
Anonymous Credentials with Range Proofs

and Rate Limiting

Jonathan Katz∗ Mariana Raykova∗ Samuel Schlesinger∗

February 14, 2025

1 Overview of this Draft

We provide an overview of our model, including syntactic definitions as well as definitions of security,
in Section 2. In Section 3 we describe some preliminaries and building blocks. We give a formal
description of our scheme in Section 4.

Note. This draft is intended to give an example of a scheme for illustrative purposes. We have
opted for simplicity over efficiency here, and there are several optimizations that can be applied
before real-world deployment.

2 Definitions

In our system, we have three types of roles: issuers, clients, and verifiers. We start with functional
definitions of a credential system with range proofs and rate limiting, followed by definitions of
security. Our definitions are for the privately verifiable setting where the issuer and verifier are the
same entity, but can be extended naturally to the publicly verifiable case where verifiers and issuers
may be separate.

Definition 1. A credential system with range proofs and rate limiting consists of algorithms/protocols
(KeyGen, CredGen, ProofGen, VrfyProof) with the following syntax:

• KeyGen is run by an issuer to generate keys (pk, sk).

• CredGen is an interactive protocol run by an issuer and a client. The issuer has as input its
private key sk and a (non-negative integer) value T , and the client knows the issuer’s public
key pk and T . At the end of the protocol, the client outputs a credential cred. If cred =⊥ it
means the client aborted since it detected cheating.

• ProofGen, run by a client, takes as input a credential cred, a value T ′, a non-negative epoch
number E, a bound B, and a non-negative index i < B. It outputs a proof π.

• VrfyProof, run by the issuer, takes as input a secret key sk, a value T ′, an epoch number E,
a bound B, and a proof π; it outputs a bit and a tag tag.

∗Google.

1



Correctness requires that if a credential associated with T is used to generate a proof for1

T ≤ T ′ and i < B then the proof verifies. We also require that tags generated during verification
are unique across clients and (E, i) tuples (due to the way rate limiting is done, as discussed below).

Definition 2. A credential system with range proofs and rate limiting is correct if for any efficient
adversary A the probability that flag is set to 1 in the following experiment is negligible:

1. Generate keys (pk, sk)← KeyGen, and give pk to A. Set flag := 0.

2. A may interact with the following oracles:

• On the ith query CredGensk(Ti), run the credential-generation protocol honestly between
the issuer and a client on Ti; let credi be the client’s output. If credi =⊥, set flag := 1.

• On query ProofGen(j, T ′, E,B, i), where Tj ≤ T ′, i < B, and the tuple (j, E, i) has not
been used in such a query before, run π ← ProofGen(credj , T

′, E,B, i) and give π to A.
Also run (b, tag) ← VrfyProofsk(T

′, E,B, π). If b = 0 or tag was previously output by
VrfyProof, set flag := 1.

We consider three security requirements: (1) soundness means that if a client (or colluding set
of clients) has never received a credential for T ≤ T ′, then it should not be able to generate a
convincing proof for T ′; (2) anonymity means that the issuer should not be able to distinguish two
clients who have each received credentials for some value(s) T ≤ T ′; (3) rate limiting means that
a client should not be able to generate more than B valid proofs for a given epoch without being
caught by the issuer. We formalize these below.

Definition 3 (Soundness). A credential system with range proofs and rate limiting is sound if
the success probability of any efficient adversary A in the following experiment is negligible:

1. Generate keys (pk, sk)← KeyGen, and give pk to A.

2. A is given oracle access to an issuer executing CredGensk(·). Let T ∗ denote the minimum
value of T for which A queried CredGensk(T ).

3. A outputs T ′, E,B, π, and succeeds if (1) VrfyProofsk(T
′, E,B, π) = (1, ?) and (2) T ′ < T ∗.

Definition 4 (Anonymity). A credential system with range proofs and rate limiting is anonymous
if the success probability of any efficient adversary A in the following experiment is close to 1/2:

1. A outputs pk, and then executes two protocols with clients running CredGen(·). Let T0, T1

be the adversarially chosen inputs to the first and second executions, respectively, and let
cred0, cred1 be the clients’ outputs in the first and second executions.

