1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
use std::cell::UnsafeCell;
use std::fmt;
use std::future::Future;
use std::isize;
use std::marker::PhantomData;
use std::mem;
use std::pin::Pin;
use std::process;
use std::ptr;
use std::sync::atomic::{self, AtomicUsize, Ordering};
use std::sync::Arc;
use std::task::{Context, Poll};

use crossbeam_utils::Backoff;

use crate::stream::Stream;
use crate::sync::WakerSet;

/// Creates a bounded multi-producer multi-consumer channel.
///
/// This channel has a buffer that can hold at most `cap` messages at a time.
///
/// Senders and receivers can be cloned. When all senders associated with a channel get dropped, it
/// becomes closed. Receive operations on a closed and empty channel return `None` instead of
/// trying to await a message.
///
/// # Panics
///
/// If `cap` is zero, this function will panic.
///
/// # Examples
///
/// ```
/// # async_std::task::block_on(async {
/// #
/// use std::time::Duration;
///
/// use async_std::sync::channel;
/// use async_std::task;
///
/// let (s, r) = channel(1);
///
/// // This call returns immediately because there is enough space in the channel.
/// s.send(1).await;
///
/// task::spawn(async move {
///     // This call will have to wait because the channel is full.
///     // It will be able to complete only after the first message is received.
///     s.send(2).await;
/// });
///
/// task::sleep(Duration::from_secs(1)).await;
/// assert_eq!(r.recv().await, Some(1));
/// assert_eq!(r.recv().await, Some(2));
/// #
/// # })
/// ```
#[cfg(feature = "unstable")]
#[cfg_attr(feature = "docs", doc(cfg(unstable)))]
pub fn channel<T>(cap: usize) -> (Sender<T>, Receiver<T>) {
    let channel = Arc::new(Channel::with_capacity(cap));
    let s = Sender {
        channel: channel.clone(),
    };
    let r = Receiver {
        channel,
        opt_key: None,
    };
    (s, r)
}

/// The sending side of a channel.
///
/// # Examples
///
/// ```
/// # async_std::task::block_on(async {
/// #
/// use async_std::sync::channel;
/// use async_std::task;
///
/// let (s1, r) = channel(100);
/// let s2 = s1.clone();
///
/// task::spawn(async move { s1.send(1).await });
/// task::spawn(async move { s2.send(2).await });
///
/// let msg1 = r.recv().await.unwrap();
/// let msg2 = r.recv().await.unwrap();
///
/// assert_eq!(msg1 + msg2, 3);
/// #
/// # })
/// ```
#[cfg(feature = "unstable")]
#[cfg_attr(feature = "docs", doc(cfg(unstable)))]
pub struct Sender<T> {
    /// The inner channel.
    channel: Arc<Channel<T>>,
}

impl<T> Sender<T> {
    /// Sends a message into the channel.
    ///
    /// If the channel is full, this method will wait until there is space in the channel.
    ///
    /// # Examples
    ///
    /// ```
    /// # async_std::task::block_on(async {
    /// #
    /// use async_std::sync::channel;
    /// use async_std::task;
    ///
    /// let (s, r) = channel(1);
    ///
    /// task::spawn(async move {
    ///     s.send(1).await;
    ///     s.send(2).await;
    /// });
    ///
    /// assert_eq!(r.recv().await, Some(1));
    /// assert_eq!(r.recv().await, Some(2));
    /// assert_eq!(r.recv().await, None);
    /// #
    /// # })
    /// ```
    pub async fn send(&self, msg: T) {
        struct SendFuture<'a, T> {
            channel: &'a Channel<T>,
            msg: Option<T>,
            opt_key: Option<usize>,
        }

        impl<T> Unpin for SendFuture<'_, T> {}

        impl<T> Future for SendFuture<'_, T> {
            type Output = ();

            fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
                loop {
                    let msg = self.msg.take().unwrap();

                    // If the current task is in the set, remove it.
                    if let Some(key) = self.opt_key.take() {
                        self.channel.send_wakers.remove(key);
                    }

                    // Try sending the message.
                    match self.channel.try_send(msg) {
                        Ok(()) => return Poll::Ready(()),
                        Err(TrySendError::Disconnected(msg)) => {
                            self.msg = Some(msg);
                            return Poll::Pending;
                        }
                        Err(TrySendError::Full(msg)) => {
                            self.msg = Some(msg);

                            // Insert this send operation.
                            self.opt_key = Some(self.channel.send_wakers.insert(cx));

