1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
// Copyright 2018-2020 argmin developers
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.

//! * [Simulated Annealing](struct.SimulatedAnnealing.html)
//!
//! # References
//!
//! [0] [Wikipedia](https://en.wikipedia.org/wiki/Simulated_annealing)
//!
//! [1] S Kirkpatrick, CD Gelatt Jr, MP Vecchi. (1983). "Optimization by Simulated Annealing".
//! Science 13 May 1983, Vol. 220, Issue 4598, pp. 671-680
//! DOI: 10.1126/science.220.4598.671

use crate::prelude::*;
use rand::prelude::*;
use rand_xorshift::XorShiftRng;
use serde::{Deserialize, Serialize};

/// Temperature functions for Simulated Annealing.
///
/// Given the initial temperature `t_init` and the iteration number `i`, the current temperature
/// `t_i` is given as follows:
///
/// * `SATempFunc::TemperatureFast`: `t_i = t_init / i`
/// * `SATempFunc::Boltzmann`: `t_i = t_init / ln(i)`
/// * `SATempFunc::Exponential`: `t_i = t_init * 0.95^i`
#[derive(Clone, Copy, Serialize, Deserialize, Debug)]
pub enum SATempFunc<F> {
    /// `t_i = t_init / i`
    TemperatureFast,
    /// `t_i = t_init / ln(i)`
    Boltzmann,
    /// `t_i = t_init * x^i`
    Exponential(F),
    // /// User-provided temperature function. The first parameter must be the current temperature and
    // /// the second parameter must be the iteration number.
    // Custom(Box<Fn(f64, u64) -> f64>),
}

impl<F> std::default::Default for SATempFunc<F> {
    fn default() -> Self {
        SATempFunc::Boltzmann
    }
}

/// Simulated Annealing
///
/// [Example](https://github.com/argmin-rs/argmin/blob/master/examples/simulatedannealing.rs)
///
/// # References
///
/// [0] [Wikipedia](https://en.wikipedia.org/wiki/Simulated_annealing)
///
/// [1] S Kirkpatrick, CD Gelatt Jr, MP Vecchi. (1983). "Optimization by Simulated Annealing".
/// Science 13 May 1983, Vol. 220, Issue 4598, pp. 671-680
/// DOI: 10.1126/science.220.4598.671  
#[derive(Clone, Serialize, Deserialize)]
pub struct SimulatedAnnealing<F> {
    /// Initial temperature
    init_temp: F,
    /// which temperature function?
    temp_func: SATempFunc<F>,
    /// Number of iterations used for the caluclation of temperature. This is needed for
    /// reannealing!
    temp_iter: u64,
    /// Iterations since the last accepted solution
    stall_iter_accepted: u64,
    /// Stop if stall_iter_accepted exceedes this number
    stall_iter_accepted_limit: u64,
    /// Iterations since the last best solution was found
    stall_iter_best: u64,
    /// Stop if stall_iter_best exceedes this number
    stall_iter_best_limit: u64,
    /// Reanneal after this number of iterations is reached
    reanneal_fixed: u64,
    /// Similar to `iter`, but will be reset to 0 when reannealing is performed
    reanneal_iter_fixed: u64,
    /// Reanneal after no accepted solution has been found for `reanneal_accepted` iterations
    reanneal_accepted: u64,
    /// Similar to `stall_iter_accepted`, but will be reset to 0 when reannealing  is performed
    reanneal_iter_accepted: u64,
    /// Reanneal after no new best solution has been found for `reanneal_best` iterations
    reanneal_best: u64,
    /// Similar to `stall_iter_best`, but will be reset to 0 when reannealing is performed
    reanneal_iter_best: u64,
    /// current temperature
    cur_temp: F,
    /// random number generator
    rng: XorShiftRng,
}

