1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
// Copyright 2018-2020 argmin developers
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.

//! # References:
//!
//! [0] Jorge Nocedal and Stephen J. Wright (2006). Numerical Optimization.
//! Springer. ISBN 0-387-30303-0.

use crate::prelude::*;
use serde::de::DeserializeOwned;
use serde::{Deserialize, Serialize};

/// The Steihaug method is a conjugate gradients based approach for finding an approximate solution
/// to the second order approximation of the cost function within the trust region.
///
/// # References:
///
/// [0] Jorge Nocedal and Stephen J. Wright (2006). Numerical Optimization.
/// Springer. ISBN 0-387-30303-0.
#[derive(Clone, Serialize, Deserialize, Debug, Copy, PartialEq, PartialOrd, Default)]
pub struct Steihaug<P, F> {
    /// Radius
    radius: F,
    /// epsilon
    epsilon: F,
    /// p
    p: P,
    /// residual
    r: P,
    /// r^Tr
    rtr: F,
    /// initial residual
    r_0_norm: F,
    /// direction
    d: P,
    /// max iters
    max_iters: u64,
}

impl<P, F> Steihaug<P, F>
where
    P: Default + Clone + ArgminMul<F, P> + ArgminDot<P, F> + ArgminAdd<P, P>,
    F: ArgminFloat,
{
    /// Constructor
    pub fn new() -> Self {
        Steihaug {
            radius: F::nan(),
            epsilon: F::from_f64(10e-10).unwrap(),
            p: P::default(),
            r: P::default(),
            rtr: F::nan(),
            r_0_norm: F::nan(),
            d: P::default(),
            max_iters: std::u64::MAX,
        }
    }

    /// Set epsilon
    pub fn epsilon(mut self, epsilon: F) -> Result<Self, Error> {
        if epsilon <= F::from_f64(0.0).unwrap() {
            return Err(ArgminError::InvalidParameter {
                text: "Steihaug: epsilon must be > 0.0.".to_string(),
            }
            .into());
        }
        self.epsilon = epsilon;
        Ok(self)
    }

    /// set maximum number of iterations
    pub fn max_iters(mut self, iters: u64) -> Self {
        self.max_iters = iters;
        self
    }

    /// evaluate m(p) (without considering f_init because it is not available)
    fn eval_m<H>(&self, p: &P, g: &P, h: &H) -> F
    where
        P: ArgminWeightedDot<P, F, H>,
    {
        // self.cur_grad().dot(&p) + 0.5 * p.weighted_dot(&self.cur_hessian(), &p)
        g.dot(&p) + F::from_f64(0.5).unwrap() * p.weighted_dot(&h, &p)
    }

    /// calculate all possible step lengths
    #[allow(clippy::many_single_char_names)]
    fn tau<G, H>(&self, filter_func: G, eval: bool, g: &P, h: &H) -> F
    where
        G: Fn(F) -> bool,
        H: ArgminDot<P, P>,
    {
        let a = self.p.dot(&self.p);
        let b = self.d.dot(&self.d);
        let c = self.p.dot(&self.d);
        let delta = self.radius.powi(2);
        let t1 = (-a * b + b * delta + c.powi(2)).sqrt();
        let tau1 = -(t1 + c) / b;
        let tau2 = (t1 - c) / b;
        let mut t = vec![tau1, tau2];
        // Maybe calculating tau3 should only be done if b is close to zero?
        if tau1.is_nan() || tau2.is_nan() || tau1.is_infinite() || tau2.is_infinite() {
            let tau3 = (delta - a) / (F::from_f64(2.0).unwrap() * c);
            t.push(tau3);
        }
        let v = if eval {
            // remove NAN taus and calculate m (without f_init) for all taus, then sort them based
            // on their result and return the tau which corresponds to the lowest m
            let mut v = t
                .iter()
                .cloned()
                .enumerate()
                .filter(|(_, tau)| (!tau.is_nan() || !tau.is_infinite()) && filter_func(*tau))
                .map(|(i, tau)| {
                    let p = self.p.add(&self.d.mul(&tau));
                    (i, self.eval_m(&p, g, h))
                })
                .filter(|(_, m)| !m.is_nan() || !m.is_infinite())
                .collect::<Vec<(usize, F)>>();
            v.sort_by(|a, b| a.1.partial_cmp(&b.1).unwrap());
            v
        } else {
            let mut v = t
                .iter()
                .cloned()
                .enumerate()
                .filter(|(_, tau)| (!tau.is_nan() || !tau.is_infinite()) && filter_func(*tau))
                .collect::<Vec<(usize, F)>>();
            v.sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap());
            v
        };

