1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

use std::any::Any;
use std::convert::From;
use std::fmt;
use std::iter::{FromIterator, IntoIterator};
use std::mem;

use chrono::{prelude::*, Duration};

use super::array::print_long_array;
use super::raw_pointer::RawPtrBox;
use super::*;
use crate::temporal_conversions;
use crate::util::bit_util;
use crate::{
    buffer::{Buffer, MutableBuffer},
    util::trusted_len_unzip,
};

use half::f16;

/// Array whose elements are of primitive types.
///
/// # Example: From an iterator of values
///
/// ```
/// use arrow::array::{Array, PrimitiveArray};
/// use arrow::datatypes::Int32Type;
/// let arr: PrimitiveArray<Int32Type> = PrimitiveArray::from_iter_values((0..10).map(|x| x + 1));
/// assert_eq!(10, arr.len());
/// assert_eq!(0, arr.null_count());
/// for i in 0..10i32 {
///     assert_eq!(i + 1, arr.value(i as usize));
/// }
/// ```
pub struct PrimitiveArray<T: ArrowPrimitiveType> {
    /// Underlying ArrayData
    /// # Safety
    /// must have exactly one buffer, aligned to type T
    data: ArrayData,
    /// Pointer to the value array. The lifetime of this must be <= to the value buffer
    /// stored in `data`, so it's safe to store.
    /// # Safety
    /// raw_values must have a value equivalent to `data.buffers()[0].raw_data()`
    /// raw_values must have alignment for type T::NativeType
    raw_values: RawPtrBox<T::Native>,
}

impl<T: ArrowPrimitiveType> PrimitiveArray<T> {
    /// Returns the length of this array.
    #[inline]
    pub fn len(&self) -> usize {
        self.data.len()
    }

    /// Returns whether this array is empty.
    pub fn is_empty(&self) -> bool {
        self.data.is_empty()
    }

    /// Returns a slice of the values of this array
    #[inline]
    pub fn values(&self) -> &[T::Native] {
        // Soundness
        //     raw_values alignment & location is ensured by fn from(ArrayDataRef)
        //     buffer bounds/offset is ensured by the ArrayData instance.
        unsafe {
            std::slice::from_raw_parts(
                self.raw_values.as_ptr().add(self.data.offset()),
                self.len(),
            )
        }
    }

    // Returns a new primitive array builder
    pub fn builder(capacity: usize) -> PrimitiveBuilder<T> {
        PrimitiveBuilder::<T>::new(capacity)
    }

    /// Returns the primitive value at index `i`.
    ///
    /// # Safety
    ///
    /// caller must ensure that the passed in offset is less than the array len()
    #[inline]
    pub unsafe fn value_unchecked(&self, i: usize) -> T::Native {
        let offset = i + self.offset();
        *self.raw_values.as_ptr().add(offset)
    }

    /// Returns the primitive value at index `i`.
    ///
    /// Panics of offset `i` is out of bounds
    #[inline]
    pub fn value(&self, i: usize) -> T::Native {
        assert!(i < self.len());
        unsafe { self.value_unchecked(i) }
    }

    /// Creates a PrimitiveArray based on an iterator of values without nulls
    pub fn from_iter_values<I: IntoIterator<Item = T::Native>>(iter: I) -> Self {
        let val_buf: Buffer = iter.into_iter().collect();
        let data = unsafe {
            ArrayData::new_unchecked(
                T::DATA_TYPE,
                val_buf.len() / mem::size_of::<<T as ArrowPrimitiveType>::Native>(),
                None,
                None,
                0,
                vec![val_buf],
                vec![],
            )
        };
        PrimitiveArray::from(data)
    }

    /// Creates a PrimitiveArray based on a constant value with `count` elements
    pub fn from_value(value: T::Native, count: usize) -> Self {
        // # Safety: iterator (0..count) correctly reports its length
        let val_buf = unsafe { Buffer::from_trusted_len_iter((0..count).map(|_| value)) };
        let data = unsafe {
            ArrayData::new_unchecked(
                T::DATA_TYPE,
                val_buf.len() / mem::size_of::<<T as ArrowPrimitiveType>::Native>(),
                None,
                None,
                0,
                vec![val_buf],
                vec![],
            )
        };
        PrimitiveArray::from(data)
    }

    /// Returns an iterator that returns the values of `array.value(i)` for an iterator with each element `i`
    pub fn take_iter<'a>(
        &'a self,
        indexes: impl Iterator<Item = Option<usize>> + 'a,
    ) -> impl Iterator<Item = Option<T::Native>> + 'a {
        indexes.map(|opt_index| opt_index.map(|index| self.value(index)))
    }

