1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
// Copyright 2018 Stefan Kroboth
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.

//! # References:
//!
//! [0] Jorge Nocedal and Stephen J. Wright (2006). Numerical Optimization.
//! Springer. ISBN 0-387-30303-0.

use crate::prelude::*;
use serde::{Deserialize, Serialize};
use std::default::Default;

/// The conjugate gradient method is a solver for systems of linear equations with a symmetric and
/// positive-definite matrix.
///
/// # Example
///
/// ```
/// extern crate argmin;
/// use argmin::prelude::*;
/// use argmin::solver::conjugategradient::ConjugateGradient;
/// use serde::{Deserialize, Serialize};
///
/// #[derive(Clone, Default, Serialize, Deserialize)]
/// struct MyProblem {}
///
/// impl ArgminOp for MyProblem {
///     type Param = Vec<f64>;
///     type Output = Vec<f64>;
///     type Hessian = ();
///
///     fn apply(&self, p: &Vec<f64>) -> Result<Vec<f64>, Error> {
///         Ok(vec![4.0 * p[0] + 1.0 * p[1], 1.0 * p[0] + 3.0 * p[1]])
///     }
/// }
///
/// # fn run() -> Result<(), Error> {
/// // Define inital parameter vector
/// let init_param: Vec<f64> = vec![2.0, 1.0];
///
/// // Define the right hand side `b` of `A * x = b`
/// let b = vec![1.0, 2.0];
///
/// // Set up operator
/// let operator = MyProblem {};
///
/// // Set up the solver
/// let mut solver = ConjugateGradient::new(operator, b, init_param)?;
///
/// // Set maximum number of iterations
/// solver.set_max_iters(2);
///
/// // Attach a logger
/// solver.add_logger(ArgminSlogLogger::term());
///
/// // Run solver
/// solver.run()?;
///
/// // Wait a second (lets the logger flush everything before printing to screen again)
/// std::thread::sleep(std::time::Duration::from_secs(1));
///
/// // Print result
/// println!("{:?}", solver.result());
/// #     Ok(())
/// # }
/// #
/// # fn main() {
/// #     if let Err(ref e) = run() {
/// #         println!("{} {}", e.as_fail(), e.backtrace());
/// #     }
/// # }
/// ```
///
/// # References:
///
/// [0] Jorge Nocedal and Stephen J. Wright (2006). Numerical Optimization.
/// Springer. ISBN 0-387-30303-0.
#[derive(ArgminSolver, Clone, Serialize, Deserialize)]
pub struct ConjugateGradient<O>
where
    O: ArgminOp<Output = <O as ArgminOp>::Param>,
    O::Param: ArgminSub<O::Param, O::Param>
        + ArgminDot<O::Param, f64>
        + ArgminScaledAdd<O::Param, f64, O::Param>
        + ArgminAdd<O::Param, O::Param>
        + ArgminMul<f64, O::Param>
        + ArgminDot<O::Param, f64>,
{
    /// b (right hand side)
    b: O::Param,
    /// residual
    r: O::Param,
    /// p
    p: O::Param,
    /// previous p
    p_prev: O::Param,
    /// r^T * r
    rtr: f64,
    /// alpha
    alpha: f64,
    /// beta
    beta: f64,
    /// base
    base: ArgminBase<O>,
}

impl<O> ConjugateGradient<O>
where
    O: ArgminOp<Output = <O as ArgminOp>::Param>,
    O::Param: ArgminSub<O::Param, O::Param>
        + ArgminDot<O::Param, f64>
        + ArgminScaledAdd<O::Param, f64, O::Param>
        + ArgminAdd<O::Param, O::Param>
        + ArgminMul<f64, O::Param>
        + ArgminDot<O::Param, f64>,
{
    /// Constructor
    ///
    /// Parameters:
    ///
    /// `cost_function`: cost function
    ///
    /// `b`: right hand side of `A * x = b`
    ///
    /// `init_param`: Initial parameter vector
    pub fn new(operator: O, b: O::Param, init_param: O::Param) -> Result<Self, Error> {
        Ok(ConjugateGradient {
            b,
            r: O::Param::default(),
            p: O::Param::default(),
            p_prev: O::Param::default(),
            rtr: std::f64::NAN,
            alpha: std::f64::NAN,
            beta: std::f64::NAN,
            base: ArgminBase::new(operator, init_param),
        })
    }

    /// Return the current search direction (This is needed by NewtonCG for instance)
    pub fn p(&self) -> O::Param {
        self.p.clone()
    }

    /// Return the previous search direction (This is needed by NewtonCG for instance)
    pub fn p_prev(&self) -> O::Param {
        self.p_prev.clone()
    }

    /// Return the current residual (This is needed by NewtonCG for instance)
    pub fn residual(&self) -> O::Param {
        self.r.clone()
    }
}

impl<O> ArgminIter for ConjugateGradient<O>
where
    O: ArgminOp<Output = <O as ArgminOp>::Param>,
    O::Param: ArgminSub<O::Param, O::Param>
        + ArgminDot<O::Param, f64>
        + ArgminScaledAdd<O::Param, f64, O::Param>
        + ArgminAdd<O::Param, O::Param>
        + ArgminMul<f64, O::Param>
        + ArgminDot<O::Param, f64>,
{
    type Param = O::Param;
    type Output = O::Output;
    type Hessian = O::Hessian;

    fn init(&mut self) -> Result<(), Error> {
        let init_param = self.cur_param();
        let ap = self.apply(&init_param)?;
        let r0 = self.b.sub(&ap).mul(&(-1.0));
        self.r = r0.clone();
        self.p = r0.mul(&(-1.0));
        self.rtr = self.r.dot(&self.r);
        Ok(())
    }

    /// Perform one iteration of SA algorithm
    fn next_iter(&mut self) -> Result<ArgminIterData<Self::Param>, Error> {
        // Still way too much cloning going on here
        self.p_prev = self.p.clone();
        let p = self.p.clone();
        let apk = self.apply(&p)?;
        self.alpha = self.rtr / self.p.dot(&apk);
        let new_param = self.cur_param().scaled_add(&self.alpha, &p);
        self.r = self.r.scaled_add(&self.alpha, &apk);
        let rtr_n = self.r.dot(&self.r);
        self.beta = rtr_n / self.rtr;
        self.rtr = rtr_n;
        self.p = self.r.mul(&(-1.0)).scaled_add(&self.beta, &p);
        let norm = self.r.dot(&self.r);

        let mut out = ArgminIterData::new(new_param, norm.sqrt());
        out.add_kv(make_kv!(
            "alpha" => self.alpha;
            "beta" => self.beta;
        ));
        Ok(out)
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::send_sync_test;

    send_sync_test!(
        conjugate_gradient,
        ConjugateGradient<NoOperator<Vec<f64>, Vec<f64>, ()>>
    );
}