1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
//! Composable asynchronous iteration.
//!
//! This module is an async version of [`std::iter`].
//!
//! If you've found yourself with an asynchronous collection of some kind,
//! and needed to perform an operation on the elements of said collection,
//! you'll quickly run into 'streams'. Streams are heavily used in idiomatic
//! asynchronous Rust code, so it's worth becoming familiar with them.
//!
//! Before explaining more, let's talk about how this module is structured:
//!
//! # Organization
//!
//! This module is largely organized by type:
//!
//! * [Traits] are the core portion: these traits define what kind of streams
//!   exist and what you can do with them. The methods of these traits are worth
//!   putting some extra study time into.
//! * [Functions] provide some helpful ways to create some basic streams.
//! * [Structs] are often the return types of the various methods on this
//!   module's traits. You'll usually want to look at the method that creates
//!   the `struct`, rather than the `struct` itself. For more detail about why,
//!   see '[Implementing Stream](#implementing-stream)'.
//!
//! [Traits]: #traits
//! [Functions]: #functions
//! [Structs]: #structs
//!
//! That's it! Let's dig into streams.
//!
//! # Stream
//!
//! The heart and soul of this module is the [`Stream`] trait. The core of
//! [`Stream`] looks like this:
//!
//! ```
//! # use async_std::task::{Context, Poll};
//! # use std::pin::Pin;
//! trait Stream {
//!     type Item;
//!     fn poll_next(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>>;
//! }
//! ```
//!
//! A stream has a method, [`next`], which when called, returns an
//! [`Poll`]<[`Option`]`<Item>>`. [`next`] will return `Ready(Some(Item))`
//! as long as there are elements, and once they've all been exhausted, will
//! return `None` to indicate that iteration is finished. If we're waiting on
//! something asynchronous to resolve `Pending` is returned.
//!
//! Individual streams may choose to resume iteration, and so calling
//! [`next`] again may or may not eventually start returning `Ready(Some(Item))`
//! again at some point.
//!
//! [`Stream`]'s full definition includes a number of other methods as well,
//! but they are default methods, built on top of [`next`], and so you get
//! them for free.
//!
//! Streams are also composable, and it's common to chain them together to do
//! more complex forms of processing. See the [Adapters](#adapters) section
//! below for more details.
//!
//! [`Poll`]: ../task/enum.Poll.html
//! [`Stream`]: trait.Stream.html
//! [`next`]: trait.Stream.html#tymethod.next
//! [`Option`]: ../../std/option/enum.Option.html
//!
//! # The three forms of streaming
//!
//! There are three common methods which can create streams from a collection:
//!
//! * `stream()`, which iterates over `&T`.
//! * `stream_mut()`, which iterates over `&mut T`.
//! * `into_stream()`, which iterates over `T`.
//!
//! Various things in async-std may implement one or more of the
//! three, where appropriate.
//!
//! # Implementing Stream
//!
//! Creating a stream of your own involves two steps: creating a `struct` to
//! hold the stream's state, and then `impl`ementing [`Stream`] for that
//! `struct`. This is why there are so many `struct`s in this module: there is
//! one for each stream and iterator adapter.
//!
//! Let's make a stream named `Counter` which counts from `1` to `5`:
//!
//! ```
//! # use async_std::prelude::*;
//! # use async_std::task::{Context, Poll};
//! # use std::pin::Pin;
//! // First, the struct:
//!
//! /// A stream which counts from one to five
//! struct Counter {
//!     count: usize,
//! }
//!
//! // we want our count to start at one, so let's add a new() method to help.
//! // This isn't strictly necessary, but is convenient. Note that we start
//! // `count` at zero, we'll see why in `next()`'s implementation below.
//! impl Counter {
//!     fn new() -> Counter {
//!         Counter { count: 0 }
//!     }
//! }
//!
//! // Then, we implement `Stream` for our `Counter`:
//!
//! impl Stream for Counter {
//!     // we will be counting with usize
//!     type Item = usize;
//!
//!     // poll_next() is the only required method
//!     fn poll_next(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
//!         // Increment our count. This is why we started at zero.
//!         self.count += 1;
//!
//!         // Check to see if we've finished counting or not.
//!         if self.count < 6 {
//!             Poll::Ready(Some(self.count))
//!         } else {
//!             Poll::Ready(None)
//!         }
//!     }
//! }
//!
//! // And now we can use it!
//! # fn main() -> std::io::Result<()> { async_std::task::block_on(async {
//! #
//! let mut counter = Counter::new();
//!
//! let x = counter.next().await.unwrap();
//! println!("{}", x);
//!
//! let x = counter.next().await.unwrap();
//! println!("{}", x);
//!
//! let x = counter.next().await.unwrap();
//! println!("{}", x);
//!
//! let x = counter.next().await.unwrap();
//! println!("{}", x);
//!
//! let x = counter.next().await.unwrap();
//! println!("{}", x);
//! #
//! # Ok(()) }) }
//! ```
//!
//! This will print `1` through `5`, each on their own line.
//!
//! Calling `next().await` this way gets repetitive. Rust has a construct which
//! can call `next()` on your stream, until it reaches `None`. Let's go over
//! that next.
//!
//! # while let Loops and IntoStream
//!
//! Rust's `while let` loop syntax is an idiomatic way to iterate over streams. Here's a basic
//! example of `while let`:
//!
//! ```
