as PrimeField>::Repr>>,
    mut skip: u32,
    c: u32,
    handle_trivial: bool,
) -> Box<dyn Future<Item = <G as CurveAffine>::Projective, Error = SynthesisError>>
where
    for<'a> &'a Q: QueryDensity,
    D: Send + Sync + 'static + Clone + AsRef<Q>,
    G: CurveAffine,
    S: SourceBuilder<G>,
{
    // Perform this region of the multiexp
    let this = {
        let bases = bases.clone();
        let exponents = exponents.clone();
        let density_map = density_map.clone();

        pool.compute(move || {
            // Accumulate the result
            let mut acc = G::Projective::zero();

            // Build a source for the bases
            let mut bases = bases.new();

            // Create space for the buckets
            let mut buckets = vec![<G as CurveAffine>::Projective::zero(); (1 << c) - 1];

            let zero = <G::Engine as ScalarEngine>::Fr::zero().into_repr();
            let one = <G::Engine as ScalarEngine>::Fr::one().into_repr();

            // Sort the bases into buckets
            for (&exp, density) in exponents.iter().zip(density_map.as_ref().iter()) {
                if density {
                    if exp == zero {
                        bases.skip(1)?;
                    } else if exp == one {
                        if handle_trivial {
                            bases.add_assign_mixed(&mut acc)?;
                        } else {
                            bases.skip(1)?;
                        }
                    } else {
                        let mut exp = exp;
                        exp.shr(skip);
                        let exp = exp.as_ref()[0] % (1 << c);

                        if exp != 0 {
                            bases.add_assign_mixed(&mut buckets[(exp - 1) as usize])?;
                        } else {
                            bases.skip(1)?;
                        }
                    }
                }
            }

            // Summation by parts
            // e.g. 3a + 2b + 1c = a +
            //                    (a) + b +
            //                    ((a) + b) + c
            let mut running_sum = G::Projective::zero();
            for exp in buckets.into_iter().rev() {
                running_sum.add_assign(&exp);
                acc.add_assign(&running_sum);
            }

            Ok(acc)
        })
    };

    skip += c;

    if skip >= <G::Engine as ScalarEngine>::Fr::NUM_BITS {
        // There isn't another region.
        Box::new(this)
    } else {
        // There's another region more significant. Calculate and join it with
        // this region recursively.
        Box::new(
            this.join(multiexp_inner(
                pool,
                bases,
                density_map,
                exponents,
                skip,
                c,
                false,
            ))
            .map(move |(this, mut higher)| {
                for _ in 0..c {
                    higher.double();
                }

                higher.add_assign(&this);

                higher
            }),
        )
    }
}

/// Perform multi-exponentiation. The caller is responsible for ensuring the
/// query size is the same as the number of exponents.
pub fn multiexp<Q, D, G, S>(
    pool: &Worker,
    bases: S,
    density_map: D,
    exponents: Arc<Vec<<<G::Engine as ScalarEngine>::Fr as PrimeField>::Repr>>,
    kern: &mut Option<gpu::LockedMultiexpKernel<G::Engine>>,
) -> Box<dyn Future<Item = <G as CurveAffine>::Projective, Error = SynthesisError>>
where
    for<'a> &'a Q: QueryDensity,
    D: Send + Sync + 'static + Clone + AsRef<Q>,
    G: CurveAffine,
    G::Engine: paired::Engine,
    S: SourceBuilder<G>,
{
    if let Some(ref mut kern) = kern {
        if let Ok(p) = kern.with(|k: &mut gpu::MultiexpKernel<G::Engine>| {
            let mut exps = vec![exponents[0]; exponents.len()];
            let mut n = 0;
            for (&e, d) in exponents.iter().zip(density_map.as_ref().iter()) {
                if d {
                    exps[n] = e;
                    n += 1;
                }
            }

            let (bss, skip) = bases.clone().get();
            k.multiexp(pool, bss, Arc::new(exps.clone()), skip, n)
        }) {
            return Box::new(pool.compute(move || Ok(p)));
        }
    }

    let c = if exponents.len() < 32 {
        3u32
    } else {
        (f64::from(exponents.len() as u32)).ln().ceil() as u32
    };

    if let Some(query_size) = density_map.as_ref().get_query_size() {
        // If the density map has a known query size, it should not be
        // inconsistent with the number of exponents.