    /// Returns an iterator that returns the values of `array.value(i)` for an iterator with each element `i`
    /// # Safety
    ///
    /// caller must ensure that the offsets in the iterator are less than the array len()
    pub unsafe fn take_iter_unchecked<'a>(
        &'a self,
        indexes: impl Iterator<Item = Option<usize>> + 'a,
    ) -> impl Iterator<Item = Option<T::Native>> + 'a {
        indexes.map(|opt_index| opt_index.map(|index| self.value_unchecked(index)))
    }
}

impl<T: ArrowPrimitiveType> Array for PrimitiveArray<T> {
    fn as_any(&self) -> &dyn Any {
        self
    }

    fn data(&self) -> &ArrayData {
        &self.data
    }
}

fn as_datetime<T: ArrowPrimitiveType>(v: i64) -> Option<NaiveDateTime> {
    match T::DATA_TYPE {
        DataType::Date32 => Some(temporal_conversions::date32_to_datetime(v as i32)),
        DataType::Date64 => Some(temporal_conversions::date64_to_datetime(v)),
        DataType::Time32(_) | DataType::Time64(_) => None,
        DataType::Timestamp(unit, _) => match unit {
            TimeUnit::Second => Some(temporal_conversions::timestamp_s_to_datetime(v)),
            TimeUnit::Millisecond => {
                Some(temporal_conversions::timestamp_ms_to_datetime(v))
            }
            TimeUnit::Microsecond => {
                Some(temporal_conversions::timestamp_us_to_datetime(v))
            }
            TimeUnit::Nanosecond => {
                Some(temporal_conversions::timestamp_ns_to_datetime(v))
            }
        },
        // interval is not yet fully documented [ARROW-3097]
        DataType::Interval(_) => None,
        _ => None,
    }
}

fn as_date<T: ArrowPrimitiveType>(v: i64) -> Option<NaiveDate> {
    as_datetime::<T>(v).map(|datetime| datetime.date())
}

fn as_time<T: ArrowPrimitiveType>(v: i64) -> Option<NaiveTime> {
    match T::DATA_TYPE {
        DataType::Time32(unit) => {
            // safe to immediately cast to u32 as `self.value(i)` is positive i32
            let v = v as u32;
            match unit {
                TimeUnit::Second => Some(temporal_conversions::time32s_to_time(v as i32)),
                TimeUnit::Millisecond => {
                    Some(temporal_conversions::time32ms_to_time(v as i32))
                }
                _ => None,
            }
        }
        DataType::Time64(unit) => match unit {
            TimeUnit::Microsecond => Some(temporal_conversions::time64us_to_time(v)),
            TimeUnit::Nanosecond => Some(temporal_conversions::time64ns_to_time(v)),
            _ => None,
        },
        DataType::Timestamp(_, _) => as_datetime::<T>(v).map(|datetime| datetime.time()),
        DataType::Date32 | DataType::Date64 => Some(NaiveTime::from_hms(0, 0, 0)),
        DataType::Interval(_) => None,
        _ => None,
    }
}

fn as_duration<T: ArrowPrimitiveType>(v: i64) -> Option<Duration> {
    match T::DATA_TYPE {
        DataType::Duration(unit) => match unit {
            TimeUnit::Second => Some(temporal_conversions::duration_s_to_duration(v)),
            TimeUnit::Millisecond => {
                Some(temporal_conversions::duration_ms_to_duration(v))
            }
            TimeUnit::Microsecond => {
                Some(temporal_conversions::duration_us_to_duration(v))
            }
            TimeUnit::Nanosecond => {
                Some(temporal_conversions::duration_ns_to_duration(v))
            }
        },
        _ => None,
    }
}

impl<T: ArrowTemporalType + ArrowNumericType> PrimitiveArray<T>
where
    i64: std::convert::From<T::Native>,
{
    /// Returns value as a chrono `NaiveDateTime`, handling time resolution
    ///
    /// If a data type cannot be converted to `NaiveDateTime`, a `None` is returned.
    /// A valid value is expected, thus the user should first check for validity.
    pub fn value_as_datetime(&self, i: usize) -> Option<NaiveDateTime> {
        as_datetime::<T>(i64::from(self.value(i)))
    }

    /// Returns value as a chrono `NaiveDateTime`, handling time resolution with the provided tz
    ///
    /// functionally it is same as `value_as_datetime`, however it adds
    /// the passed tz to the to-be-returned NaiveDateTime
    pub fn value_as_datetime_with_tz(
        &self,
        i: usize,
        tz: FixedOffset,
    ) -> Option<NaiveDateTime> {
        as_datetime::<T>(i64::from(self.value(i))).map(|datetime| datetime + tz)
    }

    /// Returns value as a chrono `NaiveDate` by using `Self::datetime()`
    ///
    /// If a data type cannot be converted to `NaiveDate`, a `None` is returned
    pub fn value_as_date(&self, i: usize) -> Option<NaiveDate> {
        self.value_as_datetime(i).map(|datetime| datetime.date())
    }