                            // If the channel is still full and not disconnected, return.
                            if self.channel.is_full() && !self.channel.is_disconnected() {
                                return Poll::Pending;
                            }
                        }
                    }
                }
            }
        }

        impl<T> Drop for SendFuture<'_, T> {
            fn drop(&mut self) {
                // If the current task is still in the set, that means it is being cancelled now.
                // Wake up another task instead.
                if let Some(key) = self.opt_key {
                    self.channel.send_wakers.cancel(key);
                }
            }
        }

        SendFuture {
            channel: &self.channel,
            msg: Some(msg),
            opt_key: None,
        }
        .await
    }

    /// Returns the channel capacity.
    ///
    /// # Examples
    ///
    /// ```
    /// use async_std::sync::channel;
    ///
    /// let (s, _) = channel::<i32>(5);
    /// assert_eq!(s.capacity(), 5);
    /// ```
    pub fn capacity(&self) -> usize {
        self.channel.cap
    }

    /// Returns `true` if the channel is empty.
    ///
    /// # Examples
    ///
    /// ```
    /// # async_std::task::block_on(async {
    /// #
    /// use async_std::sync::channel;
    ///
    /// let (s, r) = channel(1);
    ///
    /// assert!(s.is_empty());
    /// s.send(0).await;
    /// assert!(!s.is_empty());
    /// #
    /// # })
    /// ```
    pub fn is_empty(&self) -> bool {
        self.channel.is_empty()
    }

    /// Returns `true` if the channel is full.
    ///
    /// # Examples
    ///
    /// ```
    /// # async_std::task::block_on(async {
    /// #
    /// use async_std::sync::channel;
    ///
    /// let (s, r) = channel(1);
    ///
    /// assert!(!s.is_full());
    /// s.send(0).await;
    /// assert!(s.is_full());
    /// #
    /// # })
    /// ```
    pub fn is_full(&self) -> bool {
        self.channel.is_full()
    }

    /// Returns the number of messages in the channel.
    ///
    /// # Examples
    ///
    /// ```
    /// # async_std::task::block_on(async {
    /// #
    /// use async_std::sync::channel;
    ///
    /// let (s, r) = channel(2);
    /// assert_eq!(s.len(), 0);
    ///
    /// s.send(1).await;
    /// s.send(2).await;
    /// assert_eq!(s.len(), 2);
    /// #
    /// # })
    /// ```
    pub fn len(&self) -> usize {
        self.channel.len()
    }
}

impl<T> Drop for Sender<T> {
    fn drop(&mut self) {
        // Decrement the sender count and disconnect the channel if it drops down to zero.
        if self.channel.sender_count.fetch_sub(1, Ordering::AcqRel) == 1 {
            self.channel.disconnect();
        }
    }
}

impl<T> Clone for Sender<T> {
    fn clone(&self) -> Sender<T> {
        let count = self.channel.sender_count.fetch_add(1, Ordering::Relaxed);

        // Make sure the count never overflows, even if lots of sender clones are leaked.
        if count > isize::MAX as usize {
            process::abort();
        }

        Sender {
            channel: self.channel.clone(),
        }
    }
}

impl<T> fmt::Debug for Sender<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.pad("Sender { .. }")
    }
}

/// The receiving side of a channel.
///
/// This type implements the [`Stream`] trait, which means it can act as an asynchronous iterator.
///
/// [`Stream`]: ../stream/trait.Stream.html
///
/// # Examples
///
/// ```
/// # async_std::task::block_on(async {
/// #
/// use std::time::Duration;
///
/// use async_std::sync::channel;
/// use async_std::task;
///
/// let (s, r) = channel(100);
///
/// task::spawn(async move {
///     s.send(1).await;
///     task::sleep(Duration::from_secs(1)).await;
///     s.send(2).await;
/// });
///
/// assert_eq!(r.recv().await, Some(1)); // Received immediately.
/// assert_eq!(r.recv().await, Some(2)); // Received after 1 second.
/// #
/// # })
/// ```
#[cfg(feature = "unstable")]
#[cfg_attr(feature = "docs", doc(cfg(unstable)))]
pub struct Receiver<T> {
    /// The inner channel.
    channel: Arc<Channel<T>>,

