1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
//! Duplicate an async I/O handle.
//!
//! This crate provides two tools, [`Arc`] and [`Mutex`]:
//!
//! * [`Arc`] implements [`AsyncRead`] and [`AsyncWrite`] if a reference to the inner type does.
//! * A reference to [`Mutex`] implements [`AsyncRead`] and [`AsyncWrite`] if the inner type does.
//!
//! Wrap an async I/O handle in [`Arc`] or [`Mutex`] to clone it or share among tasks.
//!
//! # Examples
//!
//! Clone an async I/O handle:
//!
//! ```no_run
//! use async_dup::Arc;
//! use futures::io;
//! use smol::Async;
//! use std::net::TcpStream;
//!
//! # fn main() -> std::io::Result<()> { smol::run(async {
//! // A client that echoes messages back to the server.
//! let stream = Async::<TcpStream>::connect("127.0.0.1:8000").await?;
//!
//! // Create two handles to the stream.
//! let reader = Arc::new(stream);
//! let mut writer = reader.clone();
//!
//! // Echo data received from the reader back into the writer.
//! io::copy(reader, &mut writer).await?;
//! # Ok(()) }) }
//! ```
//!
//! Share an async I/O handle:
//!
//! ```
//! use async_dup::Mutex;
//! use futures::io;
//! use futures::prelude::*;
//!
//! // Reads data from a stream and echoes it back.
//! async fn echo(stream: impl AsyncRead + AsyncWrite + Unpin) -> io::Result<u64> {
//!     let stream = Mutex::new(stream);
//!     io::copy(&stream, &mut &stream).await
//! }
//! ```

#![warn(missing_docs, missing_debug_implementations, rust_2018_idioms)]

use std::fmt;
use std::hash::{Hash, Hasher};
use std::io::{self, IoSlice, IoSliceMut};
use std::ops::{Deref, DerefMut};
use std::pin::Pin;
use std::task::{Context, Poll};

use futures_io::{AsyncRead, AsyncWrite};

/// A reference-counted pointer that implements async I/O traits.
///
/// This is just a wrapper around [`std::sync::Arc`] that adds the following impls:
///
/// - `impl<T> AsyncRead for Arc<T> where &T: AsyncRead {}`
/// - `impl<T> AsyncWrite for Arc<T> where &T: AsyncWrite {}`
pub struct Arc<T>(std::sync::Arc<T>);

impl<T> Unpin for Arc<T> {}

impl<T> Arc<T> {
    /// Constructs a new `Arc<T>`.
    ///
    /// # Examples
    ///
    /// ```
    /// use async_dup::Arc;
    ///
    /// let a = Arc::new(7);
    /// ```
    pub fn new(data: T) -> Arc<T> {
        Arc(std::sync::Arc::new(data))
    }
}

impl<T> Clone for Arc<T> {
    fn clone(&self) -> Arc<T> {
        Arc(self.0.clone())
    }
}

impl<T> Deref for Arc<T> {
    type Target = T;

    #[inline]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}

impl<T: fmt::Debug> fmt::Debug for Arc<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::Debug::fmt(&**self, f)
    }
}

impl<T: fmt::Display> fmt::Display for Arc<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::Display::fmt(&**self, f)
    }
}

impl<T: Hash> Hash for Arc<T> {
    fn hash<H: Hasher>(&self, state: &mut H) {
        (**self).hash(state)
    }
}

impl<T> fmt::Pointer for Arc<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::Pointer::fmt(&(&**self as *const T), f)
    }
}

impl<T: Default> Default for Arc<T> {
    fn default() -> Arc<T> {
        Arc::new(Default::default())
    }
}

impl<T> From<T> for Arc<T> {
    fn from(t: T) -> Arc<T> {
        Arc::new(t)
    }
}

// NOTE(stjepang): It would also make sense to have the following impls:
//
// - `impl<T> AsyncRead for &Arc<T> where &T: AsyncRead {}`
// - `impl<T> AsyncWrite for &Arc<T> where &T: AsyncWrite {}`
//
// However, those impls sometimes make Rust's type inference try too hard when types cannot be
// inferred. In the end, instead of complaining with a nice error message, the Rust compiler ends
// up overflowing and dumping a very long error message spanning multiple screens.
//
// Since those impls are not essential, I decided to err on the safe side and not include them.