    /// Returns a value as a chrono `NaiveTime`
    ///
    /// `Date32` and `Date64` return UTC midnight as they do not have time resolution
    pub fn value_as_time(&self, i: usize) -> Option<NaiveTime> {
        as_time::<T>(i64::from(self.value(i)))
    }

    /// Returns a value as a chrono `Duration`
    ///
    /// If a data type cannot be converted to `Duration`, a `None` is returned
    pub fn value_as_duration(&self, i: usize) -> Option<Duration> {
        as_duration::<T>(i64::from(self.value(i)))
    }
}

impl<T: ArrowPrimitiveType> fmt::Debug for PrimitiveArray<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "PrimitiveArray<{:?}>\n[\n", T::DATA_TYPE)?;
        print_long_array(self, f, |array, index, f| match T::DATA_TYPE {
            DataType::Date32 | DataType::Date64 => {
                let v = self.value(index).to_isize().unwrap() as i64;
                match as_date::<T>(v) {
                    Some(date) => write!(f, "{:?}", date),
                    None => write!(f, "null"),
                }
            }
            DataType::Time32(_) | DataType::Time64(_) => {
                let v = self.value(index).to_isize().unwrap() as i64;
                match as_time::<T>(v) {
                    Some(time) => write!(f, "{:?}", time),
                    None => write!(f, "null"),
                }
            }
            DataType::Timestamp(_, _) => {
                let v = self.value(index).to_isize().unwrap() as i64;
                match as_datetime::<T>(v) {
                    Some(datetime) => write!(f, "{:?}", datetime),
                    None => write!(f, "null"),
                }
            }
            _ => fmt::Debug::fmt(&array.value(index), f),
        })?;
        write!(f, "]")
    }
}

impl<'a, T: ArrowPrimitiveType> IntoIterator for &'a PrimitiveArray<T> {
    type Item = Option<<T as ArrowPrimitiveType>::Native>;
    type IntoIter = PrimitiveIter<'a, T>;

    fn into_iter(self) -> Self::IntoIter {
        PrimitiveIter::<'a, T>::new(self)
    }
}

impl<'a, T: ArrowPrimitiveType> PrimitiveArray<T> {
    /// constructs a new iterator
    pub fn iter(&'a self) -> PrimitiveIter<'a, T> {
        PrimitiveIter::<'a, T>::new(self)
    }
}

/// This struct is used as an adapter when creating `PrimitiveArray` from an iterator.
/// `FromIterator` for `PrimitiveArray` takes an iterator where the elements can be `into`
/// this struct. So once implementing `From` or `Into` trait for a type, an iterator of
/// the type can be collected to `PrimitiveArray`.
#[derive(Debug)]
pub struct NativeAdapter<T: ArrowPrimitiveType> {
    pub native: Option<T::Native>,
}

macro_rules! def_from_for_primitive {
    ( $ty:ident, $tt:tt) => {
        impl From<$tt> for NativeAdapter<$ty> {
            fn from(value: $tt) -> Self {
                NativeAdapter {
                    native: Some(value),
                }
            }
        }
    };
}

def_from_for_primitive!(Int8Type, i8);
def_from_for_primitive!(Int16Type, i16);
def_from_for_primitive!(Int32Type, i32);
def_from_for_primitive!(Int64Type, i64);
def_from_for_primitive!(UInt8Type, u8);
def_from_for_primitive!(UInt16Type, u16);
def_from_for_primitive!(UInt32Type, u32);
def_from_for_primitive!(UInt64Type, u64);
def_from_for_primitive!(Float16Type, f16);
def_from_for_primitive!(Float32Type, f32);
def_from_for_primitive!(Float64Type, f64);

impl<T: ArrowPrimitiveType> From<Option<<T as ArrowPrimitiveType>::Native>>
    for NativeAdapter<T>
{
    fn from(value: Option<<T as ArrowPrimitiveType>::Native>) -> Self {
        NativeAdapter { native: value }
    }
}

impl<T: ArrowPrimitiveType> From<&Option<<T as ArrowPrimitiveType>::Native>>
    for NativeAdapter<T>
{
    fn from(value: &Option<<T as ArrowPrimitiveType>::Native>) -> Self {
        NativeAdapter { native: *value }
    }
}

impl<'a, T: ArrowPrimitiveType, Ptr: Into<NativeAdapter<T>>> FromIterator<Ptr>
    for PrimitiveArray<T>
{
    fn from_iter<I: IntoIterator<Item = Ptr>>(iter: I) -> Self {
        let iter = iter.into_iter();
        let (lower, _) = iter.size_hint();

        let mut null_buf = BooleanBufferBuilder::new(lower);

        let buffer: Buffer = iter
            .map(|item| {
                if let Some(a) = item.into().native {
                    null_buf.append(true);
                    a
                } else {
                    null_buf.append(false);
                    // this ensures that null items on the buffer are not arbitrary.
                    // This is important because falible operations can use null values (e.g. a vectorized "add")
                    // which may panic (e.g. overflow if the number on the slots happen to be very large).
                    T::Native::default()
                }
            })
            .collect();

