aws_sdk_rbin/
lib.rs

1#![allow(deprecated)]
2#![allow(unknown_lints)]
3#![allow(clippy::module_inception)]
4#![allow(clippy::upper_case_acronyms)]
5#![allow(clippy::large_enum_variant)]
6#![allow(clippy::wrong_self_convention)]
7#![allow(clippy::should_implement_trait)]
8#![allow(clippy::disallowed_names)]
9#![allow(clippy::vec_init_then_push)]
10#![allow(clippy::type_complexity)]
11#![allow(clippy::needless_return)]
12#![allow(clippy::derive_partial_eq_without_eq)]
13#![allow(clippy::result_large_err)]
14#![allow(clippy::unnecessary_map_on_constructor)]
15#![allow(clippy::deprecated_semver)]
16#![allow(rustdoc::bare_urls)]
17#![allow(rustdoc::redundant_explicit_links)]
18#![allow(rustdoc::invalid_html_tags)]
19#![forbid(unsafe_code)]
20#![warn(missing_docs)]
21#![cfg_attr(docsrs, feature(doc_cfg))]
22//! This is the _Recycle Bin API Reference_. This documentation provides descriptions and syntax for each of the actions and data types in Recycle Bin.
23//!
24//! Recycle Bin is a resource recovery feature that enables you to restore accidentally deleted snapshots and EBS-backed AMIs. When using Recycle Bin, if your resources are deleted, they are retained in the Recycle Bin for a time period that you specify.
25//!
26//! You can restore a resource from the Recycle Bin at any time before its retention period expires. After you restore a resource from the Recycle Bin, the resource is removed from the Recycle Bin, and you can then use it in the same way you use any other resource of that type in your account. If the retention period expires and the resource is not restored, the resource is permanently deleted from the Recycle Bin and is no longer available for recovery. For more information about Recycle Bin, see [Recycle Bin](https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/recycle-bin.html) in the _Amazon Elastic Compute Cloud User Guide_.
27//!
28//! ## Getting Started
29//!
30//! > Examples are available for many services and operations, check out the
31//! > [usage examples](https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1).
32//!
33//! The SDK provides one crate per AWS service. You must add [Tokio](https://crates.io/crates/tokio)
34//! as a dependency within your Rust project to execute asynchronous code. To add `aws-sdk-rbin` to
35//! your project, add the following to your **Cargo.toml** file:
36//!
37//! ```toml
38//! [dependencies]
39//! aws-config = { version = "1.1.7", features = ["behavior-version-latest"] }
40//! aws-sdk-rbin = "1.91.0"
41//! tokio = { version = "1", features = ["full"] }
42//! ```
43//!
44//! Then in code, a client can be created with the following:
45//!
46//! ```rust,no_run
47//! use aws_sdk_rbin as rbin;
48//!
49//! #[::tokio::main]
50//! async fn main() -> Result<(), rbin::Error> {
51//!     let config = aws_config::load_from_env().await;
52//!     let client = aws_sdk_rbin::Client::new(&config);
53//!
54//!     // ... make some calls with the client
55//!
56//!     Ok(())
57//! }
58//! ```
59//!
60//! See the [client documentation](https://docs.rs/aws-sdk-rbin/latest/aws_sdk_rbin/client/struct.Client.html)
61//! for information on what calls can be made, and the inputs and outputs for each of those calls.
62//!
63//! ## Using the SDK
64//!
65//! Until the SDK is released, we will be adding information about using the SDK to the
66//! [Developer Guide](https://docs.aws.amazon.com/sdk-for-rust/latest/dg/welcome.html). Feel free to suggest
67//! additional sections for the guide by opening an issue and describing what you are trying to do.
68//!
69//! ## Getting Help
70//!
71//! * [GitHub discussions](https://github.com/awslabs/aws-sdk-rust/discussions) - For ideas, RFCs & general questions
72//! * [GitHub issues](https://github.com/awslabs/aws-sdk-rust/issues/new/choose) - For bug reports & feature requests
73//! * [Generated Docs (latest version)](https://awslabs.github.io/aws-sdk-rust/)
74//! * [Usage examples](https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1)
75//!
76//!
77//! # Crate Organization
78//!
79//! The entry point for most customers will be [`Client`], which exposes one method for each API
80//! offered by Amazon Recycle Bin. The return value of each of these methods is a "fluent builder",
81//! where the different inputs for that API are added by builder-style function call chaining,
82//! followed by calling `send()` to get a [`Future`](std::future::Future) that will result in
83//! either a successful output or a [`SdkError`](crate::error::SdkError).
84//!
85//! Some of these API inputs may be structs or enums to provide more complex structured information.
86//! These structs and enums live in [`types`](crate::types). There are some simpler types for
87//! representing data such as date times or binary blobs that live in [`primitives`](crate::primitives).