impl<T> AsyncRead for Arc<T>
where
    for<'a> &'a T: AsyncRead,
{
    fn poll_read(
        self: Pin<&mut Self>,
        cx: &mut Context<'_>,
        buf: &mut [u8],
    ) -> Poll<io::Result<usize>> {
        Pin::new(&mut &*self.0).poll_read(cx, buf)
    }

    fn poll_read_vectored(
        self: Pin<&mut Self>,
        cx: &mut Context<'_>,
        bufs: &mut [IoSliceMut<'_>],
    ) -> Poll<io::Result<usize>> {
        Pin::new(&mut &*self.0).poll_read_vectored(cx, bufs)
    }
}

impl<T> AsyncWrite for Arc<T>
where
    for<'a> &'a T: AsyncWrite,
{
    fn poll_write(
        self: Pin<&mut Self>,
        cx: &mut Context<'_>,
        buf: &[u8],
    ) -> Poll<io::Result<usize>> {
        Pin::new(&mut &*self.0).poll_write(cx, buf)
    }

    fn poll_write_vectored(
        self: Pin<&mut Self>,
        cx: &mut Context<'_>,
        bufs: &[IoSlice<'_>],
    ) -> Poll<io::Result<usize>> {
        Pin::new(&mut &*self.0).poll_write_vectored(cx, bufs)
    }

    fn poll_flush(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
        Pin::new(&mut &*self.0).poll_flush(cx)
    }

    fn poll_close(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
        Pin::new(&mut &*self.0).poll_close(cx)
    }
}

/// A mutex that implements async I/O traits.
///
/// This is a blocking mutex that adds the following impls:
///
/// - `impl<T> AsyncRead for Mutex<T> where &T: AsyncRead + Unpin {}`
/// - `impl<T> AsyncRead for &Mutex<T> where &T: AsyncRead + Unpin {}`
/// - `impl<T> AsyncWrite for Mutex<T> where &T: AsyncWrite + Unpin {}`
/// - `impl<T> AsyncWrite for &Mutex<T> where &T: AsyncWrite + Unpin {}`
pub struct Mutex<T>(simple_mutex::Mutex<T>);

impl<T> Mutex<T> {
    /// Creates a new mutex.
    ///
    /// # Examples
    ///
    /// ```
    /// use async_dup::Mutex;
    ///
    /// let mutex = Mutex::new(10);
    /// ```
    pub fn new(data: T) -> Mutex<T> {
        Mutex(data.into())
    }

    /// Acquires the mutex, blocking the current thread until it is able to do so.
    ///
    /// Returns a guard that releases the mutex when dropped.
    ///
    /// # Examples
    ///
    /// ```
    /// use async_dup::Mutex;
    ///
    /// let mutex = Mutex::new(10);
    /// let guard = mutex.lock();
    /// assert_eq!(*guard, 10);
    /// ```
    pub fn lock(&self) -> MutexGuard<'_, T> {
        MutexGuard(self.0.lock())
    }

    /// Attempts to acquire the mutex.
    ///
    /// If the mutex could not be acquired at this time, then [`None`] is returned. Otherwise, a
    /// guard is returned that releases the mutex when dropped.
    ///
    /// [`None`]: https://doc.rust-lang.org/std/option/enum.Option.html#variant.None
    ///
    /// # Examples
    ///
    /// ```
    /// use async_dup::Mutex;
    ///
    /// let mutex = Mutex::new(10);
    /// if let Some(guard) = mutex.try_lock() {
    ///     assert_eq!(*guard, 10);
    /// }
    /// # ;
    /// ```
    pub fn try_lock(&self) -> Option<MutexGuard<'_, T>> {
        if let Some(guard) = self.0.try_lock() {
            Some(MutexGuard(guard))
        } else {
            None
        }
    }

    /// Consumes the mutex, returning the underlying data.
    ///
    /// # Examples
    ///
    /// ```
    /// use async_dup::Mutex;
    ///
    /// let mutex = Mutex::new(10);
    /// assert_eq!(mutex.into_inner(), 10);
    /// ```
    pub fn into_inner(self) -> T {
        self.0.into_inner()
    }