        let data = unsafe {
            ArrayData::new_unchecked(
                T::DATA_TYPE,
                null_buf.len(),
                None,
                Some(null_buf.into()),
                0,
                vec![buffer],
                vec![],
            )
        };
        PrimitiveArray::from(data)
    }
}

impl<T: ArrowPrimitiveType> PrimitiveArray<T> {
    /// Creates a [`PrimitiveArray`] from an iterator of trusted length.
    /// # Safety
    /// The iterator must be [`TrustedLen`](https://doc.rust-lang.org/std/iter/trait.TrustedLen.html).
    /// I.e. that `size_hint().1` correctly reports its length.
    #[inline]
    pub unsafe fn from_trusted_len_iter<I, P>(iter: I) -> Self
    where
        P: std::borrow::Borrow<Option<<T as ArrowPrimitiveType>::Native>>,
        I: IntoIterator<Item = P>,
    {
        let iterator = iter.into_iter();
        let (_, upper) = iterator.size_hint();
        let len = upper.expect("trusted_len_unzip requires an upper limit");

        let (null, buffer) = trusted_len_unzip(iterator);

        let data = ArrayData::new_unchecked(
            T::DATA_TYPE,
            len,
            None,
            Some(null),
            0,
            vec![buffer],
            vec![],
        );
        PrimitiveArray::from(data)
    }
}

// TODO: the macro is needed here because we'd get "conflicting implementations" error
// otherwise with both `From<Vec<T::Native>>` and `From<Vec<Option<T::Native>>>`.
// We should revisit this in future.
macro_rules! def_numeric_from_vec {
    ( $ty:ident ) => {
        impl From<Vec<<$ty as ArrowPrimitiveType>::Native>> for PrimitiveArray<$ty> {
            fn from(data: Vec<<$ty as ArrowPrimitiveType>::Native>) -> Self {
                let array_data = ArrayData::builder($ty::DATA_TYPE)
                    .len(data.len())
                    .add_buffer(Buffer::from_slice_ref(&data));
                let array_data = unsafe { array_data.build_unchecked() };
                PrimitiveArray::from(array_data)
            }
        }

        // Constructs a primitive array from a vector. Should only be used for testing.
        impl From<Vec<Option<<$ty as ArrowPrimitiveType>::Native>>>
            for PrimitiveArray<$ty>
        {
            fn from(data: Vec<Option<<$ty as ArrowPrimitiveType>::Native>>) -> Self {
                PrimitiveArray::from_iter(data.iter())
            }
        }
    };
}

def_numeric_from_vec!(Int8Type);
def_numeric_from_vec!(Int16Type);
def_numeric_from_vec!(Int32Type);
def_numeric_from_vec!(Int64Type);
def_numeric_from_vec!(UInt8Type);
def_numeric_from_vec!(UInt16Type);
def_numeric_from_vec!(UInt32Type);
def_numeric_from_vec!(UInt64Type);
def_numeric_from_vec!(Float32Type);
def_numeric_from_vec!(Float64Type);

def_numeric_from_vec!(Date32Type);
def_numeric_from_vec!(Date64Type);
def_numeric_from_vec!(Time32SecondType);
def_numeric_from_vec!(Time32MillisecondType);
def_numeric_from_vec!(Time64MicrosecondType);
def_numeric_from_vec!(Time64NanosecondType);
def_numeric_from_vec!(IntervalYearMonthType);
def_numeric_from_vec!(IntervalDayTimeType);
def_numeric_from_vec!(IntervalMonthDayNanoType);
def_numeric_from_vec!(DurationSecondType);
def_numeric_from_vec!(DurationMillisecondType);
def_numeric_from_vec!(DurationMicrosecondType);
def_numeric_from_vec!(DurationNanosecondType);
def_numeric_from_vec!(TimestampSecondType);
def_numeric_from_vec!(TimestampMillisecondType);
def_numeric_from_vec!(TimestampMicrosecondType);
def_numeric_from_vec!(TimestampNanosecondType);

impl<T: ArrowTimestampType> PrimitiveArray<T> {
    /// Construct a timestamp array from a vec of i64 values and an optional timezone
    pub fn from_vec(data: Vec<i64>, timezone: Option<String>) -> Self {
        let array_data =
            ArrayData::builder(DataType::Timestamp(T::get_time_unit(), timezone))
                .len(data.len())
                .add_buffer(Buffer::from_slice_ref(&data));
        let array_data = unsafe { array_data.build_unchecked() };
        PrimitiveArray::from(array_data)
    }
}

impl<T: ArrowTimestampType> PrimitiveArray<T> {
    /// Construct a timestamp array from a vec of Option<i64> values and an optional timezone
    pub fn from_opt_vec(data: Vec<Option<i64>>, timezone: Option<String>) -> Self {
        // TODO: duplicated from def_numeric_from_vec! macro, it looks possible to convert to generic
        let data_len = data.len();
        let mut null_buf = MutableBuffer::new_null(data_len);
        let mut val_buf = MutableBuffer::new(data_len * mem::size_of::<i64>());