88//!
89//! All types required to configure a client via the [`Config`](crate::Config) struct live
90//! in [`config`](crate::config).
91//!
92//! The [`operation`](crate::operation) module has a submodule for every API, and in each submodule
93//! is the input, output, and error type for that API, as well as builders to construct each of those.
94//!
95//! There is a top-level [`Error`](crate::Error) type that encompasses all the errors that the
96//! client can return. Any other error type can be converted to this `Error` type via the
97//! [`From`](std::convert::From) trait.
98//!
99//! The other modules within this crate are not required for normal usage.
100
101// Code generated by software.amazon.smithy.rust.codegen.smithy-rs. DO NOT EDIT.
102pub use error_meta::Error;
103
104#[doc(inline)]
105pub use config::Config;
106
107/// Client for calling Amazon Recycle Bin.
108/// ## Constructing a `Client`
109///
110/// A [`Config`] is required to construct a client. For most use cases, the [`aws-config`]
111/// crate should be used to automatically resolve this config using
112/// [`aws_config::load_from_env()`], since this will resolve an [`SdkConfig`] which can be shared
113/// across multiple different AWS SDK clients. This config resolution process can be customized
114/// by calling [`aws_config::from_env()`] instead, which returns a [`ConfigLoader`] that uses
115/// the [builder pattern] to customize the default config.
116///
117/// In the simplest case, creating a client looks as follows:
118/// ```rust,no_run
119/// # async fn wrapper() {
120/// let config = aws_config::load_from_env().await;
121/// let client = aws_sdk_rbin::Client::new(&config);
122/// # }
123/// ```
124///
125/// Occasionally, SDKs may have additional service-specific values that can be set on the [`Config`] that
126/// is absent from [`SdkConfig`], or slightly different settings for a specific client may be desired.
127/// The [`Builder`](crate::config::Builder) struct implements `From<&SdkConfig>`, so setting these specific settings can be
128/// done as follows:
129///
130/// ```rust,no_run
131/// # async fn wrapper() {
132/// let sdk_config = ::aws_config::load_from_env().await;
133/// let config = aws_sdk_rbin::config::Builder::from(&sdk_config)
134/// # /*
135///     .some_service_specific_setting("value")
136/// # */
137///     .build();
138/// # }
139/// ```
140///
141/// See the [`aws-config` docs] and [`Config`] for more information on customizing configuration.
142///
143/// _Note:_ Client construction is expensive due to connection thread pool initialization, and should
144/// be done once at application start-up.
145///
146/// [`Config`]: crate::Config
147/// [`ConfigLoader`]: https://docs.rs/aws-config/*/aws_config/struct.ConfigLoader.html
148/// [`SdkConfig`]: https://docs.rs/aws-config/*/aws_config/struct.SdkConfig.html
149/// [`aws-config` docs]: https://docs.rs/aws-config/*
150/// [`aws-config`]: https://crates.io/crates/aws-config
151/// [`aws_config::from_env()`]: https://docs.rs/aws-config/*/aws_config/fn.from_env.html
152/// [`aws_config::load_from_env()`]: https://docs.rs/aws-config/*/aws_config/fn.load_from_env.html
153/// [builder pattern]: https://rust-lang.github.io/api-guidelines/type-safety.html#builders-enable-construction-of-complex-values-c-builder
154/// # Using the `Client`
155///
156/// A client has a function for every operation that can be performed by the service.
157/// For example, the [`CreateRule`](crate::operation::create_rule) operation has
158/// a [`Client::create_rule`], function which returns a builder for that operation.
159/// The fluent builder ultimately has a `send()` function that returns an async future that
160/// returns a result, as illustrated below:
161///
162/// ```rust,ignore
163/// let result = client.create_rule()
164///     .description("example")
165///     .send()
166///     .await;
167/// ```
168///
169/// The underlying HTTP requests that get made by this can be modified with the `customize_operation`
170/// function on the fluent builder. See the [`customize`](crate::client::customize) module for more
171/// information.
172pub mod client;
173
174/// Configuration for Amazon Recycle Bin.
175pub mod config;
176
177/// Common errors and error handling utilities.
178pub mod error;
179
180mod error_meta;
181
182/// Information about this crate.
183pub mod meta;
184
185/// All operations that this crate can perform.
186pub mod operation;
187
188/// Primitives such as `Blob` or `DateTime` used by other types.
189pub mod primitives;
190
191/// Data structures used by operation inputs/outputs.
192pub mod types;
193
194pub(crate) mod protocol_serde;
195
196mod sdk_feature_tracker;
197
198mod serialization_settings;
199
200mod endpoint_lib;
201
202mod lens;
203
204mod json_errors;
205
206mod serde_util;
207
208#[doc(inline)]
209pub use client::Client;