        assert!(query_size == exponents.len());
    }

    let future = multiexp_inner(pool, bases, density_map, exponents, 0, c, true);
    #[cfg(feature = "gpu")]
    {
        // Do not give the control back to the caller till the
        // multiexp is done. We may want to reacquire the GPU again
        // between the multiexps.
        let result = future.wait();
        Box::new(pool.compute(move || result))
    }
    #[cfg(not(feature = "gpu"))]
    future
}

#[cfg(feature = "pairing")]
#[test]
fn test_with_bls12() {
    fn naive_multiexp<G: CurveAffine>(
        bases: Arc<Vec<G>>,
        exponents: Arc<Vec<<G::Scalar as PrimeField>::Repr>>,
    ) -> G::Projective {
        assert_eq!(bases.len(), exponents.len());

        let mut acc = G::Projective::zero();

        for (base, exp) in bases.iter().zip(exponents.iter()) {
            acc.add_assign(&base.mul(*exp));
        }

        acc
    }

    use paired::{bls12_381::Bls12, Engine};
    use rand;

    const SAMPLES: usize = 1 << 14;

    let rng = &mut rand::thread_rng();
    let v = Arc::new(
        (0..SAMPLES)
            .map(|_| <Bls12 as ScalarEngine>::Fr::random(rng).into_repr())
            .collect::<Vec<_>>(),
    );
    let g = Arc::new(
        (0..SAMPLES)
            .map(|_| <Bls12 as Engine>::G1::random(rng).into_affine())
            .collect::<Vec<_>>(),
    );

    let naive = naive_multiexp(g.clone(), v.clone());

    let pool = Worker::new();

    let fast = multiexp(&pool, (g, 0), FullDensity, v).wait().unwrap();

    assert_eq!(naive, fast);
}

pub fn create_multiexp_kernel<E>(_log_d: usize, priority: bool) -> Option<gpu::MultiexpKernel<E>>
where
    E: paired::Engine,
{
    match gpu::MultiexpKernel::<E>::create(priority) {
        Ok(k) => {
            info!("GPU Multiexp kernel instantiated!");
            Some(k)
        }
        Err(e) => {
            warn!("Cannot instantiate GPU Multiexp kernel! Error: {}", e);
            None
        }
    }
}

#[cfg(feature = "gpu")]
#[test]
pub fn gpu_multiexp_consistency() {
    use paired::bls12_381::Bls12;
    use std::time::Instant;

    const MAX_LOG_D: usize = 20;
    const START_LOG_D: usize = 10;
    let mut kern = Some(gpu::LockedMultiexpKernel::<Bls12>::new(MAX_LOG_D, false));
    let pool = Worker::new();

    let rng = &mut rand::thread_rng();

    let mut bases = (0..(1 << 10))
        .map(|_| <Bls12 as paired::Engine>::G1::random(rng).into_affine())
        .collect::<Vec<_>>();
    for _ in 10..START_LOG_D {
        bases = [bases.clone(), bases.clone()].concat();
    }

    for log_d in START_LOG_D..(MAX_LOG_D + 1) {
        let g = Arc::new(bases.clone());

        let samples = 1 << log_d;
        println!("Testing Multiexp for {} elements...", samples);

        let v = Arc::new(
            (0..samples)
                .map(|_| <Bls12 as ScalarEngine>::Fr::random(rng).into_repr())
                .collect::<Vec<_>>(),
        );

        let mut now = Instant::now();
        let gpu = multiexp(&pool, (g.clone(), 0), FullDensity, v.clone(), &mut kern)
            .wait()
            .unwrap();
        let gpu_dur = now.elapsed().as_secs() * 1000 as u64 + now.elapsed().subsec_millis() as u64;
        println!("GPU took {}ms.", gpu_dur);

        now = Instant::now();
        let cpu = multiexp(&pool, (g.clone(), 0), FullDensity, v.clone(), &mut None)
            .wait()
            .unwrap();
        let cpu_dur = now.elapsed().as_secs() * 1000 as u64 + now.elapsed().subsec_millis() as u64;
        println!("CPU took {}ms.", cpu_dur);

        println!("Speedup: x{}", cpu_dur as f32 / gpu_dur as f32);

        assert_eq!(cpu, gpu);

        println!("============================");

        bases = [bases.clone(), bases.clone()].concat();
    }
}