        {
            let null_slice = null_buf.as_slice_mut();
            for (i, v) in data.iter().enumerate() {
                if let Some(n) = v {
                    bit_util::set_bit(null_slice, i);
                    val_buf.push(*n);
                } else {
                    val_buf.push(0i64);
                }
            }
        }

        let array_data =
            ArrayData::builder(DataType::Timestamp(T::get_time_unit(), timezone))
                .len(data_len)
                .add_buffer(val_buf.into())
                .null_bit_buffer(Some(null_buf.into()));
        let array_data = unsafe { array_data.build_unchecked() };
        PrimitiveArray::from(array_data)
    }
}

/// Constructs a `PrimitiveArray` from an array data reference.
impl<T: ArrowPrimitiveType> From<ArrayData> for PrimitiveArray<T> {
    fn from(data: ArrayData) -> Self {
        assert_eq!(
            data.buffers().len(),
            1,
            "PrimitiveArray data should contain a single buffer only (values buffer)"
        );

        let ptr = data.buffers()[0].as_ptr();
        Self {
            data,
            raw_values: unsafe { RawPtrBox::new(ptr) },
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    use std::thread;

    use crate::buffer::Buffer;
    use crate::compute::eq_dyn;
    use crate::datatypes::DataType;

    #[test]
    fn test_primitive_array_from_vec() {
        let buf = Buffer::from_slice_ref(&[0, 1, 2, 3, 4]);
        let arr = Int32Array::from(vec![0, 1, 2, 3, 4]);
        assert_eq!(buf, arr.data.buffers()[0]);
        assert_eq!(5, arr.len());
        assert_eq!(0, arr.offset());
        assert_eq!(0, arr.null_count());
        for i in 0..5 {
            assert!(!arr.is_null(i));
            assert!(arr.is_valid(i));
            assert_eq!(i as i32, arr.value(i));
        }
    }

    #[test]
    fn test_primitive_array_from_vec_option() {
        // Test building a primitive array with null values
        let arr = Int32Array::from(vec![Some(0), None, Some(2), None, Some(4)]);
        assert_eq!(5, arr.len());
        assert_eq!(0, arr.offset());
        assert_eq!(2, arr.null_count());
        for i in 0..5 {
            if i % 2 == 0 {
                assert!(!arr.is_null(i));
                assert!(arr.is_valid(i));
                assert_eq!(i as i32, arr.value(i));
            } else {
                assert!(arr.is_null(i));
                assert!(!arr.is_valid(i));
            }
        }
    }

    #[test]
    fn test_date64_array_from_vec_option() {
        // Test building a primitive array with null values
        // we use Int32 and Int64 as a backing array, so all Int32 and Int64 conventions
        // work
        let arr: PrimitiveArray<Date64Type> =
            vec![Some(1550902545147), None, Some(1550902545147)].into();
        assert_eq!(3, arr.len());
        assert_eq!(0, arr.offset());
        assert_eq!(1, arr.null_count());
        for i in 0..3 {
            if i % 2 == 0 {
                assert!(!arr.is_null(i));
                assert!(arr.is_valid(i));
                assert_eq!(1550902545147, arr.value(i));
                // roundtrip to and from datetime
                assert_eq!(
                    1550902545147,
                    arr.value_as_datetime(i).unwrap().timestamp_millis()
                );
            } else {
                assert!(arr.is_null(i));
                assert!(!arr.is_valid(i));
            }
        }
    }

    #[test]
    fn test_time32_millisecond_array_from_vec() {
        // 1:        00:00:00.001
        // 37800005: 10:30:00.005
        // 86399210: 23:59:59.210
        let arr: PrimitiveArray<Time32MillisecondType> =
            vec![1, 37_800_005, 86_399_210].into();
        assert_eq!(3, arr.len());
        assert_eq!(0, arr.offset());
        assert_eq!(0, arr.null_count());
        let formatted = vec!["00:00:00.001", "10:30:00.005", "23:59:59.210"];
        for (i, formatted) in formatted.iter().enumerate().take(3) {
            // check that we can't create dates or datetimes from time instances
            assert_eq!(None, arr.value_as_datetime(i));
            assert_eq!(None, arr.value_as_date(i));
            let time = arr.value_as_time(i).unwrap();
            assert_eq!(*formatted, time.format("%H:%M:%S%.3f").to_string());
        }
    }

    #[test]
    fn test_time64_nanosecond_array_from_vec() {
        // Test building a primitive array with null values
        // we use Int32 and Int64 as a backing array, so all Int32 and Int64 conventions
        // work

