1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
// Copyright 2018 Stefan Kroboth
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.

//! A pure Rust optimization framework
//!
//! This crate offers a (work in progress) numerical optimization toolbox/framework written entirely
//! in Rust. It is at the moment potentially very buggy. Please use with care and report any bugs
//! you encounter. This crate is looking for contributors!
//!
//! [Documentation of most recent release](https://docs.rs/argmin/latest/argmin/)
//!
//! [Documentation of master](https://argmin-rs.github.io/argmin/argmin/)
//!
//! # Design goals
//!
//! This crate's intention is to be useful to users as well as developers of optimization
//! algorithms, meaning that it should be both easy to apply and easy to implement algorithms. In
//! particular, as a developer of optimization algorithms you should not need to worry about
//! usability features (such as logging, dealing with different types, setters and getters for
//! certain common parameters, counting cost function and gradient evaluations, termination, and so
//! on). Instead you can focus on implementing your algorithm.
//!
//! - Easy framework for the implementation of optimization algorithms: Implement a single iteration
//!   of your method and let the framework do the rest. This leads to similar interfaces for
//!   different solvers, making it easy for users.
//! - Pure Rust implementations of a wide range of optimization methods: This avoids the need to
//!   compile and interface C/C++/Fortran code.
//! - Type-agnostic: Many problems require data structures that go beyond simple vectors to
//!   represent the parameters. In argmin, everything is generic: All that needs to be done is
//!   implementing certain traits on your data type. For common types, these traits are already
//!   implemented.
//! - Convenient: Easy and consistent logging of anything that may be important. Log to the
//!   terminal, to a file or implement your own observers. Future plans include sending metrics to
//!   databases and connecting to big data piplines.
//! - Algorithm evaluation: Methods to assess the performance of an algorithm for different
//!   parameter settings, problem classes, ...
//!
//! Since this crate is in a very early stage, so far most points are only partially implemented or
//! remain future plans.
//!
//! # Algorithms
//!
//! - [Line searches](solver/linesearch/index.html)
//!   - [Backtracking line search](solver/linesearch/backtracking/struct.BacktrackingLineSearch.html)
//!   - [More-Thuente line search](solver/linesearch/morethuente/struct.MoreThuenteLineSearch.html)
//!   - [Hager-Zhang line search](solver/linesearch/hagerzhang/struct.HagerZhangLineSearch.html)
//! - [Trust region method](solver/trustregion/trustregion_method/struct.TrustRegion.html)
//!   - [Cauchy point method](solver/trustregion/cauchypoint/struct.CauchyPoint.html)
//!   - [Dogleg method](solver/trustregion/dogleg/struct.Dogleg.html)
//!   - [Steihaug method](solver/trustregion/steihaug/struct.Steihaug.html)
//! - [Steepest descent](solver/gradientdescent/steepestdescent/struct.SteepestDescent.html)
//! - [Conjugate gradient method](solver/conjugategradient/cg/struct.ConjugateGradient.html)
//! - [Nonlinear conjugate gradient method](solver/conjugategradient/nonlinear_cg/struct.NonlinearConjugateGradient.html)
//! - [Newton methods](solver/newton/index.html)
//!   - [Newton's method](solver/newton/newton_method/struct.Newton.html)
//!   - [Newton-CG](solver/newton/newton_cg/struct.NewtonCG.html)
//! - [Quasi-Newton methods](solver/quasinewton/index.html)
//!   - [BFGS](solver/quasinewton/bfgs/struct.BFGS.html)
//!   - [L-BFGS](solver/quasinewton/lbfgs/struct.LBFGS.html)
//!   - [DFP](solver/quasinewton/dfp/struct.DFP.html)
//!   - [SR1](solver/quasinewton/sr1/struct.SR1.html)
//!   - [SR1-TrustRegion](solver/quasinewton/sr1_trustregion/struct.SR1TrustRegion.html)
//! - [Landweber iteration](solver/landweber/struct.Landweber.html)
//! - [Simulated Annealing](solver/simulatedannealing/struct.SimulatedAnnealing.html)
//!
//! # Usage
//!
//! Add this to your `Cargo.toml`:
//!
//! ```toml
//! [dependencies]
//! argmin = "0.2.1"
//! ```
//!
//! ## Optional features (recommended)
//!
//! There are additional features which can be activated in `Cargo.toml`:
//!
//! ```toml
//! [dependencies]
//! argmin = { version = "0.2.1", features = ["ctrlc", "ndarrayl"] }
//! ```
//!