    /// The key for this receiver in the `channel.stream_wakers` set.
    opt_key: Option<usize>,
}

impl<T> Receiver<T> {
    /// Receives a message from the channel.
    ///
    /// If the channel is empty and still has senders, this method will wait until a message is
    /// sent into the channel or until all senders get dropped.
    ///
    /// # Examples
    ///
    /// ```
    /// # async_std::task::block_on(async {
    /// #
    /// use async_std::sync::channel;
    /// use async_std::task;
    ///
    /// let (s, r) = channel(1);
    ///
    /// task::spawn(async move {
    ///     s.send(1).await;
    ///     s.send(2).await;
    /// });
    ///
    /// assert_eq!(r.recv().await, Some(1));
    /// assert_eq!(r.recv().await, Some(2));
    /// assert_eq!(r.recv().await, None);
    /// #
    /// # })
    /// ```
    pub async fn recv(&self) -> Option<T> {
        struct RecvFuture<'a, T> {
            channel: &'a Channel<T>,
            opt_key: Option<usize>,
        }

        impl<T> Future for RecvFuture<'_, T> {
            type Output = Option<T>;

            fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
                poll_recv(
                    &self.channel,
                    &self.channel.recv_wakers,
                    &mut self.opt_key,
                    cx,
                )
            }
        }

        impl<T> Drop for RecvFuture<'_, T> {
            fn drop(&mut self) {
                // If the current task is still in the set, that means it is being cancelled now.
                if let Some(key) = self.opt_key {
                    self.channel.recv_wakers.cancel(key);
                }
            }
        }

        RecvFuture {
            channel: &self.channel,
            opt_key: None,
        }
        .await
    }

    /// Returns the channel capacity.
    ///
    /// # Examples
    ///
    /// ```
    /// use async_std::sync::channel;
    ///
    /// let (_, r) = channel::<i32>(5);
    /// assert_eq!(r.capacity(), 5);
    /// ```
    pub fn capacity(&self) -> usize {
        self.channel.cap
    }

    /// Returns `true` if the channel is empty.
    ///
    /// # Examples
    ///
    /// ```
    /// # async_std::task::block_on(async {
    /// #
    /// use async_std::sync::channel;
    ///
    /// let (s, r) = channel(1);
    ///
    /// assert!(r.is_empty());
    /// s.send(0).await;
    /// assert!(!r.is_empty());
    /// #
    /// # })
    /// ```
    pub fn is_empty(&self) -> bool {
        self.channel.is_empty()
    }

    /// Returns `true` if the channel is full.
    ///
    /// # Examples
    ///
    /// ```
    /// # async_std::task::block_on(async {
    /// #
    /// use async_std::sync::channel;
    ///
    /// let (s, r) = channel(1);
    ///
    /// assert!(!r.is_full());
    /// s.send(0).await;
    /// assert!(r.is_full());
    /// #
    /// # })
    /// ```
    pub fn is_full(&self) -> bool {
        self.channel.is_full()
    }

    /// Returns the number of messages in the channel.
    ///
    /// # Examples
    ///
    /// ```
    /// # async_std::task::block_on(async {
    /// #
    /// use async_std::sync::channel;
    ///
    /// let (s, r) = channel(2);
    /// assert_eq!(r.len(), 0);
    ///
    /// s.send(1).await;
    /// s.send(2).await;
    /// assert_eq!(r.len(), 2);
    /// #
    /// # })
    /// ```
    pub fn len(&self) -> usize {
        self.channel.len()
    }
}

impl<T> Drop for Receiver<T> {
    fn drop(&mut self) {
        // If the current task is still in the stream set, that means it is being cancelled now.
        if let Some(key) = self.opt_key {
            self.channel.stream_wakers.cancel(key);
        }

        // Decrement the receiver count and disconnect the channel if it drops down to zero.
        if self.channel.receiver_count.fetch_sub(1, Ordering::AcqRel) == 1 {
            self.channel.disconnect();
        }
    }
}

impl<T> Clone for Receiver<T> {
    fn clone(&self) -> Receiver<T> {
        let count = self.channel.receiver_count.fetch_add(1, Ordering::Relaxed);

        // Make sure the count never overflows, even if lots of receiver clones are leaked.
        if count > isize::MAX as usize {
            process::abort();
        }

        Receiver {
            channel: self.channel.clone(),
            opt_key: None,
        }
    }
}

impl<T> Stream for Receiver<T> {
    type Item = T;

    fn poll_next(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
        let this = &mut *self;
        poll_recv(
            &this.channel,
            &this.channel.stream_wakers,
            &mut this.opt_key,
            cx,
        )
    }
}

impl<T> fmt::Debug for Receiver<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.pad("Receiver { .. }")
    }
}