        // 1e6:        00:00:00.001
        // 37800005e6: 10:30:00.005
        // 86399210e6: 23:59:59.210
        let arr: PrimitiveArray<Time64NanosecondType> =
            vec![1_000_000, 37_800_005_000_000, 86_399_210_000_000].into();
        assert_eq!(3, arr.len());
        assert_eq!(0, arr.offset());
        assert_eq!(0, arr.null_count());
        let formatted = vec!["00:00:00.001", "10:30:00.005", "23:59:59.210"];
        for (i, item) in formatted.iter().enumerate().take(3) {
            // check that we can't create dates or datetimes from time instances
            assert_eq!(None, arr.value_as_datetime(i));
            assert_eq!(None, arr.value_as_date(i));
            let time = arr.value_as_time(i).unwrap();
            assert_eq!(*item, time.format("%H:%M:%S%.3f").to_string());
        }
    }

    #[test]
    fn test_interval_array_from_vec() {
        // intervals are currently not treated specially, but are Int32 and Int64 arrays
        let arr = IntervalYearMonthArray::from(vec![Some(1), None, Some(-5)]);
        assert_eq!(3, arr.len());
        assert_eq!(0, arr.offset());
        assert_eq!(1, arr.null_count());
        assert_eq!(1, arr.value(0));
        assert_eq!(1, arr.values()[0]);
        assert!(arr.is_null(1));
        assert_eq!(-5, arr.value(2));
        assert_eq!(-5, arr.values()[2]);

        // a day_time interval contains days and milliseconds, but we do not yet have accessors for the values
        let arr = IntervalDayTimeArray::from(vec![Some(1), None, Some(-5)]);
        assert_eq!(3, arr.len());
        assert_eq!(0, arr.offset());
        assert_eq!(1, arr.null_count());
        assert_eq!(1, arr.value(0));
        assert_eq!(1, arr.values()[0]);
        assert!(arr.is_null(1));
        assert_eq!(-5, arr.value(2));
        assert_eq!(-5, arr.values()[2]);

        // a month_day_nano interval contains months, days and nanoseconds,
        // but we do not yet have accessors for the values.
        // TODO: implement month, day, and nanos access method for month_day_nano.
        let arr = IntervalMonthDayNanoArray::from(vec![
            Some(100000000000000000000),
            None,
            Some(-500000000000000000000),
        ]);
        assert_eq!(3, arr.len());
        assert_eq!(0, arr.offset());
        assert_eq!(1, arr.null_count());
        assert_eq!(100000000000000000000, arr.value(0));
        assert_eq!(100000000000000000000, arr.values()[0]);
        assert!(arr.is_null(1));
        assert_eq!(-500000000000000000000, arr.value(2));
        assert_eq!(-500000000000000000000, arr.values()[2]);
    }

    #[test]
    fn test_duration_array_from_vec() {
        let arr = DurationSecondArray::from(vec![Some(1), None, Some(-5)]);
        assert_eq!(3, arr.len());
        assert_eq!(0, arr.offset());
        assert_eq!(1, arr.null_count());
        assert_eq!(1, arr.value(0));
        assert_eq!(1, arr.values()[0]);
        assert!(arr.is_null(1));
        assert_eq!(-5, arr.value(2));
        assert_eq!(-5, arr.values()[2]);

        let arr = DurationMillisecondArray::from(vec![Some(1), None, Some(-5)]);
        assert_eq!(3, arr.len());
        assert_eq!(0, arr.offset());
        assert_eq!(1, arr.null_count());
        assert_eq!(1, arr.value(0));
        assert_eq!(1, arr.values()[0]);
        assert!(arr.is_null(1));
        assert_eq!(-5, arr.value(2));
        assert_eq!(-5, arr.values()[2]);

        let arr = DurationMicrosecondArray::from(vec![Some(1), None, Some(-5)]);
        assert_eq!(3, arr.len());
        assert_eq!(0, arr.offset());
        assert_eq!(1, arr.null_count());
        assert_eq!(1, arr.value(0));
        assert_eq!(1, arr.values()[0]);
        assert!(arr.is_null(1));
        assert_eq!(-5, arr.value(2));
        assert_eq!(-5, arr.values()[2]);

        let arr = DurationNanosecondArray::from(vec![Some(1), None, Some(-5)]);
        assert_eq!(3, arr.len());
        assert_eq!(0, arr.offset());
        assert_eq!(1, arr.null_count());
        assert_eq!(1, arr.value(0));
        assert_eq!(1, arr.values()[0]);
        assert!(arr.is_null(1));
        assert_eq!(-5, arr.value(2));
        assert_eq!(-5, arr.values()[2]);
    }