If ⊥∈ {cred0, cred1}, choose uniform b← {0, 1} and skip to step 5.

2. A can interact with oracles ProofGen(cred0, ·, ·, ·, ·) and ProofGen(cred1, ·, ·, ·, ·).

3. At some point, A outputs T ′, E,B, i0, i1 with T” ≥ T0, T1 and i0, i1 < B, and such that
A never previously queried ProofGen(cred0, T

′, E, ?, i0) or ProofGen(cred1, T
′, E, ?, i1). In re-

sponse, a uniform bit b is chosen, and A is given ProofGen(credb, T
′, E,B, ib).

1The literature typically deals with a client proving that its age T is at least some value T ′; it is easy to modify
our scheme to support that, if desired.

2



4. A can continue to interact with oracles ProofGen(cred0, ·, ·, ·, ·) and ProofGen(cred1, ·, ·, ·, ·),
but it may not query ProofGen(cred0, T

′, E, ?, i0) or ProofGen(cred1, T
′, E, ?, i1).

5. At the end of its execution, A outputs a bit b′. It succeeds if b′ = b.

Rate limiting is intended to ensure that each client can generate a bounded number of proofs
during an epoch. Ideally, this will be enforced by having the issuer fix a global bound B that is
included as part of its public key and used by all clients for all epochs. During each epoch, the
issuer will store all the tags it computes as part of proof verification; if, in the course of verifying
a proof, the issuer computes a tag it has previously stored (for that epoch), then it knows some
client has tried to exceed the bound B (and can reject the proof). Security here thus requires that
a client cannot generate more than B proofs with distinct tags in any epoch.

Definition 5 (Rate limiting). A credential system with range proofs and rate limiting is rate
limiting if the success probability of any ppt adversary A in the following experiment is small:

1. Generate keys (pk, sk)← KeyGen, and give pk to A.

2. A is given oracle access to an issuer executing CredGensk(·). Let ` be the number of times A
queries this oracle.

3. A outputs E,B, and {(T ′i , πi)}
`·B+1
i=1 ; let (bi, tagi) = VrfyProofsk(T

′
i , E,B, πi). A succeeds if

(1) bi = 1 for all i and (2) the {tagi} are distinct.

3 Building Blocks

3.1 (ZK Proofs for) Privately Verifiable BBS Signatures

BBS signatures were introduced implicitly by Boneh, Boyen, and Shacham [3], and were explicitly
used for anonymous credentials by Camenisch and Lysyanskaya [5]. Camenisch et al. [4] subse-
quently showed zero-knowledge (ZK) proofs for partial showings of credentials, based on a variant
of the original scheme called BBS+ [1]. Tessaro and Zhu [11] recently showed that the original BBS
scheme can be proven secure, and the scheme is now being proposed as a draft standard [9]. We
describe a privately verifiable version of the scheme [2, 10] that does not require pairings. We refer
to these works for details regarding the computational assumptions needs to prove security.

Fix a group G of prime order q with generator g, and random elements h1, . . . , h` ← G for some
parameter `. The (privately verifiable) version of BBS signatures then works as follows:

• To generate a secret key, choose x← Zq. The associated public key is w = gx.

• To authenticate a message (m1, . . . ,m`) ∈ Z`q using secret key x, the issuer chooses e ← Zq

and outputs the tag

((
g ·
∏`
i=1 h

mi
i

)1/(e+x)
, e

)
.

• To verify tag (A, e) on message (m1, . . . ,m`) ∈ Z`q using secret key x, the issuer checks if

Ae+x
?
= g ·

∏`
i=1 h

mi
i .

