pub struct LinearRegressionParameters {
pub solver: LinearRegressionSolverName,
}
Expand description
Parameters for linear regression (re-export from Smartcore) Linear Regression parameters
Fields§
§solver: LinearRegressionSolverName
Solver to use for estimation of regression coefficients.
Implementations§
Source§impl LinearRegressionParameters
impl LinearRegressionParameters
Sourcepub fn with_solver(
self,
solver: LinearRegressionSolverName,
) -> LinearRegressionParameters
pub fn with_solver( self, solver: LinearRegressionSolverName, ) -> LinearRegressionParameters
Solver to use for estimation of regression coefficients.
Examples found in repository?
examples/maximal_regression.rs (line 19)
4fn main() {
5 // Totally customize settings
6 let settings = Settings::default_regression()
7 .with_number_of_folds(3)
8 .shuffle_data(true)
9 .verbose(true)
10 .with_final_model(FinalModel::Blending {
11 algorithm: Algorithm::Linear,
12 meta_training_fraction: 0.15,
13 meta_testing_fraction: 0.15,
14 })
15 .skip(Algorithm::RandomForestRegressor)
16 .sorted_by(Metric::RSquared)
17 .with_preprocessing(PreProcessing::AddInteractions)
18 .with_linear_settings(
19 LinearRegressionParameters::default().with_solver(LinearRegressionSolverName::QR),
20 )
21 .with_lasso_settings(
22 LassoParameters::default()
23 .with_alpha(1.0)
24 .with_tol(1e-4)
25 .with_normalize(true)
26 .with_max_iter(1000),
27 )
28 .with_ridge_settings(
29 RidgeRegressionParameters::default()
30 .with_alpha(1.0)
31 .with_normalize(true)
32 .with_solver(RidgeRegressionSolverName::Cholesky),
33 )
34 .with_elastic_net_settings(
35 ElasticNetParameters::default()
36 .with_tol(1e-4)
37 .with_normalize(true)
38 .with_alpha(1.0)
39 .with_max_iter(1000)
40 .with_l1_ratio(0.5),
41 )
42 .with_knn_regressor_settings(
43 KNNRegressorParameters::default()
44 .with_algorithm(KNNAlgorithmName::CoverTree)
45 .with_k(3)
46 .with_distance(Distance::Euclidean)
47 .with_weight(KNNWeightFunction::Uniform),
48 )
49 .with_svr_settings(
50 SVRParameters::default()
51 .with_eps(0.1)
52 .with_tol(1e-3)
53 .with_c(1.0)
54 .with_kernel(Kernel::Linear),
55 )
56 .with_random_forest_regressor_settings(
57 RandomForestRegressorParameters::default()
58 .with_m(1)
59 .with_max_depth(5)
60 .with_min_samples_leaf(1)
61 .with_n_trees(10)
62 .with_min_samples_split(2),
63 )
64 .with_decision_tree_regressor_settings(
65 DecisionTreeRegressorParameters::default()
66 .with_min_samples_split(2)
67 .with_max_depth(15)
68 .with_min_samples_leaf(1),
69 );
70
71 // Save the settings for later use
72 settings.save("examples/maximal_regression_settings.yaml");
73
74 // Load a dataset from smartcore and add it to the regressor along with the customized settings
75 let mut model = SupervisedModel::new(smartcore::dataset::diabetes::load_dataset(), settings);
76
77 // Run a model comparison with all models at default settings
78 model.train();
79
80 // Print the results
81 println!("{}", model);
82
83 // Save teh model for later
84 model.save("examples/maximal_regression_model.aml");
85}
More examples
examples/print_settings.rs (line 11)
3fn main() {
4 let regressor_settings = automl::Settings::default_regression()
5 .with_number_of_folds(3)
6 .shuffle_data(true)
7 .verbose(true)
8 .sorted_by(Metric::RSquared)
9 .with_preprocessing(PreProcessing::AddInteractions)
10 .with_linear_settings(
11 LinearRegressionParameters::default().with_solver(LinearRegressionSolverName::QR),
12 )
13 .with_lasso_settings(
14 LassoParameters::default()
15 .with_alpha(10.0)
16 .with_tol(1e-10)
17 .with_normalize(true)
18 .with_max_iter(10_000),
19 )
20 .with_ridge_settings(
21 RidgeRegressionParameters::default()
22 .with_alpha(10.0)
23 .with_normalize(true)
24 .with_solver(RidgeRegressionSolverName::Cholesky),
25 )
26 .with_elastic_net_settings(
27 ElasticNetParameters::default()
28 .with_tol(1e-10)
29 .with_normalize(true)
30 .with_alpha(1.0)
31 .with_max_iter(10_000)
32 .with_l1_ratio(0.5),
33 )
34 .with_knn_regressor_settings(
