1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
// Copyright 2018 Stefan Kroboth
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.

//! * [Backtracking line search](struct.BacktrackingLineSearch.html)

use crate::prelude::*;
use crate::solver::linesearch::condition::*;
use serde::{Deserialize, Serialize};

/// The Backtracking line search is a simple method to find a step length which obeys the Armijo
/// (sufficient decrease) condition.
///
/// # Example
///
/// ```
/// # extern crate argmin;
/// use argmin::prelude::*;
/// use argmin::solver::linesearch::{BacktrackingLineSearch, ArmijoCondition};
/// # use argmin::testfunctions::{sphere, sphere_derivative};
/// # use serde::{Deserialize, Serialize};
///
/// # #[derive(Clone, Default, Serialize, Deserialize)]
/// # struct Sphere {}
/// #
/// # impl ArgminOp for Sphere {
/// #     type Param = Vec<f64>;
/// #     type Output = f64;
/// #     type Hessian = ();
/// #
/// #     fn apply(&self, param: &Vec<f64>) -> Result<f64, Error> {
/// #         Ok(sphere(param))
/// #     }
/// #
/// #     fn gradient(&self, param: &Vec<f64>) -> Result<Vec<f64>, Error> {
/// #         Ok(sphere_derivative(param))
/// #     }
/// # }
/// #
/// # fn run() -> Result<(), Error> {
/// // definie inital parameter vector
/// let init_param: Vec<f64> = vec![1.0, 0.0];
///
/// // Define problem
/// let operator = Sphere {};
///
/// // Set condition
/// let cond = ArmijoCondition::new(0.5)?;
///
/// // Set up Line Search method
/// let mut solver = BacktrackingLineSearch::new(operator, cond);
///
/// // Set search direction
/// solver.set_search_direction(vec![-2.0, 0.0]);
///
/// // Set initial position
/// solver.set_initial_parameter(init_param);
///
/// // Set contraction factor
/// solver.set_rho(0.9)?;
///
/// // Calculate initial cost ...
/// solver.calc_initial_cost()?;
///
/// // ... or, alternatively, set cost if it is already computed
/// // solver.set_initial_cost(...);
///
/// // Calculate initial gradient ...
/// solver.calc_initial_gradient()?;
///
/// // .. or, alternatively, set gradient if it is already computed
/// // solver.set_initial_gradient(...);
///
/// // Set initial step length
/// solver.set_initial_alpha(1.0)?;
///
/// // Set maximum number of iterations
/// solver.set_max_iters(100);
///
/// // Attach a logger
/// solver.add_logger(ArgminSlogLogger::term());
///
/// // Run solver
/// solver.run()?;
///
/// // Wait a second (lets the logger flush everything before printing again)
/// std::thread::sleep(std::time::Duration::from_secs(1));
///
/// // Print result
/// println!("{:?}", solver.result());
/// #     Ok(())
/// # }
/// #
/// # fn main() {
/// #     if let Err(ref e) = run() {
/// #         println!("{} {}", e.as_fail(), e.backtrace());
/// #     }
/// # }
/// ```
///
/// # References:
///
/// [0] Jorge Nocedal and Stephen J. Wright (2006). Numerical Optimization.
/// Springer. ISBN 0-387-30303-0.
///
/// [1] Wikipedia: https://en.wikipedia.org/wiki/Backtracking_line_search
#[derive(ArgminSolver, Serialize, Deserialize)]
#[stop("self.eval_condition()" => LineSearchConditionMet)]
pub struct BacktrackingLineSearch<O, L>
where
    O: ArgminOp<Output = f64>,
    O::Param: ArgminSub<O::Param, O::Param>
        + ArgminDot<O::Param, f64>
        + ArgminScaledAdd<O::Param, f64, O::Param>,
    L: LineSearchCondition<O::Param>,
{
    /// initial parameter vector
    init_param: O::Param,
    /// initial cost
    init_cost: f64,
    /// initial gradient
    init_grad: O::Param,
    /// Search direction
    search_direction: O::Param,
    /// Contraction factor rho
    rho: f64,
    /// Stopping condition
    condition: Box<L>,
    /// alpha
    alpha: f64,
    /// base
    base: ArgminBase<O>,
}

impl<O, L> BacktrackingLineSearch<O, L>
where
    O: ArgminOp<Output = f64>,
    O::Param: ArgminSub<O::Param, O::Param>
        + ArgminDot<O::Param, f64>
        + ArgminScaledAdd<O::Param, f64, O::Param>,
    L: LineSearchCondition<O::Param>,
{
    /// Constructor
    ///
    /// Parameters:
    ///
    /// `operator`: Must implement `ArgminOp`
    pub fn new(operator: O, condition: L) -> Self {
        BacktrackingLineSearch {
            init_param: O::Param::default(),
            init_cost: std::f64::INFINITY,
            init_grad: O::Param::default(),
            search_direction: O::Param::default(),
            rho: 0.9,
            condition: Box::new(condition),
            alpha: 1.0,
            base: ArgminBase::new(operator, O::Param::default()),
        }
    }