//! These may become default features in the future. Without these features compilation to
//! `wasm32-unknown-unkown` seems to be possible.
//!
//! - `ctrlc`: Uses the `ctrlc` crate to properly stop the optimization (and return the current best
//!    result) after pressing Ctrl+C.
//! - `ndarrayl`: Support for `ndarray`, `ndarray-linalg` and `ndarray-rand`.
//!
//! # Defining a problem
//!
//! A problem can be defined by implementing the `ArgminOp` trait which comes with the
//! associated types `Param`, `Output` and `Hessian`. `Param` is the type of your
//! parameter vector (i.e. the input to your cost function), `Output` is the type returned
//! by the cost function and `Hessian` is the type of the Hessian.
//! The trait provides the following methods:
//!
//! - `apply(&self, p: &Self::Param) -> Result<Self::Output, Error>`: Applys the cost
//!   function to parameters `p` of type `Self::Param` and returns the cost function value.
//! - `gradient(&self, p: &Self::Param) -> Result<Self::Param, Error>`: Computes the
//!   gradient at `p`.
//! - `hessian(&self, p: &Self::Param) -> Result<Self::Hessian, Error>`: Computes the Hessian
//!   at `p`.
//!
//! The following code snippet shows an example of how to use the Rosenbrock test functions from
//! `argmin-testfunctions` in argmin:
//!
//! ```rust
//! # extern crate argmin;
//! # extern crate argmin_testfunctions;
//! # extern crate ndarray;
//! use argmin::testfunctions::{rosenbrock_2d, rosenbrock_2d_derivative, rosenbrock_2d_hessian};
//! use argmin::prelude::*;
//! use serde::{Serialize, Deserialize};
//!
//! /// First, create a struct for your problem
//! #[derive(Clone, Default, Serialize, Deserialize)]
//! struct Rosenbrock {
//!     a: f64,
//!     b: f64,
//! }
//!
//! /// Implement `ArgminOp` for `Rosenbrock`
//! impl ArgminOp for Rosenbrock {
//!     /// Type of the parameter vector
//!     type Param = Vec<f64>;
//!     /// Type of the return value computed by the cost function
//!     type Output = f64;
//!     /// Type of the Hessian. Can be `()` if not needed.
//!     type Hessian = Vec<Vec<f64>>;
//!
//!     /// Apply the cost function to a parameter `p`
//!     fn apply(&self, p: &Self::Param) -> Result<Self::Output, Error> {
//!         Ok(rosenbrock_2d(p, self.a, self.b))
//!     }
//!
//!     /// Compute the gradient at parameter `p`.
//!     fn gradient(&self, p: &Self::Param) -> Result<Self::Param, Error> {
//!         Ok(rosenbrock_2d_derivative(p, self.a, self.b))
//!     }
//!
//!     /// Compute the Hessian at parameter `p`.
//!     fn hessian(&self, p: &Self::Param) -> Result<Self::Hessian, Error> {
//!         let t = rosenbrock_2d_hessian(p, self.a, self.b);
//!         Ok(vec![vec![t[0], t[1]], vec![t[2], t[3]]])
//!     }
//! }
//! ```
//!
//! It is optional to implement any of these methods, as there are default implementations which
//! will return an `Err` when called. What needs to be implemented is defined by the requirements
//! of the solver that is to be used.
//!
//! # Running a solver
//!
//! The following example shows how to use the previously shown definition of a problem in a
//! Steepest Descent (Gradient Descent) solver.
//!
//! ```rust
//! # #![allow(unused_imports)]
//! # extern crate argmin;
//! use argmin::prelude::*;
//! use argmin::solver::gradientdescent::SteepestDescent;
//! use argmin::solver::linesearch::MoreThuenteLineSearch;
//! # use argmin::testfunctions::{rosenbrock_2d, rosenbrock_2d_derivative};
//! # use serde::{Deserialize, Serialize};
//! #
//! # #[derive(Clone, Default, Serialize, Deserialize)]
//! # struct Rosenbrock {
//! #     a: f64,
//! #     b: f64,
//! # }
//! #
//! # impl ArgminOp for Rosenbrock {
//! #     type Param = Vec<f64>;
//! #     type Output = f64;
//! #     type Hessian = ();
//! #
//! #     fn apply(&self, p: &Self::Param) -> Result<Self::Output, Error> {
//! #         Ok(rosenbrock_2d(p, self.a, self.b))
//! #     }
//! #
//! #     fn gradient(&self, p: &Self::Param) -> Result<Self::Param, Error> {
//! #         Ok(rosenbrock_2d_derivative(p, self.a, self.b))
//! #     }
//! # }
//! #
//! # fn run() -> Result<(), Error> {
//!
