1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! Defines the subtract arithmetic kernels for Decimal `PrimitiveArrays`.

use crate::compute::arithmetics::basic::check_same_len;
use crate::{
    array::{Array, PrimitiveArray},
    buffer::Buffer,
    compute::{
        arithmetics::{ArrayCheckedSub, ArraySaturatingSub, ArraySub},
        arity::{binary, binary_checked},
        utils::combine_validities,
    },
    datatypes::DataType,
    error::{ArrowError, Result},
};

use super::{adjusted_precision_scale, max_value, number_digits};

/// Subtract two decimal primitive arrays with the same precision and scale. If
/// the precision and scale is different, then an InvalidArgumentError is
/// returned. This function panics if the subtracted numbers result in a number
/// smaller than the possible number for the selected precision.
///
/// # Examples
/// ```
/// use arrow2::compute::arithmetics::decimal::sub::sub;
/// use arrow2::array::PrimitiveArray;
/// use arrow2::datatypes::DataType;
///
/// let a = PrimitiveArray::from([Some(1i128), Some(1i128), None, Some(2i128)]).to(DataType::Decimal(5, 2));
/// let b = PrimitiveArray::from([Some(1i128), Some(2i128), None, Some(2i128)]).to(DataType::Decimal(5, 2));
///
/// let result = sub(&a, &b).unwrap();
/// let expected = PrimitiveArray::from([Some(0i128), Some(-1i128), None, Some(0i128)]).to(DataType::Decimal(5, 2));
///
/// assert_eq!(result, expected);
/// ```
pub fn sub(lhs: &PrimitiveArray<i128>, rhs: &PrimitiveArray<i128>) -> Result<PrimitiveArray<i128>> {
    // Matching on both data types from both arrays This match will be true
    // only when precision and scale from both arrays are the same, otherwise
    // it will return and ArrowError
    match (lhs.data_type(), rhs.data_type()) {
        (DataType::Decimal(lhs_p, lhs_s), DataType::Decimal(rhs_p, rhs_s)) => {
            if lhs_p == rhs_p && lhs_s == rhs_s {
                // Closure for the binary operation. This closure will panic if
                // the sum of the values is larger than the max value possible
                // for the decimal precision
                let op = move |a, b| {
                    let res: i128 = a - b;

                    if res.abs() > max_value(*lhs_p) {
                        panic!("Overflow in subtract presented for precision {}", lhs_p);
                    }

                    res
                };

                binary(lhs, rhs, lhs.data_type().clone(), op)
            } else {
                Err(ArrowError::InvalidArgumentError(
                    "Arrays must have the same precision and scale".to_string(),
                ))
            }
        }
        _ => Err(ArrowError::InvalidArgumentError(
            "Incorrect data type for the array".to_string(),
        )),
    }
}

/// Saturated subtraction of two decimal primitive arrays with the same
/// precision and scale. If the precision and scale is different, then an
/// InvalidArgumentError is returned. If the result from the sum is smaller
/// than the possible number with the selected precision then the resulted
/// number in the arrow array is the minimum number for the selected precision.
///
/// # Examples
/// ```
/// use arrow2::compute::arithmetics::decimal::sub::saturating_sub;
/// use arrow2::array::PrimitiveArray;
/// use arrow2::datatypes::DataType;
///
/// let a = PrimitiveArray::from([Some(-99000i128), Some(11100i128), None, Some(22200i128)]).to(DataType::Decimal(5, 2));
/// let b = PrimitiveArray::from([Some(01000i128), Some(22200i128), None, Some(11100i128)]).to(DataType::Decimal(5, 2));
///
/// let result = saturating_sub(&a, &b).unwrap();
/// let expected = PrimitiveArray::from([Some(-99999i128), Some(-11100i128), None, Some(11100i128)]).to(DataType::Decimal(5, 2));
///
/// assert_eq!(result, expected);
/// ```
pub fn saturating_sub(
    lhs: &PrimitiveArray<i128>,
    rhs: &PrimitiveArray<i128>,
) -> Result<PrimitiveArray<i128>> {
    // Matching on both data types from both arrays. This match will be true
    // only when precision and scale from both arrays are the same, otherwise
    // it will return and ArrowError
    match (lhs.data_type(), rhs.data_type()) {
        (DataType::Decimal(lhs_p, lhs_s), DataType::Decimal(rhs_p, rhs_s)) => {
            if lhs_p == rhs_p && lhs_s == rhs_s {
                // Closure for the binary operation.
                let op = move |a, b| {
                    let res: i128 = a - b;
                    let max: i128 = max_value(*lhs_p);

                    match res {
                        res if res.abs() > max => {
                            if res > 0 {
                                max
                            } else {
                                -max
                            }
                        }
                        _ => res,
                    }
                };

                binary(lhs, rhs, lhs.data_type().clone(), op)
            } else {
                Err(ArrowError::InvalidArgumentError(
                    "Arrays must have the same precision and scale".to_string(),
                ))
            }
        }
        _ => Err(ArrowError::InvalidArgumentError(
            "Incorrect data type for the array".to_string(),
        )),
    }
}

// Implementation of ArraySub trait for PrimitiveArrays
impl ArraySub<PrimitiveArray<i128>> for PrimitiveArray<i128> {
    type Output = Self;

    fn sub(&self, rhs: &PrimitiveArray<i128>) -> Result<Self::Output> {
        sub(self, rhs)
    }
}

// Implementation of ArrayCheckedSub trait for PrimitiveArrays
impl ArrayCheckedSub<PrimitiveArray<i128>> for PrimitiveArray<i128> {
    type Output = Self;

    fn checked_sub(&self, rhs: &PrimitiveArray<i128>) -> Result<Self::Output> {
        checked_sub(self, rhs)
    }
}