impl<F> SimulatedAnnealing<F>
where
    F: ArgminFloat,
{
    /// Constructor
    ///
    /// Parameter:
    ///
    /// * `init_temp`: initial temperature
    pub fn new(init_temp: F) -> Result<Self, Error> {
        if init_temp <= F::from_f64(0.0).unwrap() {
            Err(ArgminError::InvalidParameter {
                text: "Initial temperature must be > 0.".to_string(),
            }
            .into())
        } else {
            Ok(SimulatedAnnealing {
                init_temp,
                temp_func: SATempFunc::TemperatureFast,
                temp_iter: 0,
                stall_iter_accepted: 0,
                stall_iter_accepted_limit: std::u64::MAX,
                stall_iter_best: 0,
                stall_iter_best_limit: std::u64::MAX,
                reanneal_fixed: std::u64::MAX,
                reanneal_iter_fixed: 0,
                reanneal_accepted: std::u64::MAX,
                reanneal_iter_accepted: 0,
                reanneal_best: std::u64::MAX,
                reanneal_iter_best: 0,
                cur_temp: init_temp,
                rng: XorShiftRng::from_entropy(),
            })
        }
    }

    /// Set temperature function to one of the options in `SATempFunc`.
    pub fn temp_func(mut self, temperature_func: SATempFunc<F>) -> Self {
        self.temp_func = temperature_func;
        self
    }

    /// The optimization stops after there has been no accepted solution after `iter` iterations
    pub fn stall_accepted(mut self, iter: u64) -> Self {
        self.stall_iter_accepted_limit = iter;
        self
    }

    /// The optimization stops after there has been no new best solution after `iter` iterations
    pub fn stall_best(mut self, iter: u64) -> Self {
        self.stall_iter_best_limit = iter;
        self
    }

    /// Start reannealing after `iter` iterations
    pub fn reannealing_fixed(mut self, iter: u64) -> Self {
        self.reanneal_fixed = iter;
        self
    }

    /// Start reannealing after no accepted solution has been found for `iter` iterations
    pub fn reannealing_accepted(mut self, iter: u64) -> Self {
        self.reanneal_accepted = iter;
        self
    }

    /// Start reannealing after no new best solution has been found for `iter` iterations
    pub fn reannealing_best(mut self, iter: u64) -> Self {
        self.reanneal_best = iter;
        self
    }

    /// Update the temperature based on the current iteration number.
    ///
    /// Updates are performed based on specific update functions. See `SATempFunc` for details.
    fn update_temperature(&mut self) {
        self.cur_temp = match self.temp_func {
            SATempFunc::TemperatureFast => {
                self.init_temp / F::from_u64(self.temp_iter + 1).unwrap()
            }
            SATempFunc::Boltzmann => self.init_temp / F::from_u64(self.temp_iter + 1).unwrap().ln(),
            SATempFunc::Exponential(x) => {
                self.init_temp * x.powf(F::from_u64(self.temp_iter + 1).unwrap())
            }
        };
    }

    /// Perform reannealing
    fn reanneal(&mut self) -> (bool, bool, bool) {
        let out = (
            self.reanneal_iter_fixed >= self.reanneal_fixed,
            self.reanneal_iter_accepted >= self.reanneal_accepted,
            self.reanneal_iter_best >= self.reanneal_best,
        );
        if out.0 || out.1 || out.2 {
            self.reanneal_iter_fixed = 0;
            self.reanneal_iter_accepted = 0;
            self.reanneal_iter_best = 0;
            self.cur_temp = self.init_temp;
            self.temp_iter = 0;
        }
        out
    }

    /// Update the stall iter variables
    fn update_stall_and_reanneal_iter(&mut self, accepted: bool, new_best: bool) {
        self.stall_iter_accepted = if accepted {
            0
        } else {
            self.stall_iter_accepted + 1
        };

        self.reanneal_iter_accepted = if accepted {
            0
        } else {
            self.reanneal_iter_accepted + 1
        };

        self.stall_iter_best = if new_best {
            0
        } else {
            self.stall_iter_best + 1
        };

        self.reanneal_iter_best = if new_best {
            0
        } else {
            self.reanneal_iter_best + 1
        };
    }
}

