1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
// Copyright 2018 Stefan Kroboth
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.

//! # References:
//!
//! [0] Jorge Nocedal and Stephen J. Wright (2006). Numerical Optimization.
//! Springer. ISBN 0-387-30303-0.

use crate::prelude::*;
use serde::{Deserialize, Serialize};

/// BFGS method
///
/// # Example
///
/// ```rust
/// # extern crate argmin;
/// # extern crate ndarray;
/// use argmin::prelude::*;
/// use argmin::solver::quasinewton::BFGS;
/// use argmin::solver::linesearch::MoreThuenteLineSearch;
/// # use argmin::testfunctions::{rosenbrock_2d, rosenbrock_2d_derivative};
/// use ndarray::{array, Array1, Array2};
/// # use serde::{Deserialize, Serialize};
///
/// # #[derive(Clone, Default, Serialize, Deserialize)]
/// # struct MyProblem { }
/// #
/// #  impl ArgminOp for MyProblem {
/// #      type Param = Array1<f64>;
/// #      type Output = f64;
/// #      type Hessian = Array2<f64>;
/// #
/// #      fn apply(&self, p: &Self::Param) -> Result<Self::Output, Error> {
/// #          Ok(rosenbrock_2d(&p.to_vec(), 1.0, 100.0))
/// #      }
/// #
/// #      fn gradient(&self, p: &Self::Param) -> Result<Self::Param, Error> {
/// #          Ok(Array1::from_vec(rosenbrock_2d_derivative(
/// #              &p.to_vec(),
/// #              1.0,
/// #              100.0,
/// #          )))
/// #      }
/// #  }
/// #
/// #  fn run() -> Result<(), Error> {
/// // Define cost function
/// let cost = MyProblem {};
///
/// // Define initial parameter vector
/// // let init_param: Array1<f64> = Array1::from_vec(vec![1.2, 1.2]);
/// let init_param: Array1<f64> = array![-1.2, 1.0];
/// let init_hessian: Array2<f64> = Array2::eye(2);
///
/// // set up a line search
/// let linesearch = MoreThuenteLineSearch::new(cost.clone());
///
/// // Set up solver
/// let mut solver = BFGS::new(cost, init_param, init_hessian, linesearch);
///
/// // Set maximum number of iterations
/// solver.set_max_iters(80);
///
/// // Attach a logger
/// solver.add_logger(ArgminSlogLogger::term());
///
/// // Run solver
/// solver.run()?;
///
/// // Wait a second (lets the logger flush everything before printing again)
/// std::thread::sleep(std::time::Duration::from_secs(1));
///
/// // Print result
/// println!("{:?}", solver.result());
/// # Ok(())
/// # }
/// #
/// # fn main() {
/// #     if let Err(ref e) = run() {
/// #         println!("{} {}", e.as_fail(), e.backtrace());
/// #         std::process::exit(1);
/// #     }
/// # }
/// ```
///
/// # References:
///
/// [0] Jorge Nocedal and Stephen J. Wright (2006). Numerical Optimization.
/// Springer. ISBN 0-387-30303-0.
#[derive(ArgminSolver, Serialize, Deserialize)]
#[stop("self.cur_grad().norm() < std::f64::EPSILON.sqrt()" => TargetPrecisionReached)]
pub struct BFGS<O, L>
where
    O: ArgminOp<Output = f64>,
    O::Param: ArgminSub<O::Param, O::Param>
        + ArgminDot<O::Param, f64>
        + ArgminDot<O::Param, O::Hessian>
        + ArgminScaledAdd<O::Param, f64, O::Param>
        + ArgminNorm<f64>
        + ArgminMul<f64, O::Param>,
    O::Hessian: ArgminSub<O::Hessian, O::Hessian>
        + ArgminDot<O::Param, O::Param>
        + ArgminDot<O::Hessian, O::Hessian>
        + ArgminAdd<O::Hessian, O::Hessian>
        + ArgminMul<f64, O::Hessian>
        + ArgminTranspose
        + ArgminEye,
    L: ArgminLineSearch<Param = O::Param, Output = O::Output, Hessian = O::Hessian>,
{
    /// Inverse Hessian
    inv_hessian: O::Hessian,
    /// line search
    linesearch: Box<L>,
    /// Base stuff
    base: ArgminBase<O>,
}