/// Polls a receive operation on a channel.
///
/// If the receive operation is blocked, the current task will be inserted into `wakers` and its
/// associated key will then be stored in `opt_key`.
fn poll_recv<T>(
    channel: &Channel<T>,
    wakers: &WakerSet,
    opt_key: &mut Option<usize>,
    cx: &mut Context<'_>,
) -> Poll<Option<T>> {
    loop {
        // If the current task is in the set, remove it.
        if let Some(key) = opt_key.take() {
            wakers.remove(key);
        }

        // Try receiving a message.
        match channel.try_recv() {
            Ok(msg) => return Poll::Ready(Some(msg)),
            Err(TryRecvError::Disconnected) => return Poll::Ready(None),
            Err(TryRecvError::Empty) => {
                // Insert this receive operation.
                *opt_key = Some(wakers.insert(cx));

                // If the channel is still empty and not disconnected, return.
                if channel.is_empty() && !channel.is_disconnected() {
                    return Poll::Pending;
                }
            }
        }
    }
}

/// A slot in a channel.
struct Slot<T> {
    /// The current stamp.
    stamp: AtomicUsize,

    /// The message in this slot.
    msg: UnsafeCell<T>,
}

/// Bounded channel based on a preallocated array.
struct Channel<T> {
    /// The head of the channel.
    ///
    /// This value is a "stamp" consisting of an index into the buffer, a mark bit, and a lap, but
    /// packed into a single `usize`. The lower bits represent the index, while the upper bits
    /// represent the lap. The mark bit in the head is always zero.
    ///
    /// Messages are popped from the head of the channel.
    head: AtomicUsize,

    /// The tail of the channel.
    ///
    /// This value is a "stamp" consisting of an index into the buffer, a mark bit, and a lap, but
    /// packed into a single `usize`. The lower bits represent the index, while the upper bits
    /// represent the lap. The mark bit indicates that the channel is disconnected.
    ///
    /// Messages are pushed into the tail of the channel.
    tail: AtomicUsize,

    /// The buffer holding slots.
    buffer: *mut Slot<T>,

    /// The channel capacity.
    cap: usize,

    /// A stamp with the value of `{ lap: 1, mark: 0, index: 0 }`.
    one_lap: usize,

    /// If this bit is set in the tail, that means either all senders were dropped or all receivers
    /// were dropped.
    mark_bit: usize,

    /// Send operations waiting while the channel is full.
    send_wakers: WakerSet,

    /// Receive operations waiting while the channel is empty and not disconnected.
    recv_wakers: WakerSet,

    /// Streams waiting while the channel is empty and not disconnected.
    stream_wakers: WakerSet,

    /// The number of currently active `Sender`s.
    sender_count: AtomicUsize,

    /// The number of currently active `Receivers`s.
    receiver_count: AtomicUsize,

    /// Indicates that dropping a `Channel<T>` may drop values of type `T`.
    _marker: PhantomData<T>,
}

unsafe impl<T: Send> Send for Channel<T> {}
unsafe impl<T: Send> Sync for Channel<T> {}
impl<T> Unpin for Channel<T> {}

impl<T> Channel<T> {
    /// Creates a bounded channel of capacity `cap`.
    fn with_capacity(cap: usize) -> Self {
        assert!(cap > 0, "capacity must be positive");

        // Compute constants `mark_bit` and `one_lap`.
        let mark_bit = (cap + 1).next_power_of_two();
        let one_lap = mark_bit * 2;

        // Head is initialized to `{ lap: 0, mark: 0, index: 0 }`.
        let head = 0;
        // Tail is initialized to `{ lap: 0, mark: 0, index: 0 }`.
        let tail = 0;

        // Allocate a buffer of `cap` slots.
        let buffer = {
            let mut v = Vec::<Slot<T>>::with_capacity(cap);
            let ptr = v.as_mut_ptr();
            mem::forget(v);
            ptr
        };

        // Initialize stamps in the slots.
        for i in 0..cap {
            unsafe {
                // Set the stamp to `{ lap: 0, mark: 0, index: i }`.
                let slot = buffer.add(i);
                ptr::write(&mut (*slot).stamp, AtomicUsize::new(i));
            }
        }