impl<O, F> Solver<O> for SimulatedAnnealing<F>
where
    O: ArgminOp<Output = F, Float = F>,
    F: ArgminFloat,
{
    const NAME: &'static str = "Simulated Annealing";
    fn init(
        &mut self,
        _op: &mut OpWrapper<O>,
        _state: &IterState<O>,
    ) -> Result<Option<ArgminIterData<O>>, Error> {
        Ok(Some(ArgminIterData::new().kv(make_kv!(
            "initial_temperature" => self.init_temp;
            "stall_iter_accepted_limit" => self.stall_iter_accepted_limit;
            "stall_iter_best_limit" => self.stall_iter_best_limit;
            "reanneal_fixed" => self.reanneal_fixed;
            "reanneal_accepted" => self.reanneal_accepted;
            "reanneal_best" => self.reanneal_best;
        ))))
    }

    /// Perform one iteration of SA algorithm
    fn next_iter(
        &mut self,
        op: &mut OpWrapper<O>,
        state: &IterState<O>,
    ) -> Result<ArgminIterData<O>, Error> {
        // Careful: The order in here is *very* important, even if it may not seem so. Everything
        // is linked to the iteration number, and getting things mixed up will lead to strange
        // behaviour.

        let prev_param = state.get_param();
        let prev_cost = state.get_cost();

        // Make a move
        let new_param = op.modify(&prev_param, self.cur_temp)?;
        // let new_param = op.modify(&prev_param, self.cur_temp)?;

        // Evaluate cost function with new parameter vector
        let new_cost = op.apply(&new_param)?;

        // Acceptance function
        //
        // Decide whether new parameter vector should be accepted.
        // If no, move on with old parameter vector.
        //
        // Any solution which satisfies `next_cost < prev_cost` will be accepted. Solutions worse
        // than the previous one are accepted with a probability given as:
        //
        // `1 / (1 + exp((next_cost - prev_cost) / current_temperature))`,
        //
        // which will always be between 0 and 0.5.
        let prob: f64 = self.rng.gen();
        let prob = F::from_f64(prob).unwrap();
        let accepted = (new_cost < state.get_prev_cost())
            || (F::from_f64(1.0).unwrap()
                / (F::from_f64(1.0).unwrap()
                    + ((new_cost - state.get_prev_cost()) / self.cur_temp).exp())
                > prob);

        // Update stall iter variables
        self.update_stall_and_reanneal_iter(accepted, new_cost <= state.get_best_cost());

        let (r_fixed, r_accepted, r_best) = self.reanneal();

        // Update temperature for next iteration.
        self.temp_iter += 1;
        // Todo: this variable may not be necessary (temp_iter does the same?)
        self.reanneal_iter_fixed += 1;

        self.update_temperature();

        Ok(if accepted {
            ArgminIterData::new().param(new_param).cost(new_cost)
        } else {
            ArgminIterData::new().param(prev_param).cost(prev_cost)
        }
        .kv(make_kv!(
            "t" => self.cur_temp;
            "new_be" => new_cost <= state.get_best_cost();
            "acc" => accepted;
            "st_i_be" => self.stall_iter_best;
            "st_i_ac" => self.stall_iter_accepted;
            "ra_i_fi" => self.reanneal_iter_fixed;
            "ra_i_be" => self.reanneal_iter_best;
            "ra_i_ac" => self.reanneal_iter_accepted;
            "ra_fi" => r_fixed;
            "ra_be" => r_best;
            "ra_ac" => r_accepted;
        )))
    }

    fn terminate(&mut self, _state: &IterState<O>) -> TerminationReason {
        if self.stall_iter_accepted > self.stall_iter_accepted_limit {
            return TerminationReason::AcceptedStallIterExceeded;
        }
        if self.stall_iter_best > self.stall_iter_best_limit {
            return TerminationReason::BestStallIterExceeded;
        }
        TerminationReason::NotTerminated
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::test_trait_impl;

    test_trait_impl!(sa, SimulatedAnnealing<f64>);
}