//! // Define cost function (must implement `ArgminOperator`)
//! let cost = Rosenbrock { a: 1.0, b: 100.0 };
//!  
//! // Define initial parameter vector
//! let init_param: Vec<f64> = vec![-1.2, 1.0];
//!  
//! // Set up line search
//! let linesearch = MoreThuenteLineSearch::new();
//!  
//! // Set up solver
//! let solver = SteepestDescent::new(linesearch);
//!  
//! // Run solver
//! let res = Executor::new(cost, solver, init_param)
//!     // Add an observer which will log all iterations to the terminal
//!     .add_observer(ArgminSlogLogger::term(), ObserverMode::Always)
//!     // Set maximum iterations to 10
//!     .max_iters(10)
//!     // run the solver on the defined problem
//!     .run()?;
//! #
//! #     // Wait a second (lets the logger flush everything first)
//! #     std::thread::sleep(std::time::Duration::from_secs(1));
//!  
//! // print result
//! println!("{}", res);
//! #     Ok(())
//! # }
//! #
//! # fn main() {
//! #     if let Err(ref e) = run() {
//! #         println!("{} {}", e.as_fail(), e.backtrace());
//! #         std::process::exit(1);
//! #     }
//! # }
//! ```
//!
//! # Observing iterations
//!
//! Argmin offers an interface to observe the state of the iteration at initialization as well as
//! after every iteration. This includes the parameter vector, gradient, Hessian, iteration number,
//! cost values and many more as well as solver-specific metrics. This interface can be used to
//! implement loggers, send the information to a storage or to plot metrics.
//! Observers need to implment the `Observe` trait.
//! Argmin ships with a logger based on the `slog` crate. `ArgminSlogLogger::term` logs to the
//! terminal and `ArgminSlogLogger::file` logs to a file in JSON format. Both loggers also come
//! with a `*_noblock` version which does not block the execution of logging, but may drop some
//! messages if the buffer is full.
//! Parameter vectors can be written to disc using `WriteToFile`.
//! For each observer it can be defined how often it will observe the progress of the solver. This
//! is indicated via the enum `ObserverMode` which can be either `Always`, `Never`, `NewBest`
//! (whenever a new best solution is found) or `Every(i)` which means every `i`th iteration.
//!
//! ```rust
//! # #![allow(unused_imports)]
//! # extern crate argmin;
//! # use argmin::prelude::*;
//! # use argmin::solver::gradientdescent::SteepestDescent;
//! # use argmin::solver::linesearch::MoreThuenteLineSearch;
//! # use argmin::testfunctions::{rosenbrock_2d, rosenbrock_2d_derivative};
//! # use serde::{Deserialize, Serialize};
//! #
//! # #[derive(Clone, Default, Serialize, Deserialize)]
//! # struct Rosenbrock {
//! #     a: f64,
//! #     b: f64,
//! # }
//! #
//! # impl ArgminOp for Rosenbrock {
//! #     type Param = Vec<f64>;
//! #     type Output = f64;
//! #     type Hessian = ();
//! #
//! #     fn apply(&self, p: &Self::Param) -> Result<Self::Output, Error> {
//! #         Ok(rosenbrock_2d(p, self.a, self.b))
//! #     }
//! #
//! #     fn gradient(&self, p: &Self::Param) -> Result<Self::Param, Error> {
//! #         Ok(rosenbrock_2d_derivative(p, self.a, self.b))
//! #     }
//! # }
//! #
//! # fn run() -> Result<(), Error> {
//! #
//! # // Define cost function (must implement `ArgminOperator`)
//! # let problem = Rosenbrock { a: 1.0, b: 100.0 };
//! #
//! # // Define initial parameter vector
//! # let init_param: Vec<f64> = vec![-1.2, 1.0];
//! #
//! # // Set up line search
//! # let linesearch = MoreThuenteLineSearch::new();
//! #
//! # // Set up solver
//! # let solver = SteepestDescent::new(linesearch);
//! #
//! let res = Executor::new(problem, solver, init_param)
//!     // Add an observer which will log all iterations to the terminal (without blocking)
//!     .add_observer(ArgminSlogLogger::term_noblock(), ObserverMode::Always)
//!     // Log to file whenever a new best solution is found
//!     .add_observer(ArgminSlogLogger::file("solver.log")?, ObserverMode::NewBest)
//!     // Write parameter vector to `params/param.arg` every 20th iteration
//!     .add_observer(WriteToFile::new("params", "param"), ObserverMode::Every(20))
//! #     .max_iters(2)
//!     // run the solver on the defined problem
//!     .run()?;
//! #     Ok(())
//! # }
//! #
//! # fn main() {
//! #     if let Err(ref e) = run() {
//! #         println!("{} {}", e.as_fail(), e.backtrace());
//! #         std::process::exit(1);
//! #     }
//! # }
//! ```
//!