//! # fn main() -> std::io::Result<()> { async_std::task::block_on(async {
//! #
//! # use async_std::prelude::*;
//! # use async_std::stream;
//! let mut values = stream::repeat(1u8).take(5);
//!
//! while let Some(x) = values.next().await {
//!     println!("{}", x);
//! }
//! #
//! # Ok(()) }) }
//! ```
//!
//! This will print the numbers one through five, each on their own line. But
//! you'll notice something here: we never called anything on our vector to
//! produce a stream. What gives?
//!
//! There's a trait in the standard library for converting something into an
//! stream: [`IntoStream`]. This trait has one method, [`into_stream`],
//! which converts the thing implementing [`IntoStream`] into a stream.
//!
//! Unlike `std::iter::IntoIterator`, `IntoStream` does not have compiler
//! support yet. This means that automatic conversions like with `for` loops
//! doesn't occur yet, and `into_stream` will always have to be called manually.
//!
//! [`IntoStream`]: trait.IntoStream.html
//! [`into_stream`]: trait.IntoStream.html#tymethod.into_stream
//!
//! # Adapters
//!
//! Functions which take an [`Stream`] and return another [`Stream`] are
//! often called 'stream adapters', as they are a form of the 'adapter
//! pattern'.
//!
//! Common stream adapters include [`map`], [`take`], and [`filter`].
//! For more, see their documentation.
//!
//! [`map`]: trait.Stream.html#method.map
//! [`take`]: trait.Stream.html#method.take
//! [`filter`]: trait.Stream.html#method.filter
//!
//! # Laziness
//!
//! Streams (and stream [adapters](#adapters)) are *lazy*. This means that
//! just creating a stream doesn't _do_ a whole lot. Nothing really happens
//! until you call [`next`]. This is sometimes a source of confusion when
//! creating a stream solely for its side effects. For example, the [`map`]
//! method calls a closure on each element it iterates over:
//!
//! ```
//! # #![allow(unused_must_use)]
//! # fn main() -> std::io::Result<()> { async_std::task::block_on(async {
//! #
//! # use async_std::prelude::*;
//! # use async_std::stream;
//! let v = stream::repeat(1u8).take(5);
//! v.map(|x| println!("{}", x));
//! #
//! # Ok(()) }) }
//! ```
//!
//! This will not print any values, as we only created a stream, rather than
//! using it. The compiler will warn us about this kind of behavior:
//!
//! ```text
//! warning: unused result that must be used: streams are lazy and
//! do nothing unless consumed
//! ```
//!
//! The idiomatic way to write a [`map`] for its side effects is to use a
//! `while let` loop instead:
//!
//! ```
//! # fn main() -> std::io::Result<()> { async_std::task::block_on(async {
//! #
//! # use async_std::prelude::*;
//! # use async_std::stream;
//! let mut v = stream::repeat(1u8).take(5);
//!
//! while let Some(x) = &v.next().await {
//!     println!("{}", x);
//! }
//! #
//! # Ok(()) }) }
//! ```
//!
//! [`map`]: trait.Stream.html#method.map
//!
//! The two most common ways to evaluate a stream are to use a `while let` loop
//! like this, or using the [`collect`] method to produce a new collection.
//!
//! [`collect`]: trait.Stream.html#method.collect
//!
//! # Infinity
//!
//! Streams do not have to be finite. As an example, an repeat stream is
//! an infinite stream:
//!
//! ```
//! # use async_std::stream;
//! let numbers = stream::repeat(1u8);
//! ```
//!
//! It is common to use the [`take`] stream adapter to turn an infinite
//! stream into a finite one:
//!
//! ```
//! # fn main() -> std::io::Result<()> { async_std::task::block_on(async {
//! #
//! # use async_std::prelude::*;
//! # use async_std::stream;
//! let numbers = stream::repeat(1u8);
//! let mut five_numbers = numbers.take(5);
//!
//! while let Some(number) = five_numbers.next().await {
//!     println!("{}", number);
//! }
//! #
//! # Ok(()) }) }
//! ```
//!
//! This will print the numbers `0` through `4`, each on their own line.
//!
//! Bear in mind that methods on infinite streams, even those for which a
//! result can be determined mathematically in finite time, may not terminate.
//! Specifically, methods such as [`min`], which in the general case require
//! traversing every element in the stream, are likely not to return
//! successfully for any infinite streams.
//!
//! ```ignore
//! let ones = async_std::stream::repeat(1);
//! let least = ones.min().await.unwrap(); // Oh no! An infinite loop!
//! // `ones.min()` causes an infinite loop, so we won't reach this point!
//! println!("The smallest number one is {}.", least);
//! ```
//!
//! [`std::iter`]: https://doc.rust-lang.org/std/iter/index.html
//! [`take`]: trait.Stream.html#method.take
//! [`min`]: trait.Stream.html#method.min

pub use empty::{empty, Empty};
pub use from_fn::{from_fn, FromFn};
pub use from_iter::{from_iter, FromIter};
pub use once::{once, Once};
pub use repeat::{repeat, Repeat};
pub use repeat_with::{repeat_with, RepeatWith};
pub use stream::*;

pub mod stream;

mod empty;
mod from_fn;
mod from_iter;
mod once;
mod repeat;
mod repeat_with;

cfg_unstable! {
    #[doc(hidden)]
    pub mod double_ended_stream;
    mod exact_size_stream;
    mod extend;
    mod from_stream;
    mod fused_stream;
    mod interval;
    mod into_stream;
    mod product;
    mod successors;
    mod sum;

    pub use double_ended_stream::DoubleEndedStream;
    pub use exact_size_stream::ExactSizeStream;
    pub use extend::{extend, Extend};
    pub use from_stream::FromStream;
    pub use fused_stream::FusedStream;
    pub use interval::{interval, Interval};
    pub use into_stream::IntoStream;
    pub use product::Product;
    pub use stream::Merge;
    pub use successors::{successors, Successors};
    pub use sum::Sum;
}