        t[v[0].0]
    }
}

impl<P, O, F> Solver<O> for Steihaug<P, F>
where
    O: ArgminOp<Param = P, Output = F, Float = F>,
    P: Clone
        + Serialize
        + DeserializeOwned
        + Default
        + ArgminMul<F, P>
        + ArgminWeightedDot<P, F, O::Hessian>
        + ArgminNorm<F>
        + ArgminDot<P, F>
        + ArgminAdd<P, P>
        + ArgminSub<P, P>
        + ArgminZeroLike
        + ArgminMul<F, P>,
    O::Hessian: ArgminDot<P, P>,
    F: ArgminFloat,
{
    const NAME: &'static str = "Steihaug";

    fn init(
        &mut self,
        _op: &mut OpWrapper<O>,
        state: &IterState<O>,
    ) -> Result<Option<ArgminIterData<O>>, Error> {
        self.r = state.get_grad().unwrap();

        self.r_0_norm = self.r.norm();
        self.rtr = self.r.dot(&self.r);
        self.d = self.r.mul(&F::from_f64(-1.0).unwrap());
        self.p = self.r.zero_like();

        Ok(if self.r_0_norm < self.epsilon {
            Some(
                ArgminIterData::new()
                    .param(self.p.clone())
                    .termination_reason(TerminationReason::TargetPrecisionReached),
            )
        } else {
            None
        })
    }

    fn next_iter(
        &mut self,
        _op: &mut OpWrapper<O>,
        state: &IterState<O>,
    ) -> Result<ArgminIterData<O>, Error> {
        let grad = state.get_grad().unwrap();
        let h = state.get_hessian().unwrap();
        let dhd = self.d.weighted_dot(&h, &self.d);

        // Current search direction d is a direction of zero curvature or negative curvature
        if dhd <= F::from_f64(0.0).unwrap() {
            let tau = self.tau(|_| true, true, &grad, &h);
            return Ok(ArgminIterData::new()
                .param(self.p.add(&self.d.mul(&tau)))
                .termination_reason(TerminationReason::TargetPrecisionReached));
        }

        let alpha = self.rtr / dhd;
        let p_n = self.p.add(&self.d.mul(&alpha));

        // new p violates trust region bound
        if p_n.norm() >= self.radius {
            let tau = self.tau(|x| x >= F::from_f64(0.0).unwrap(), false, &grad, &h);
            return Ok(ArgminIterData::new()
                .param(self.p.add(&self.d.mul(&tau)))
                .termination_reason(TerminationReason::TargetPrecisionReached));
        }

        let r_n = self.r.add(&h.dot(&self.d).mul(&alpha));

        if r_n.norm() < self.epsilon * self.r_0_norm {
            return Ok(ArgminIterData::new()
                .param(p_n)
                .termination_reason(TerminationReason::TargetPrecisionReached));
        }

        let rjtrj = r_n.dot(&r_n);
        let beta = rjtrj / self.rtr;
        self.d = r_n.mul(&F::from_f64(-1.0).unwrap()).add(&self.d.mul(&beta));
        self.r = r_n;
        self.p = p_n;
        self.rtr = rjtrj;

        Ok(ArgminIterData::new()
            .param(self.p.clone())
            .cost(self.rtr)
            .grad(grad)
            .hessian(h))
    }

    fn terminate(&mut self, state: &IterState<O>) -> TerminationReason {
        if state.get_iter() >= self.max_iters {
            TerminationReason::MaxItersReached
        } else {
            TerminationReason::NotTerminated
        }
    }
}

impl<P: Clone + Serialize, F: ArgminFloat> ArgminTrustRegion<F> for Steihaug<P, F> {
    fn set_radius(&mut self, radius: F) {
        self.radius = radius;
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::test_trait_impl;

    test_trait_impl!(steihaug, Steihaug<MinimalNoOperator, f64>);
}