35 KNNRegressorParameters::default()
36 .with_algorithm(KNNAlgorithmName::CoverTree)
37 .with_k(3)
38 .with_distance(Distance::Euclidean)
39 .with_weight(KNNWeightFunction::Uniform),
40 )
41 .with_svr_settings(
42 SVRParameters::default()
43 .with_eps(1e-10)
44 .with_tol(1e-10)
45 .with_c(1.0)
46 .with_kernel(Kernel::Linear),
47 )
48 .with_random_forest_regressor_settings(
49 RandomForestRegressorParameters::default()
50 .with_m(100)
51 .with_max_depth(5)
52 .with_min_samples_leaf(20)
53 .with_n_trees(100)
54 .with_min_samples_split(20),
55 )
56 .with_decision_tree_regressor_settings(
57 DecisionTreeRegressorParameters::default()
58 .with_min_samples_split(20)
59 .with_max_depth(5)
60 .with_min_samples_leaf(20),
61 );
62
63 let classifier_settings = automl::Settings::default_classification()
64 .with_number_of_folds(3)
65 .shuffle_data(true)
66 .verbose(true)
67 .sorted_by(Metric::Accuracy)
68 .with_preprocessing(PreProcessing::AddInteractions)
69 .with_random_forest_classifier_settings(
70 RandomForestClassifierParameters::default()
71 .with_m(100)
72 .with_max_depth(5)
73 .with_min_samples_leaf(20)
74 .with_n_trees(100)
75 .with_min_samples_split(20),
76 )
77 .with_logistic_settings(LogisticRegressionParameters::default())
78 .with_svc_settings(
79 SVCParameters::default()
80 .with_epoch(10)
81 .with_tol(1e-10)
82 .with_c(1.0)
83 .with_kernel(Kernel::Linear),
84 )
85 .with_decision_tree_classifier_settings(
86 DecisionTreeClassifierParameters::default()
87 .with_min_samples_split(20)
88 .with_max_depth(5)
89 .with_min_samples_leaf(20),
90 )
91 .with_knn_classifier_settings(
92 KNNClassifierParameters::default()
93 .with_algorithm(KNNAlgorithmName::CoverTree)
94 .with_k(3)
95 .with_distance(Distance::Hamming)
96 .with_weight(KNNWeightFunction::Uniform),
97 )
98 .with_gaussian_nb_settings(GaussianNBParameters::default().with_priors(vec![1.0, 1.0]))
99 .with_categorical_nb_settings(CategoricalNBParameters::default().with_alpha(1.0));
100
101 println!("{}", regressor_settings);
102 println!("{}", classifier_settings)
103}
Trait Implementations§
Source§impl Clone for LinearRegressionParameters
impl Clone for LinearRegressionParameters
Source§fn clone(&self) -> LinearRegressionParameters
fn clone(&self) -> LinearRegressionParameters
Returns a duplicate of the value. Read more
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source
. Read moreSource§impl Debug for LinearRegressionParameters
impl Debug for LinearRegressionParameters
Source§impl Default for LinearRegressionParameters
impl Default for LinearRegressionParameters
Source§fn default() -> LinearRegressionParameters
fn default() -> LinearRegressionParameters
Returns the “default value” for a type. Read more
Source§impl<'de> Deserialize<'de> for LinearRegressionParameters
impl<'de> Deserialize<'de> for LinearRegressionParameters
Source§fn deserialize<__D>(
__deserializer: __D,
) -> Result<LinearRegressionParameters, <__D as Deserializer<'de>>::Error>where
__D: Deserializer<'de>,
fn deserialize<__D>(
__deserializer: __D,
) -> Result<LinearRegressionParameters, <__D as Deserializer<'de>>::Error>where
__D: Deserializer<'de>,
Deserialize this value from the given Serde deserializer. Read more
Source§impl Serialize for LinearRegressionParameters
impl Serialize for LinearRegressionParameters
Source§fn serialize<__S>(
&self,
__serializer: __S,
) -> Result<<__S as Serializer>::Ok, <__S as Serializer>::Error>where
__S: Serializer,
fn serialize<__S>(
&self,
__serializer: __S,
) -> Result<<__S as Serializer>::Ok, <__S as Serializer>::Error>where
__S: Serializer,
Serialize this value into the given Serde serializer. Read more
Auto Trait Implementations§
impl Freeze for LinearRegressionParameters
impl RefUnwindSafe for LinearRegressionParameters
impl Send for LinearRegressionParameters
impl Sync for LinearRegressionParameters
impl Unpin for LinearRegressionParameters
impl UnwindSafe for LinearRegressionParameters
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read more