//! # Checkpoints
//!
//! The probability of crashes increases with runtime, therefore one may want to save checkpoints
//! in order to be able to resume the optimization after a crash.
//! The `CheckpointMode` defines how often checkpoints are saved and is either `Never` (default),
//! `Always` (every iteration) or `Every(u64)` (every Nth iteration). It is set via the setter
//! method `checkpoint_mode` of `Executor`.
//! In addition, the directory where the checkpoints and a prefix for every file can be set via
//! `checkpoint_dir` and `checkpoint_name`, respectively.
//!
//! The following example shows how the `from_checkpoint` method can be used to resume from a
//! checkpoint. In case this fails (for instance because the file does not exist, which could mean
//! that this is the first run and there is nothing to resume from), it will resort to creating a
//! new `Executor`, thus starting from scratch.
//!
//! ```rust
//! # extern crate argmin;
//! # use argmin::prelude::*;
//! # use argmin::solver::landweber::*;
//! # use argmin::testfunctions::{rosenbrock_2d, rosenbrock_2d_derivative};
//! # use argmin_core::Error;
//! # use serde::{Deserialize, Serialize};
//! #
//! # #[derive(Clone, Default, Serialize, Deserialize)]
//! # struct Rosenbrock {}
//! #
//! # impl ArgminOp for Rosenbrock {
//! #     type Param = Vec<f64>;
//! #     type Output = f64;
//! #     type Hessian = ();
//! #
//! #     fn apply(&self, p: &Vec<f64>) -> Result<f64, Error> {
//! #         Ok(rosenbrock_2d(p, 1.0, 100.0))
//! #     }
//! #
//! #     fn gradient(&self, p: &Vec<f64>) -> Result<Vec<f64>, Error> {
//! #         Ok(rosenbrock_2d_derivative(p, 1.0, 100.0))
//! #     }
//! # }
//! #
//! # fn run() -> Result<(), Error> {
//! #     // define inital parameter vector
//! #     let init_param: Vec<f64> = vec![1.2, 1.2];
//! #     let operator = Rosenbrock {};
//! #
//! #     let iters = 35;
//! #     let solver = Landweber::new(0.001);
//! #
//! let res = Executor::from_checkpoint(".checkpoints/optim.arg")
//!     .unwrap_or(Executor::new(operator, solver, init_param))
//!     .max_iters(iters)
//!     .checkpoint_dir(".checkpoints")
//!     .checkpoint_name("optim")
//!     .checkpoint_mode(CheckpointMode::Every(20))
//!     .run()?;
//! #
//! #     // Wait a second (lets the logger flush everything before printing to screen again)
//! #     std::thread::sleep(std::time::Duration::from_secs(1));
//! #     println!("{}", res);
//! #     Ok(())
//! # }
//! #
//! # fn main() {
//! #     if let Err(ref e) = run() {
//! #         println!("{} {}", e.as_fail(), e.backtrace());
//! #     }
//! # }
//! ```
//!
//! # Implementing an optimization algorithm
//!
//! In this section we are going to implement the Landweber solver, which essentially is a special
//! form of gradient descent. In iteration `k`, the new parameter vector `x_{k+1}` is calculated
//! from the previous parameter vector `x_k` and the gradient at `x_k` according to the following
//! update rule:
//!
//! `x_{k+1} = x_k - omega * \nabla f(x_k)`
//!
//! In order to implement this using the argmin framework, one first needs to define a struct which
//! holds data specific to the solver. Then, the `Solver` trait needs to be implemented for the
//! struct. This requires setting the associated constant `NAME` which gives your solver a name.
//! The `next_iter` method defines the computations performed in a single iteration of the solver.
//! Via the parameters `op` and `state` one has access to the operator (cost function, gradient
//! computation, Hessian, ...) and to the current state of the optimization (parameter vectors,
//! cost function values, iteration number, ...), respectively.
//!