3



ZK proofs of possession. It is possible to give an efficient ZK2 proof of possession of a BBS
signature on a particular message (without revealing anything else about the signature) to the
issuer. In fact, even more is possible. Let [`] = {1, . . . , `}, and D ⊆ [`]. Then one can prove to
the issuer possession of a signature on a message whose entries in D are equal to {mi}i∈D, without
revealing anything about the entries of the message at indices not in D.

Assume a client has tag (A, e) on message (m1, . . . ,m`), and let D be the indices whose entries
will be disclosed. Let B = g ·

∏`
i=1 h

mi
i . The proof works as follows:

1. The client chooses r1, r2 ← Z∗q and sets A′ := Ar1r2 , B̄ := Br1 , and r3 := r−1
1 .

2. It then sends {mi}i∈D and A′, B̄ along with a proof that there exist {mi}i 6∈D, e, r2, r3 such
that3 (1) Ā = (A′)−e · B̄r2 and (2) H1 := g ·

∏
i∈D h

mi
i = B̄r3 ·

∏
i 6∈D h

−mi
i . The proof is done

as follows (we describe it as an interactive proof, but it can be made non-interactive using
the Fiat-Shamir transform):

(a) The client chooses {m′i}i 6∈D, e′, r′2, r′3 ← Zq, and sends to the issuer A1 := (A′)e
′ · B̄r′2 and

A2 := B̄r′3 ·
∏
i 6∈D h

m′i
i .

(b) The issuer chooses c← Zq and sends it to the client.

(c) The client sends ē := −c·e+e′, r̄2 := c·r2+r′2, r̄3 := c·r3+r′3, and {m̄i := −c·mi+m
′
i}i 6∈D.

(d) The issuer computes Ā = (A′)x and H1 := g ·
∏
i∈D h

mi
i , and then accepts iff (A′)ēB̄r̄2 ?

=

Āc ·A1 and B̄r̄3
∏
i 6∈D h

m̄i
i

?
= Hc

1 ·A2.

When both parties are honest the issuer always accepts. To see this, note first that

(A′)−eB̄r2 = (A′)−eBr1r2 = (A′)−e(A′)e+x = (A′)x.

Furthermore,
(A′)ē · B̄r̄2 = (A′)−c·e+e

′ · B̄c·r2+r′2 = ((A′)−eB̄r2)c ·A1 = ĀcA1

and
B̄r̄3 ·

∏
i 6∈D h

m̄i
i = B̄c·r3+r′3 ·

∏
i 6∈D h

−cmi+m
′
i

i = Hc
1 ·A2.

We sketch why the above is a proof of knowledge of a tag. To show this, we assume the knowledge
extractor has access to a DDH oracle that, given a pair (U, V ), returns 1 iff Ux = V . Note that
given such an oracle, the knowledge extractor can tell when a client’s proof is correct (by checking
that (A′)ēB̄r̄2/A1 = ((A′)c)x). This allows the knowledge extractor to compute {mi}i 6∈D, e, r2, r3

as well as Ā = (A′)x such that Ā = (A′)−eB̄r2 and g ·
∏
i∈[`] h

mi
i = B̄r3 . If r2 = 0 then x = −e and

a valid tag can be computed. If r2 6= 0 then these equations imply that

(A′)r3/r2 =
(
g ·
∏
i∈[`] h

mi
i

)1/(x+e)
,

and so ((A′)r3/r2 , e) is a valid tag.

2The proof can be shown to be ZK under certain assumptions, but we remark that ZK is not necessary for
pseudonymity (since the weaker notion of witness indistinguishability suffices).

3Ā is not computed by the client. But the issuer can compute Ā and check the corresponding claim.

4



3.2 The Dodis-Yampolskiy PRF

Although the Dodis-Yampolskiy PRF [8] was originally defined as a VRF in a pairing-based group,
we can also view it as a PRF in an arbitrary group. The secret key is k ∈ Zq. The evaluation
of the PRF on input i ∈ Zq \ {−k} is g1/(k+i). The outputs of the function are conjectured to be
pseudorandom even given gk.