    /// set current gradient value
    pub fn set_cur_grad(&mut self, grad: O::Param) -> &mut Self {
        self.base.set_cur_grad(grad);
        self
    }

    /// Set contraction factor rho
    pub fn set_rho(&mut self, rho: f64) -> Result<&mut Self, Error> {
        if rho <= 0.0 || rho >= 1.0 {
            return Err(ArgminError::InvalidParameter {
                text: "BacktrackingLineSearch: Contraction factor rho must be in (0, 1)."
                    .to_string(),
            }
            .into());
        }
        self.rho = rho;
        Ok(self)
    }

    fn eval_condition(&self) -> bool {
        self.condition.eval(
            self.cur_cost(),
            self.cur_grad(),
            self.init_cost,
            self.init_grad.clone(),
            self.search_direction.clone(),
            self.alpha,
        )
    }
}

impl<O, L> ArgminLineSearch for BacktrackingLineSearch<O, L>
where
    O: ArgminOp<Output = f64>,
    O::Param: ArgminSub<O::Param, O::Param>
        + ArgminDot<O::Param, f64>
        + ArgminScaledAdd<O::Param, f64, O::Param>,
    L: LineSearchCondition<O::Param>,
{
    /// Set search direction
    fn set_search_direction(&mut self, search_direction: O::Param) {
        self.search_direction = search_direction;
    }

    /// Set initial parameter
    fn set_initial_parameter(&mut self, param: O::Param) {
        self.init_param = param.clone();
        self.set_cur_param(param);
    }

    /// Set initial alpha value
    fn set_initial_alpha(&mut self, alpha: f64) -> Result<(), Error> {
        if alpha <= 0.0 {
            return Err(ArgminError::InvalidParameter {
                text: "LineSearch: Inital alpha must be > 0.".to_string(),
            }
            .into());
        }
        self.alpha = alpha;
        Ok(())
    }

    /// Set initial cost function value
    fn set_initial_cost(&mut self, init_cost: f64) {
        self.init_cost = init_cost;
    }

    /// Set initial gradient
    fn set_initial_gradient(&mut self, init_grad: O::Param) {
        self.init_grad = init_grad;
    }

    /// Calculate initial cost function value
    fn calc_initial_cost(&mut self) -> Result<(), Error> {
        let tmp = self.cur_param();
        self.init_cost = self.apply(&tmp)?;
        Ok(())
    }

    /// Calculate initial cost function value
    fn calc_initial_gradient(&mut self) -> Result<(), Error> {
        let tmp = self.cur_param();
        self.init_grad = self.gradient(&tmp)?;
        Ok(())
    }
}

impl<O, L> ArgminIter for BacktrackingLineSearch<O, L>
where
    O: ArgminOp<Output = f64>,
    O::Param: ArgminSub<O::Param, O::Param>
        + ArgminDot<O::Param, f64>
        + ArgminScaledAdd<O::Param, f64, O::Param>,
    L: LineSearchCondition<O::Param>,
{
    type Param = O::Param;
    type Output = f64;
    type Hessian = O::Hessian;

    fn next_iter(&mut self) -> Result<ArgminIterData<Self::Param>, Error> {
        let new_param = self
            .init_param
            .scaled_add(&self.alpha, &self.search_direction);

        let cur_cost = self.apply(&new_param)?;

        if self.condition.requires_cur_grad() {
            let grad = self.gradient(&new_param)?;
            self.set_cur_grad(grad);
        }

        self.alpha *= self.rho;

        let out = ArgminIterData::new(new_param, cur_cost);
        Ok(out)
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::send_sync_test;
    use crate::MinimalNoOperator;

    send_sync_test!(backtrackinglinesearch,
                    BacktrackingLineSearch<MinimalNoOperator, ArmijoCondition>);
}