// Implementation of ArraySaturatingSub trait for PrimitiveArrays
impl ArraySaturatingSub<PrimitiveArray<i128>> for PrimitiveArray<i128> {
    type Output = Self;

    fn saturating_sub(&self, rhs: &PrimitiveArray<i128>) -> Result<Self::Output> {
        saturating_sub(self, rhs)
    }
}
/// Checked subtract of two decimal primitive arrays with the same precision
/// and scale. If the precision and scale is different, then an
/// InvalidArgumentError is returned. If the result from the sub is larger than
/// the possible number with the selected precision (overflowing), then the
/// validity for that index is changed to None
///
/// # Examples
/// ```
/// use arrow2::compute::arithmetics::decimal::sub::checked_sub;
/// use arrow2::array::PrimitiveArray;
/// use arrow2::datatypes::DataType;
///
/// let a = PrimitiveArray::from([Some(-99000i128), Some(11100i128), None, Some(22200i128)]).to(DataType::Decimal(5, 2));
/// let b = PrimitiveArray::from([Some(01000i128), Some(22200i128), None, Some(11100i128)]).to(DataType::Decimal(5, 2));
///
/// let result = checked_sub(&a, &b).unwrap();
/// let expected = PrimitiveArray::from([None, Some(-11100i128), None, Some(11100i128)]).to(DataType::Decimal(5, 2));
///
/// assert_eq!(result, expected);
/// ```
pub fn checked_sub(
    lhs: &PrimitiveArray<i128>,
    rhs: &PrimitiveArray<i128>,
) -> Result<PrimitiveArray<i128>> {
    // Matching on both data types from both arrays. This match will be true
    // only when precision and scale from both arrays are the same, otherwise
    // it will return and ArrowError
    match (lhs.data_type(), rhs.data_type()) {
        (DataType::Decimal(lhs_p, lhs_s), DataType::Decimal(rhs_p, rhs_s)) => {
            if lhs_p == rhs_p && lhs_s == rhs_s {
                // Closure for the binary operation.
                let op = move |a, b| {
                    let res: i128 = a - b;

                    match res {
                        res if res.abs() > max_value(*lhs_p) => None,
                        _ => Some(res),
                    }
                };

                binary_checked(lhs, rhs, lhs.data_type().clone(), op)
            } else {
                Err(ArrowError::InvalidArgumentError(
                    "Arrays must have the same precision and scale".to_string(),
                ))
            }
        }
        _ => Err(ArrowError::InvalidArgumentError(
            "Incorrect data type for the array".to_string(),
        )),
    }
}

/// Adaptive subtract of two decimal primitive arrays with different precision
/// and scale. If the precision and scale is different, then the smallest scale
/// and precision is adjusted to the largest precision and scale. If during the
/// addition one of the results is smaller than the min possible value, the
/// result precision is changed to the precision of the min value
///
/// ```nocode
///  99.9999 -> 6, 4
/// -00.0001 -> 6, 4
/// -----------------
/// 100.0000 -> 7, 4
/// ```
/// # Examples
/// ```
/// use arrow2::compute::arithmetics::decimal::sub::adaptive_sub;
/// use arrow2::array::PrimitiveArray;
/// use arrow2::datatypes::DataType;
///
/// let a = PrimitiveArray::from([Some(99_9999i128)]).to(DataType::Decimal(6, 4));
/// let b = PrimitiveArray::from([Some(-00_0001i128)]).to(DataType::Decimal(6, 4));
/// let result = adaptive_sub(&a, &b).unwrap();
/// let expected = PrimitiveArray::from([Some(100_0000i128)]).to(DataType::Decimal(7, 4));
///
/// assert_eq!(result, expected);
/// ```
pub fn adaptive_sub(
    lhs: &PrimitiveArray<i128>,
    rhs: &PrimitiveArray<i128>,
) -> Result<PrimitiveArray<i128>> {
    check_same_len(lhs, rhs)?;

    if let (DataType::Decimal(lhs_p, lhs_s), DataType::Decimal(rhs_p, rhs_s)) =
        (lhs.data_type(), rhs.data_type())
    {
        // The resulting precision is mutable because it could change while
        // looping through the iterator
        let (mut res_p, res_s, diff) = adjusted_precision_scale(*lhs_p, *lhs_s, *rhs_p, *rhs_s);

        let mut result = Vec::new();
        for (l, r) in lhs.values().iter().zip(rhs.values().iter()) {
            // Based on the array's scales one of the arguments in the sum has to be shifted
            // to the left to match the final scale
            let res: i128 = if lhs_s > rhs_s {
                l - r * 10i128.pow(diff as u32)
            } else {
                l * 10i128.pow(diff as u32) - r
            };

            // The precision of the resulting array will change if one of the
            // subtraction during the iteration produces a value bigger than the
            // possible value for the initial precision

            //  -99.9999 -> 6, 4
            //   00.0001 -> 6, 4
            // -----------------
            // -100.0000 -> 7, 4
            if res.abs() > max_value(res_p) {
                res_p = number_digits(res);
            }

            result.push(res);
        }

        let validity = combine_validities(lhs.validity(), rhs.validity());
        let values = Buffer::from(result);

        Ok(PrimitiveArray::<i128>::from_data(
            DataType::Decimal(res_p, res_s),
            values,
            validity,
        ))
    } else {
        Err(ArrowError::InvalidArgumentError(
            "Incorrect data type for the array".to_string(),
        ))
    }
}