    /// Returns a mutable reference to the underlying data.
    ///
    /// Since this call borrows the mutex mutably, no actual locking takes place -- the mutable
    /// borrow statically guarantees the mutex is not already acquired.
    ///
    /// # Examples
    ///
    /// ```
    /// use async_dup::Mutex;
    ///
    /// let mut mutex = Mutex::new(0);
    /// *mutex.get_mut() = 10;
    /// assert_eq!(*mutex.lock(), 10);
    /// ```
    pub fn get_mut(&mut self) -> &mut T {
        self.0.get_mut()
    }
}

impl<T: fmt::Debug> fmt::Debug for Mutex<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        struct Locked;
        impl fmt::Debug for Locked {
            fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
                f.write_str("<locked>")
            }
        }

        match self.try_lock() {
            None => f.debug_struct("Mutex").field("data", &Locked).finish(),
            Some(guard) => f.debug_struct("Mutex").field("data", &&*guard).finish(),
        }
    }
}

impl<T> From<T> for Mutex<T> {
    fn from(val: T) -> Mutex<T> {
        Mutex::new(val)
    }
}

impl<T: Default> Default for Mutex<T> {
    fn default() -> Mutex<T> {
        Mutex::new(Default::default())
    }
}

impl<T: AsyncRead + Unpin> AsyncRead for Mutex<T> {
    fn poll_read(
        self: Pin<&mut Self>,
        cx: &mut Context<'_>,
        buf: &mut [u8],
    ) -> Poll<io::Result<usize>> {
        Pin::new(&mut *self.lock()).poll_read(cx, buf)
    }

    fn poll_read_vectored(
        self: Pin<&mut Self>,
        cx: &mut Context<'_>,
        bufs: &mut [IoSliceMut<'_>],
    ) -> Poll<io::Result<usize>> {
        Pin::new(&mut *self.lock()).poll_read_vectored(cx, bufs)
    }
}

impl<T: AsyncRead + Unpin> AsyncRead for &Mutex<T> {
    fn poll_read(
        self: Pin<&mut Self>,
        cx: &mut Context<'_>,
        buf: &mut [u8],
    ) -> Poll<io::Result<usize>> {
        Pin::new(&mut *self.lock()).poll_read(cx, buf)
    }

    fn poll_read_vectored(
        self: Pin<&mut Self>,
        cx: &mut Context<'_>,
        bufs: &mut [IoSliceMut<'_>],
    ) -> Poll<io::Result<usize>> {
        Pin::new(&mut *self.lock()).poll_read_vectored(cx, bufs)
    }
}

impl<T: AsyncWrite + Unpin> AsyncWrite for Mutex<T> {
    fn poll_write(
        self: Pin<&mut Self>,
        cx: &mut Context<'_>,
        buf: &[u8],
    ) -> Poll<io::Result<usize>> {
        Pin::new(&mut *self.lock()).poll_write(cx, buf)
    }

    fn poll_write_vectored(
        self: Pin<&mut Self>,
        cx: &mut Context<'_>,
        bufs: &[IoSlice<'_>],
    ) -> Poll<io::Result<usize>> {
        Pin::new(&mut *self.lock()).poll_write_vectored(cx, bufs)
    }

    fn poll_flush(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
        Pin::new(&mut *self.lock()).poll_flush(cx)
    }

    fn poll_close(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
        Pin::new(&mut *self.lock()).poll_close(cx)
    }
}

impl<T: AsyncWrite + Unpin> AsyncWrite for &Mutex<T> {
    fn poll_write(
        self: Pin<&mut Self>,
        cx: &mut Context<'_>,
        buf: &[u8],
    ) -> Poll<io::Result<usize>> {
        Pin::new(&mut *self.lock()).poll_write(cx, buf)
    }

    fn poll_write_vectored(
        self: Pin<&mut Self>,
        cx: &mut Context<'_>,
        bufs: &[IoSlice<'_>],
    ) -> Poll<io::Result<usize>> {
        Pin::new(&mut *self.lock()).poll_write_vectored(cx, bufs)
    }

    fn poll_flush(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
        Pin::new(&mut *self.lock()).poll_flush(cx)
    }

    fn poll_close(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
        Pin::new(&mut *self.lock()).poll_close(cx)
    }
}

/// A guard that releases the mutex when dropped.
pub struct MutexGuard<'a, T>(simple_mutex::MutexGuard<'a, T>);

impl<T: fmt::Debug> fmt::Debug for MutexGuard<'_, T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::Debug::fmt(&**self, f)
    }
}

impl<T: fmt::Display> fmt::Display for MutexGuard<'_, T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        (**self).fmt(f)
    }
}

impl<T> Deref for MutexGuard<'_, T> {
    type Target = T;

    fn deref(&self) -> &T {
        &self.0
    }
}

impl<T> DerefMut for MutexGuard<'_, T> {
    fn deref_mut(&mut self) -> &mut T {
        &mut self.0
    }
}