//! ```rust
//! use argmin::prelude::*;
//! use serde::{Deserialize, Serialize};
//!
//! // Define a struct which holds any parameters/data which are needed during the execution of the
//! // solver. Note that this does not include parameter vectors, gradients, Hessians, cost
//! // function values and so on, as those will be handled by the `Executor`.
//! #[derive(Serialize, Deserialize)]
//! pub struct Landweber {
//!     /// omega
//!     omega: f64,
//! }
//!
//! impl Landweber {
//!     /// Constructor
//!     pub fn new(omega: f64) -> Self {
//!         Landweber { omega }
//!     }
//! }
//!
//! impl<O> Solver<O> for Landweber
//! where
//!     // `O` always needs to implement `ArgminOp`
//!     O: ArgminOp,
//!     // `O::Param` needs to implement `ArgminScaledSub` because of the update formula
//!     O::Param: ArgminScaledSub<O::Param, f64, O::Param>,
//! {
//!     // This gives the solver a name which will be used for logging
//!     const NAME: &'static str = "Landweber";
//!
//!     // Defines the computations performed in a single iteration.
//!     fn next_iter(
//!         &mut self,
//!         // This gives access to the operator supplied to the `Executor`. `O` implements
//!         // `ArgminOp` and `OpWrapper` takes care of counting the calls to the respective
//!         // functions.
//!         op: &mut OpWrapper<O>,
//!         // Current state of the optimization. This gives access to the parameter vector,
//!         // gradient, Hessian and cost function value of the current, previous and best
//!         // iteration as well as current iteration number, and many more.
//!         state: &IterState<O>,
//!     ) -> Result<ArgminIterData<O>, Error> {
//!         // First we obtain the current parameter vector from the `state` struct (`x_k`).
//!         let xk = state.get_param();
//!         // Then we compute the gradient at `x_k` (`\nabla f(x_k)`)
//!         let grad = op.gradient(&xk)?;
//!         // Now subtract `\nabla f(x_k)` scaled by `omega` from `x_k` to compute `x_{k+1}`
//!         let xkp1 = xk.scaled_sub(&self.omega, &grad);
//!         // Return new paramter vector which will then be used by the `Executor` to update
//!         // `state`.
//!         Ok(ArgminIterData::new().param(xkp1))
//!     }
//! }
//! ```
//!
//! # TODOs
//!
//!   * More optimization methods
//!   * Automatic differentiation
//!   * Parallelization
//!   * Tests
//!   * Evaluation on real problems
//!   * Evaluation framework
//!   * Documentation & Tutorials
//!   * C interface
//!   * Python wrapper
//!   * Solver and problem definition via a config file
//!
//! Please open an [issue](https://github.com/argmin-rs/argmin/issues) if you want to contribute!
//! Any help is appreciated!
//!
//! # License
//!
//! Licensed under either of
//!
//!   * Apache License, Version 2.0,
//!     ([LICENSE-APACHE](https://github.com/argmin-rs/argmin/blob/master/LICENSE-APACHE) or
//!     http://www.apache.org/licenses/LICENSE-2.0)
//!   * MIT License ([LICENSE-MIT](https://github.com/argmin-rs/argmin/blob/master/LICENSE-MIT) or
//!     http://opensource.org/licenses/MIT)
//!
//! at your option.
//!
//!
//! ## Contribution
//!
//! Unless you explicitly state otherwise, any contribution intentionally submitted for inclusion
//! in the work by you, as defined in the Apache-2.0 license, shall be dual licensed as above,
//! without any additional terms or conditions.
// //! argmin = { git = "https://github.com/argmin-rs/argmin.git", branch = "master"}
// //! argmin = { git = "https://github.com/argmin-rs/argmin.git",
// //!            branch = "master",
// //!            features = ["ctrlc", "ndarrayl"] }

#![warn(missing_docs)]
#![allow(unused_attributes)]
// Explicitly disallow EQ comparison of floats. (This clippy lint is denied by default; however,
// this is just to make sure that it will always stay this way.)
#![deny(clippy::float_cmp)]

extern crate argmin_core;
extern crate argmin_testfunctions;
extern crate rand;

/// Definition of all relevant traits and types
pub mod prelude;

/// Solvers
pub mod solver;

/// Macros
#[macro_use]
mod macros;

use argmin_core::*;

/// Testfunctions
pub mod testfunctions {
    //! # Testfunctions
    //!
    //! Reexport of `argmin-testfunctions`.
    pub use argmin_testfunctions::*;
}