        Channel {
            buffer,
            cap,
            one_lap,
            mark_bit,
            head: AtomicUsize::new(head),
            tail: AtomicUsize::new(tail),
            send_wakers: WakerSet::new(),
            recv_wakers: WakerSet::new(),
            stream_wakers: WakerSet::new(),
            sender_count: AtomicUsize::new(1),
            receiver_count: AtomicUsize::new(1),
            _marker: PhantomData,
        }
    }

    /// Attempts to send a message.
    fn try_send(&self, msg: T) -> Result<(), TrySendError<T>> {
        let backoff = Backoff::new();
        let mut tail = self.tail.load(Ordering::Relaxed);

        loop {
            // Extract mark bit from the tail and unset it.
            //
            // If the mark bit was set (which means all receivers have been dropped), we will still
            // send the message into the channel if there is enough capacity. The message will get
            // dropped when the channel is dropped (which means when all senders are also dropped).
            let mark_bit = tail & self.mark_bit;
            tail ^= mark_bit;

            // Deconstruct the tail.
            let index = tail & (self.mark_bit - 1);
            let lap = tail & !(self.one_lap - 1);

            // Inspect the corresponding slot.
            let slot = unsafe { &*self.buffer.add(index) };
            let stamp = slot.stamp.load(Ordering::Acquire);

            // If the tail and the stamp match, we may attempt to push.
            if tail == stamp {
                let new_tail = if index + 1 < self.cap {
                    // Same lap, incremented index.
                    // Set to `{ lap: lap, mark: 0, index: index + 1 }`.
                    tail + 1
                } else {
                    // One lap forward, index wraps around to zero.
                    // Set to `{ lap: lap.wrapping_add(1), mark: 0, index: 0 }`.
                    lap.wrapping_add(self.one_lap)
                };

                // Try moving the tail.
                match self.tail.compare_exchange_weak(
                    tail | mark_bit,
                    new_tail | mark_bit,
                    Ordering::SeqCst,
                    Ordering::Relaxed,
                ) {
                    Ok(_) => {
                        // Write the message into the slot and update the stamp.
                        unsafe { slot.msg.get().write(msg) };
                        let stamp = tail + 1;
                        slot.stamp.store(stamp, Ordering::Release);

                        // Wake a blocked receive operation.
                        self.recv_wakers.notify_one();

                        // Wake all blocked streams.
                        self.stream_wakers.notify_all();

                        return Ok(());
                    }
                    Err(t) => {
                        tail = t;
                        backoff.spin();
                    }
                }
            } else if stamp.wrapping_add(self.one_lap) == tail + 1 {
                atomic::fence(Ordering::SeqCst);
                let head = self.head.load(Ordering::Relaxed);

                // If the head lags one lap behind the tail as well...
                if head.wrapping_add(self.one_lap) == tail {
                    // ...then the channel is full.

                    // Check if the channel is disconnected.
                    if mark_bit != 0 {
                        return Err(TrySendError::Disconnected(msg));
                    } else {
                        return Err(TrySendError::Full(msg));
                    }
                }

                backoff.spin();
                tail = self.tail.load(Ordering::Relaxed);
            } else {
                // Snooze because we need to wait for the stamp to get updated.
                backoff.snooze();
                tail = self.tail.load(Ordering::Relaxed);
            }
        }
    }

    /// Attempts to receive a message.
    fn try_recv(&self) -> Result<T, TryRecvError> {
        let backoff = Backoff::new();
        let mut head = self.head.load(Ordering::Relaxed);

        loop {
            // Deconstruct the head.
            let index = head & (self.mark_bit - 1);
            let lap = head & !(self.one_lap - 1);

            // Inspect the corresponding slot.
            let slot = unsafe { &*self.buffer.add(index) };
            let stamp = slot.stamp.load(Ordering::Acquire);

            // If the the stamp is ahead of the head by 1, we may attempt to pop.
            if head + 1 == stamp {
                let new = if index + 1 < self.cap {
                    // Same lap, incremented index.
                    // Set to `{ lap: lap, mark: 0, index: index + 1 }`.
                    head + 1
                } else {
                    // One lap forward, index wraps around to zero.
                    // Set to `{ lap: lap.wrapping_add(1), mark: 0, index: 0 }`.
                    lap.wrapping_add(self.one_lap)
                };