    #[test]
    fn test_timestamp_array_from_vec() {
        let arr = TimestampSecondArray::from_vec(vec![1, -5], None);
        assert_eq!(2, arr.len());
        assert_eq!(0, arr.offset());
        assert_eq!(0, arr.null_count());
        assert_eq!(1, arr.value(0));
        assert_eq!(-5, arr.value(1));
        assert_eq!(&[1, -5], arr.values());

        let arr = TimestampMillisecondArray::from_vec(vec![1, -5], None);
        assert_eq!(2, arr.len());
        assert_eq!(0, arr.offset());
        assert_eq!(0, arr.null_count());
        assert_eq!(1, arr.value(0));
        assert_eq!(-5, arr.value(1));
        assert_eq!(&[1, -5], arr.values());

        let arr = TimestampMicrosecondArray::from_vec(vec![1, -5], None);
        assert_eq!(2, arr.len());
        assert_eq!(0, arr.offset());
        assert_eq!(0, arr.null_count());
        assert_eq!(1, arr.value(0));
        assert_eq!(-5, arr.value(1));
        assert_eq!(&[1, -5], arr.values());

        let arr = TimestampNanosecondArray::from_vec(vec![1, -5], None);
        assert_eq!(2, arr.len());
        assert_eq!(0, arr.offset());
        assert_eq!(0, arr.null_count());
        assert_eq!(1, arr.value(0));
        assert_eq!(-5, arr.value(1));
        assert_eq!(&[1, -5], arr.values());
    }

    #[test]
    fn test_primitive_array_slice() {
        let arr = Int32Array::from(vec![
            Some(0),
            None,
            Some(2),
            None,
            Some(4),
            Some(5),
            Some(6),
            None,
            None,
        ]);
        assert_eq!(9, arr.len());
        assert_eq!(0, arr.offset());
        assert_eq!(4, arr.null_count());

        let arr2 = arr.slice(2, 5);
        assert_eq!(5, arr2.len());
        assert_eq!(2, arr2.offset());
        assert_eq!(1, arr2.null_count());

        for i in 0..arr2.len() {
            assert_eq!(i == 1, arr2.is_null(i));
            assert_eq!(i != 1, arr2.is_valid(i));
        }
        let int_arr2 = arr2.as_any().downcast_ref::<Int32Array>().unwrap();
        assert_eq!(2, int_arr2.values()[0]);
        assert_eq!(&[4, 5, 6], &int_arr2.values()[2..5]);

        let arr3 = arr2.slice(2, 3);
        assert_eq!(3, arr3.len());
        assert_eq!(4, arr3.offset());
        assert_eq!(0, arr3.null_count());

        let int_arr3 = arr3.as_any().downcast_ref::<Int32Array>().unwrap();
        assert_eq!(&[4, 5, 6], int_arr3.values());
        assert_eq!(4, int_arr3.value(0));
        assert_eq!(5, int_arr3.value(1));
        assert_eq!(6, int_arr3.value(2));
    }

    #[test]
    fn test_boolean_array_slice() {
        let arr = BooleanArray::from(vec![
            Some(true),
            None,
            Some(false),
            None,
            Some(true),
            Some(false),
            Some(true),
            Some(false),
            None,
            Some(true),
        ]);

        assert_eq!(10, arr.len());
        assert_eq!(0, arr.offset());
        assert_eq!(3, arr.null_count());

        let arr2 = arr.slice(3, 5);
        assert_eq!(5, arr2.len());
        assert_eq!(3, arr2.offset());
        assert_eq!(1, arr2.null_count());

        let bool_arr = arr2.as_any().downcast_ref::<BooleanArray>().unwrap();

        assert!(!bool_arr.is_valid(0));

        assert!(bool_arr.is_valid(1));
        assert!(bool_arr.value(1));

        assert!(bool_arr.is_valid(2));
        assert!(!bool_arr.value(2));

        assert!(bool_arr.is_valid(3));
        assert!(bool_arr.value(3));

        assert!(bool_arr.is_valid(4));
        assert!(!bool_arr.value(4));
    }

    #[test]
    fn test_int32_fmt_debug() {
        let arr = Int32Array::from(vec![0, 1, 2, 3, 4]);
        assert_eq!(
            "PrimitiveArray<Int32>\n[\n  0,\n  1,\n  2,\n  3,\n  4,\n]",
            format!("{:?}", arr)
        );
    }

    #[test]
    fn test_fmt_debug_up_to_20_elements() {
        (1..=20).for_each(|i| {
            let values = (0..i).collect::<Vec<i16>>();
            let array_expected = format!(
                "PrimitiveArray<Int16>\n[\n{}\n]",
                values
                    .iter()
                    .map(|v| { format!("  {},", v) })
                    .collect::<Vec<String>>()
                    .join("\n")
            );
            let array = Int16Array::from(values);

            assert_eq!(array_expected, format!("{:?}", array));
        })
    }

    #[test]
    fn test_int32_with_null_fmt_debug() {
        let mut builder = Int32Array::builder(3);
        builder.append_slice(&[0, 1]).unwrap();
        builder.append_null().unwrap();
        builder.append_slice(&[3, 4]).unwrap();
        let arr = builder.finish();
        assert_eq!(
            "PrimitiveArray<Int32>\n[\n  0,\n  1,\n  null,\n  3,\n  4,\n]",
            format!("{:?}", arr)
        );
    }