impl<O, L> BFGS<O, L>
where
    O: ArgminOp<Output = f64>,
    O::Param: ArgminSub<O::Param, O::Param>
        + ArgminDot<O::Param, f64>
        + ArgminDot<O::Param, O::Hessian>
        + ArgminScaledAdd<O::Param, f64, O::Param>
        + ArgminNorm<f64>
        + ArgminMul<f64, O::Param>,
    O::Hessian: ArgminSub<O::Hessian, O::Hessian>
        + ArgminDot<O::Param, O::Param>
        + ArgminDot<O::Hessian, O::Hessian>
        + ArgminAdd<O::Hessian, O::Hessian>
        + ArgminMul<f64, O::Hessian>
        + ArgminTranspose
        + ArgminEye,
    L: ArgminLineSearch<Param = O::Param, Output = O::Output, Hessian = O::Hessian>,
{
    /// Constructor
    pub fn new(
        cost_function: O,
        init_param: O::Param,
        init_inverse_hessian: O::Hessian,
        linesearch: L,
    ) -> Self {
        BFGS {
            inv_hessian: init_inverse_hessian,
            linesearch: Box::new(linesearch),
            base: ArgminBase::new(cost_function, init_param),
        }
    }
}

impl<O, L> ArgminIter for BFGS<O, L>
where
    O: ArgminOp<Output = f64>,
    O::Param: ArgminSub<O::Param, O::Param>
        + ArgminDot<O::Param, f64>
        + ArgminDot<O::Param, O::Hessian>
        + ArgminScaledAdd<O::Param, f64, O::Param>
        + ArgminNorm<f64>
        + ArgminMul<f64, O::Param>,
    O::Hessian: ArgminSub<O::Hessian, O::Hessian>
        + ArgminDot<O::Param, O::Param>
        + ArgminDot<O::Hessian, O::Hessian>
        + ArgminAdd<O::Hessian, O::Hessian>
        + ArgminMul<f64, O::Hessian>
        + ArgminTranspose
        + ArgminEye,
    L: ArgminLineSearch<Param = O::Param, Output = O::Output, Hessian = O::Hessian>,
{
    type Param = O::Param;
    type Output = O::Output;
    type Hessian = O::Hessian;

    fn init(&mut self) -> Result<(), Error> {
        let cost = self.apply(&self.base.cur_param())?;
        let grad = self.gradient(&self.base.cur_param())?;
        self.base.set_cur_grad(grad);
        self.base.set_cur_cost(cost);
        Ok(())
    }

    fn next_iter(&mut self) -> Result<ArgminIterData<Self::Param>, Error> {
        // reset line search
        self.linesearch.base_reset();

        let param = self.cur_param();
        let cur_cost = self.cur_cost();
        let prev_grad = self.base.cur_grad();
        let p = self.inv_hessian.dot(&prev_grad).mul(&(-1.0));

        self.linesearch.set_initial_parameter(param.clone());
        self.linesearch.set_initial_gradient(prev_grad.clone());
        self.linesearch.set_initial_cost(cur_cost);
        self.linesearch
            .set_search_direction(p.mul(&(1.0 / p.norm())));
        // self.linesearch.set_search_direction(p);
        self.linesearch.run_fast()?;

        let linesearch_result = self.linesearch.result();
        let xk1 = linesearch_result.param;

        let grad = self.gradient(&xk1)?;
        let yk = grad.sub(&prev_grad);
        self.base.set_cur_grad(grad);

        let sk = xk1.sub(&param);

        let yksk: f64 = yk.dot(&sk);
        let rhok = 1.0 / yksk;

        let e = self.inv_hessian.eye_like();
        let mat1: Self::Hessian = sk.dot(&yk);
        let mat1 = mat1.mul(&rhok);

        let mat2 = mat1.clone().t();

        let tmp1 = e.sub(&mat1);
        let tmp2 = e.sub(&mat2);

        let sksk: Self::Hessian = sk.dot(&sk);
        let sksk = sksk.mul(&rhok);

        self.inv_hessian = tmp1.dot(&self.inv_hessian.dot(&tmp2)).add(&sksk);

        let out = ArgminIterData::new(xk1, linesearch_result.cost);
        Ok(out)
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::send_sync_test;
    use crate::solver::linesearch::MoreThuenteLineSearch;

    type Operator = MinimalNoOperator;

    send_sync_test!(bfgs, BFGS<Operator, MoreThuenteLineSearch<Operator>>);
}