4 A Credential System

We describe a privately verifiable scheme, and then discuss the changes needed to make it publicly
verifiable.

4.1 A Privately Verifiable Scheme

System-wide setup. Fix (random) generators h1, . . . , h4 ∈ G to be used by all issuers. (These
could be generated in an appropriate way using a hash function.) Also fix positive integers C,L,
where L is a statistical parameter related to anonymity and C is a computational parameter
related to soundness. They cannot be made arbitrarily large, however, since security also requires
T ∗C2 · (1 + 4 · (L + 1)2) < q, where T ∗ is a bound on the largest value of T used in the system.
We remark that it is possible to decrease L, without sacrificing anonymity, by having the client do
more work when generating a proof.

Key generation. An issuer chooses a secret key x← Zq; the associated public key is w := gx. We
also assume that bound B = 2` is either fixed system-wide, or included as part of the public key.

Credential generation. To issue a credential for T to some client, the client and issuer run the
following protocol:

1. The client chooses k ← Zq, sets K := hk2, and computes a non-interactive proof of knowledge
of k as follows:

(a) Choose k′ ← Zq and set K1 := hk
′

2 .

(b) Compute γ := H(K‖K1), and set k̄ := γ · k + k′.

The client sends K, γ, k̄ to the issuer.

2. The issuer computes K1 := hk̄2 ·K−γ and checks that H(K‖K1)
?
= γ.

3. The issuer then chooses e← Zq and sends (A, e) =
((
g · hT1 ·K

)1/(e+x)
, e
)

to the client. The

issuer also generates a proof that it computed this correctly, by proving that logA
(
g · hT1 ·K

)
=

logg (ge · w) using a standard “equality-of-discrete-logarithms” proof. That is, let XA =

g · hT1 ·K and Xg = ge · w. The issuer does:

(a) Choose α← Zq and compute YA := Aα and Yg := gα.

(b) Compute γ := H(A‖e‖YA‖Yg).
(c) Compute z := γ · (x+ e) + α, and send γ, z to the client.

5



4. The client verifies the proof γ, z by computing Y ′A := Az ·X−γA and Y ′g := gz ·X−γg and then

checking if H(XA‖Xg‖Y ′A‖Y ′g)
?
= γ. If so, the client outputs the credential (A, e, k); otherwise,

the client outputs ⊥.

Proof generation. Let T ′, E be the time period and epoch agreed upon by the client and issuer,
and assume the client holds a credential (A, e, k) on T ∈ {0, . . . , T ′}. Let i < B have binary
representation i`−1 · · · i0. The client then does:

• (PoK of credential.)

1. Choose r1, r2, e
′, r′2, r

′
3,∆

′, k′, s′ ← Zq.
2. Set B := ghT1 h

k
2, A′ := Ar1r2 , B̄ := Br1 , r3 := r−1

1 , and ∆ := T ′ − T ≥ 0. Set
to send1 := A′‖B̄.

3. Compute A1 := (A′)e
′ · B̄r′2 and A2 := B̄r′3h∆′

1 hk
′

2 h
s′
3 , and set to hash := A1‖A2.

• (PRF + commitments and associated proofs.)

1. Set Y := h
1/(k+2`E+i)
2 , and to send1 := to send1‖Y .

2. Choose s0, . . . , s`−1 ← Zq and set comj := h
sj
3 h

ij
2 (for j = 0, . . . , `− 1), s∗ :=

∑`−1
j=0 2jsj ,

and to send1 := to send1‖com0‖ · · · ‖com`−1.

3. For j = 0, . . . , `− 1 do:

(a) Set Cj,0 := comj and Cj,1 := comj/h2.

(b) Choose rj , γj , zj ← Zq.
(c) If ij = 0 set C ′j,0 := h

rj
3 and C ′j,1 := h

zj
3 C
−γj
j,1 .

If ij = 1 set C ′j,0 := h
zj
3 C
−γj
j,0 and C ′j,1 := h

rj
3 .