    #[test]
    fn test_timestamp_fmt_debug() {
        let arr: PrimitiveArray<TimestampMillisecondType> =
            TimestampMillisecondArray::from_vec(
                vec![1546214400000, 1546214400000, -1546214400000],
                None,
            );
        assert_eq!(
            "PrimitiveArray<Timestamp(Millisecond, None)>\n[\n  2018-12-31T00:00:00,\n  2018-12-31T00:00:00,\n  1921-01-02T00:00:00,\n]",
            format!("{:?}", arr)
        );
    }

    #[test]
    fn test_date32_fmt_debug() {
        let arr: PrimitiveArray<Date32Type> = vec![12356, 13548, -365].into();
        assert_eq!(
            "PrimitiveArray<Date32>\n[\n  2003-10-31,\n  2007-02-04,\n  1969-01-01,\n]",
            format!("{:?}", arr)
        );
    }

    #[test]
    fn test_time32second_fmt_debug() {
        let arr: PrimitiveArray<Time32SecondType> = vec![7201, 60054].into();
        assert_eq!(
            "PrimitiveArray<Time32(Second)>\n[\n  02:00:01,\n  16:40:54,\n]",
            format!("{:?}", arr)
        );
    }

    #[test]
    #[should_panic(expected = "invalid time")]
    fn test_time32second_invalid_neg() {
        // The panic should come from chrono, not from arrow
        let arr: PrimitiveArray<Time32SecondType> = vec![-7201, -60054].into();
        println!("{:?}", arr);
    }

    #[test]
    fn test_primitive_array_builder() {
        // Test building a primitive array with ArrayData builder and offset
        let buf = Buffer::from_slice_ref(&[0i32, 1, 2, 3, 4, 5, 6]);
        let buf2 = buf.clone();
        let data = ArrayData::builder(DataType::Int32)
            .len(5)
            .offset(2)
            .add_buffer(buf)
            .build()
            .unwrap();
        let arr = Int32Array::from(data);
        assert_eq!(buf2, arr.data.buffers()[0]);
        assert_eq!(5, arr.len());
        assert_eq!(0, arr.null_count());
        for i in 0..3 {
            assert_eq!((i + 2) as i32, arr.value(i));
        }
    }

    #[test]
    fn test_primitive_from_iter_values() {
        // Test building a primitive array with from_iter_values
        let arr: PrimitiveArray<Int32Type> = PrimitiveArray::from_iter_values(0..10);
        assert_eq!(10, arr.len());
        assert_eq!(0, arr.null_count());
        for i in 0..10i32 {
            assert_eq!(i, arr.value(i as usize));
        }
    }

    #[test]
    fn test_primitive_array_from_unbound_iter() {
        // iterator that doesn't declare (upper) size bound
        let value_iter = (0..)
            .scan(0usize, |pos, i| {
                if *pos < 10 {
                    *pos += 1;
                    Some(Some(i))
                } else {
                    // actually returns up to 10 values
                    None
                }
            })
            // limited using take()
            .take(100);

        let (_, upper_size_bound) = value_iter.size_hint();
        // the upper bound, defined by take above, is 100
        assert_eq!(upper_size_bound, Some(100));
        let primitive_array: PrimitiveArray<Int32Type> = value_iter.collect();
        // but the actual number of items in the array should be 10
        assert_eq!(primitive_array.len(), 10);
    }

    #[test]
    #[should_panic(expected = "PrimitiveArray data should contain a single buffer only \
                               (values buffer)")]
    // Different error messages, so skip for now
    // https://github.com/apache/arrow-rs/issues/1545
    #[cfg(not(feature = "force_validate"))]
    fn test_primitive_array_invalid_buffer_len() {
        let buffer = Buffer::from_slice_ref(&[0i32, 1, 2, 3, 4]);
        let data = unsafe {
            ArrayData::builder(DataType::Int32)
                .add_buffer(buffer.clone())
                .add_buffer(buffer)
                .len(5)
                .build_unchecked()
        };

        drop(Int32Array::from(data));
    }

    #[test]
    fn test_access_array_concurrently() {
        let a = Int32Array::from(vec![5, 6, 7, 8, 9]);
        let ret = thread::spawn(move || a.value(3)).join();

        assert!(ret.is_ok());
        assert_eq!(8, ret.ok().unwrap());
    }

    #[test]
    fn test_primitive_array_creation() {
        let array1: Int8Array = [10_i8, 11, 12, 13, 14].into_iter().collect();
        let array2: Int8Array = [10_i8, 11, 12, 13, 14].into_iter().map(Some).collect();

        let result = eq_dyn(&array1, &array2);
        assert_eq!(
            result.unwrap(),
            BooleanArray::from(vec![true, true, true, true, true])
        );
    }
}