                // Try moving the head.
                match self.head.compare_exchange_weak(
                    head,
                    new,
                    Ordering::SeqCst,
                    Ordering::Relaxed,
                ) {
                    Ok(_) => {
                        // Read the message from the slot and update the stamp.
                        let msg = unsafe { slot.msg.get().read() };
                        let stamp = head.wrapping_add(self.one_lap);
                        slot.stamp.store(stamp, Ordering::Release);

                        // Wake a blocked send operation.
                        self.send_wakers.notify_one();

                        return Ok(msg);
                    }
                    Err(h) => {
                        head = h;
                        backoff.spin();
                    }
                }
            } else if stamp == head {
                atomic::fence(Ordering::SeqCst);
                let tail = self.tail.load(Ordering::Relaxed);

                // If the tail equals the head, that means the channel is empty.
                if (tail & !self.mark_bit) == head {
                    // If the channel is disconnected...
                    if tail & self.mark_bit != 0 {
                        return Err(TryRecvError::Disconnected);
                    } else {
                        // Otherwise, the receive operation is not ready.
                        return Err(TryRecvError::Empty);
                    }
                }

                backoff.spin();
                head = self.head.load(Ordering::Relaxed);
            } else {
                // Snooze because we need to wait for the stamp to get updated.
                backoff.snooze();
                head = self.head.load(Ordering::Relaxed);
            }
        }
    }

    /// Returns the current number of messages inside the channel.
    fn len(&self) -> usize {
        loop {
            // Load the tail, then load the head.
            let tail = self.tail.load(Ordering::SeqCst);
            let head = self.head.load(Ordering::SeqCst);

            // If the tail didn't change, we've got consistent values to work with.
            if self.tail.load(Ordering::SeqCst) == tail {
                let hix = head & (self.mark_bit - 1);
                let tix = tail & (self.mark_bit - 1);

                return if hix < tix {
                    tix - hix
                } else if hix > tix {
                    self.cap - hix + tix
                } else if (tail & !self.mark_bit) == head {
                    0
                } else {
                    self.cap
                };
            }
        }
    }

    /// Returns `true` if the channel is disconnected.
    pub fn is_disconnected(&self) -> bool {
        self.tail.load(Ordering::SeqCst) & self.mark_bit != 0
    }

    /// Returns `true` if the channel is empty.
    fn is_empty(&self) -> bool {
        let head = self.head.load(Ordering::SeqCst);
        let tail = self.tail.load(Ordering::SeqCst);

        // Is the tail equal to the head?
        //
        // Note: If the head changes just before we load the tail, that means there was a moment
        // when the channel was not empty, so it is safe to just return `false`.
        (tail & !self.mark_bit) == head
    }

    /// Returns `true` if the channel is full.
    fn is_full(&self) -> bool {
        let tail = self.tail.load(Ordering::SeqCst);
        let head = self.head.load(Ordering::SeqCst);

        // Is the head lagging one lap behind tail?
        //
        // Note: If the tail changes just before we load the head, that means there was a moment
        // when the channel was not full, so it is safe to just return `false`.
        head.wrapping_add(self.one_lap) == tail & !self.mark_bit
    }

    /// Disconnects the channel and wakes up all blocked operations.
    fn disconnect(&self) {
        let tail = self.tail.fetch_or(self.mark_bit, Ordering::SeqCst);

        if tail & self.mark_bit == 0 {
            // Notify everyone blocked on this channel.
            self.send_wakers.notify_all();
            self.recv_wakers.notify_all();
            self.stream_wakers.notify_all();
        }
    }
}

impl<T> Drop for Channel<T> {
    fn drop(&mut self) {
        // Get the index of the head.
        let hix = self.head.load(Ordering::Relaxed) & (self.mark_bit - 1);

        // Loop over all slots that hold a message and drop them.
        for i in 0..self.len() {
            // Compute the index of the next slot holding a message.
            let index = if hix + i < self.cap {
                hix + i
            } else {
                hix + i - self.cap
            };

            unsafe {
                self.buffer.add(index).drop_in_place();
            }
        }

        // Finally, deallocate the buffer, but don't run any destructors.
        unsafe {
            Vec::from_raw_parts(self.buffer, 0, self.cap);
        }
    }
}

/// An error returned from the `try_send()` method.
enum TrySendError<T> {
    /// The channel is full but not disconnected.
    Full(T),

    /// The channel is full and disconnected.
    Disconnected(T),
}

/// An error returned from the `try_recv()` method.
enum TryRecvError {
    /// The channel is empty but not disconnected.
    Empty,

    /// The channel is empty and disconnected.
    Disconnected,
}