(d) Set to hash := to hash‖C ′j,0‖C ′j,1.

4. Set Y1 := Y −k
′

and to hash := to hash‖Y1.

• (Range proof.)

1. Compute non-negative integers y1, . . . , y4 such that ∆ =
∑

i y
2
i .

2. Choose ry, r̃y ← Zq and ỹ1, ỹ2, ỹ3, ỹ4 ← {0, . . . ,
√
T ′CL}.

3. Compute Cy := gry ·
∏4
i=1 h

yi
i and set to send1 := to send1‖Cy.

4. Compute Dy := gr̃y ·
∏4
i=1 h

ỹi
i and set to hash := to hash‖Dy.

5. Compute α := ∆′ − 2
∑4

i=1 yiỹi and α̃ := −
∑4

i=1 ỹ
2
i .

6. Choose r∗ ← Zq. Compute C∗ := gr∗hα1 and set to send1 := to send1‖C∗.
7. Choose r̃∗ ← Zq. Compute D∗ := gr̃∗hα̃1 and set to hash := to hash‖D∗.

• Compute γ := H(to send1‖to hash) forH a suitable hash function with range {0, . . . , C} ⊆ Zq.

• (Complete PoK of credential.) Compute ze := −γe+ e′, zr2 := γ · r2 + r′2, zr3 := γ · r3 + r′3,
z∆ := γ·∆+∆′, zk := −γ·(k+i)+k′, and zs := −γs∗+s′. Set to send2 := ze‖zr2‖zr3‖z∆‖zk‖zs.

• (Complete proofs for commitments.) For j = 0, . . . , `− 1 do:

6



1. If ij = 0 set γj,0 := γ − γj , zj,0 := γj,0 · sj + rj , and zj,1 := zj .
If ij = 1 set γj,0 := γj , zj,0 := zj , and zj,1 := (γ − γj,0) · sj + rj .

2. Set to send2 := to send2‖γj,0‖zj,0‖zj,1.

• (Complete range proofs.)

1. Compute ty := γry + r̃y and zi,y := γyi + ỹi for i = 1, . . . , 4.
Set to send2 := to send2‖ty‖z1,y‖z2,y‖z3,y‖z4,y.

2. Compute t∗ := γr∗ + r̃∗. Set to send2 := to send2‖t∗.

• The final proof is to send1, γ, to send2.

Verification. The issuer holds T ′, E, and a secret key x, and receives a proof to send1, γ, to send2.
It begins by parsing to send1 as A′‖B̄‖Y ‖com0‖ · · · ‖com`−1‖Cy‖C∗ and to send2 as

ze‖zr2‖zr3‖z∆‖zk‖zs‖γ0,0‖z0,0‖z0,1‖ · · · ‖γ`−1,0‖z`−1,0‖z`−1,1‖ty‖z1,y‖z2,y‖z3,y‖z4,y‖t∗.

The issuer checks that A′ 6= 1 and zi,y ∈ {0, . . . ,
√
T ′ · C(L + 1)} for i = 1, . . . 4, rejecting if these

do not hold. Otherwise, it does:

• (Verify PoK of credential.) It sets Ā := (A′)x and H1 := g · hT ′1 ·
(∏`−1

j=0 com2j
j

)−1
, and then

computes
A1 := (A′)zeB̄zr2 Ā−γ and A2 := B̄zr3hz∆1 hzk2 h

zs
3 ·H

−γ
1 .

It then sets to hash := A1‖A2.

• (Verify proofs of commitments.) For j = 0, . . . , `− 1:

1. Set γj,1 := γ − γj,0, Cj,0 := comj , and Cj,1 := comj/h2.

2. Set C ′j,0 := h
zj,0
3 C

−γj,0
j,0 and C ′j,1 := h

zj,1
3 C

−γj,1
j,1 .

3. Set to hash := to hash‖C ′j,0‖C ′j,1.

• (Verify PRF proof.) Set Y1 := Y −zk · (h2/Y
2`E)−γ and to hash := to hash‖Y1.

• (Verify range proof.) Compute Dy := C−γy · gty
∏4
i=1 h

zi,y
i and set to hash := to hash‖Dy.

Compute f∗ := γ · z∆ −
∑4

i=1 z
2
i,y and D∗ := C−γ∗ · gt∗hf∗1 , and set to hash := to hash‖D∗.

• Finally, it accepts iff H(to send1‖to hash)
?
= γ.

4.2 Adding Public Verifiability

It is simple to make the scheme publicly verifiable using a bilinear map e : G1 ×G2 → GT :

1. All group elements used in the previous proof will now be in G1, with the only exception
being that the public key is w = gx2 ∈ G2 for g2 a generator of G2.

2. During credential generation, the proof of correctness by the issuer (proving that the credential
is valid) is no longer needed. Instead, the client can verify correctness of the credential on its
own by checking that e(A,w) = e

(
A−eghT1 K, g2

)
.

7



3. As part of proof generation, the client computes Ā := (A′)−eB̄r2 and includes it as part
of to send1.

4. As part of proof verification, instead of computing Ā (which is not possible without knowledge
of x), the verifier uses the Ā included in to send1. However, it first verifies that value by
checking that e(A′, w) = e(Ā, g2).

References

[1] M.H. Au, W. Susilo, and Y. Mu. Constant-size dynamic k-TAA. SCN 2006.

[2] A. Barki, S. Brunet, N. Desmoulins, and J. Traoré. Improved algebraic MACs and practical
keyed-verification anonymous credentials. SAC 2016.

[3] D. Boneh, X. Boyen, and H. Shacham. Short group signatures. Crypto 2004.

[4] J. Camenisch, M. Drijver, and A. Lehmann. Anonymous Attestation Using the Strong Diffie
Hellman Assumption Revisited. TRUST 2016. Available at https://ia.cr/2016/663.

[5] J. Camenisch and A. Lysyanskaya. Signature schemes and anonymous credentials from bilinear
maps. Crypto 2004.

[6] G. Couteau, D. Goudarzi, M. Klooß, and M. Reichle. Sharp: Short Relaxed Range Proofs. ACM
CCS 2022. Available at https://ia.cr/2022/1153.

[7] G. Couteau, M. Klooß, H. Lin, and M. Reichle. Efficient Range Proofs with Transparent Setup
from Bounded Integer Commitments. Eurocrypt 2021. Available at https://ia.cr/2021/540.

[8] Y. Dodis and A. Yampolskiy. A verifiable random function with short proofs and keys.
PKC 2005.

[9] T. Looker, V. Kalos, A. Whitehead, and M. Lodder. The BBS Signature Scheme. Inter-
net Draft draft-irtf-cfrg-bbs-signatures-07, Internet Engineering Task Force, September, 2024.
Available at https://datatracker.ietf.org/doc/draft-irtf-cfrg-bbs-signatures/07.
See also https://github.com/decentralized-identity/bbs-signature.

[10] M. Orrù. Revisiting Keyed-Verification Anonymous Credentials. Available at https://

eprint.iacr.org/2024/1552.

[11] S. Tessaro and C. Zhu. Revisiting BBS Signatures. Eurocrypt 2023. Available at https://ia.
cr/2023/275.

8

https://ia.cr/2016/663
https://ia.cr/2022/1153
https://ia.cr/2021/540
https://datatracker.ietf.org/doc/draft-irtf-cfrg-bbs-signatures/07
https://github.com/decentralized-identity/bbs-signature
https://eprint.iacr.org/2024/1552
https://eprint.iacr.org/2024/1552
https://ia.cr/2023/275
https://ia.cr/2023/275

	Overview of this Draft
	Definitions
	Building Blocks
	(ZK Proofs for) Privately Verifiable BBS Signatures
	The Dodis-Yampolskiy PRF

	A Credential System
	A Privately Verifiable Scheme
	Adding Public Verifiability


