1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
// Copyright 2018 Stefan Kroboth
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.

//! A pure Rust optimization framework
//!
//! This crate offers a (work in progress) numerical optimization toolbox/framework written entirely
//! in Rust. It is at the moment quite unstable and potentially very buggy. Please use with care and
//! report any bugs you encounter. This crate is looking for contributors!
//!
//! # Design goals
//!
//! This crate's intention is to be useful to users as well as developers of optimization
//! algorithms, meaning that it should be both easy to apply and easy to implement algorithms. In
//! particular, as a developer of optimization algorithms you should not need to worry about
//! usability features (such as logging, dealing with different types, setters and getters for
//! certain common parameters, counting cost function and gradient evaluations, termination, and so
//! on). Instead you can focus on implementing your algorithm and let `argmin-codegen` do the rest.
//!
//! - Easy framework for the implementation of optimization algorithms: Define a struct to hold your
//!   data, implement a single iteration of your method and let argmin generate the rest with
//!   `#[derive(ArgminSolver)]`. This lead to similar interfaces for different solvers, making it
//!   easy for users.
//! - Pure Rust implementations of a wide range of optimization methods: This avoids the need to
//!   compile and interface C/C++/Fortran code.
//! - Type-agnostic: Many problems require data structures that go beyond simple vectors to
//!   represent the parameters. In argmin, everything is generic: All that needs to be done is
//!   implementing certain traits on your data type. For common types, these traits are already
//!   implemented.
//! - Convenient: Automatic and consistent logging of anything that may be important. Log to the
//!   terminal, to a file or implement your own loggers. Future plans include sending metrics to
//!   databases and connecting to big data piplines.
//! - Algorithm evaluation: Methods to assess the performance of an algorithm for different
//!   parameter settings, problem classes, ...
//!
//! Since this crate is in a very early stage, so far most points are only partially implemented or
//! remain future plans.
//!
//! # Algorithms
//!
//! - [Line searches](solver/linesearch/index.html)
//!   - [Backtracking line search](solver/linesearch/backtracking/struct.BacktrackingLineSearch.html)
//!   - [More-Thuente line search](solver/linesearch/morethuente/struct.MoreThuenteLineSearch.html)
//!   - [Hager-Zhang line search](solver/linesearch/hagerzhang/struct.HagerZhangLineSearch.html)
//! - [Trust region method](solver/trustregion/trustregion_method/struct.TrustRegion.html)
//!   - [Cauchy point method](solver/trustregion/cauchypoint/struct.CauchyPoint.html)
//!   - [Dogleg method](solver/trustregion/dogleg/struct.Dogleg.html)
//!   - [Steihaug method](solver/trustregion/steihaug/struct.Steihaug.html)
//! - [Steepest descent](solver/gradientdescent/steepestdescent/struct.SteepestDescent.html)
//! - [Conjugate gradient method](solver/conjugategradient/cg/struct.ConjugateGradient.html)
//! - [Nonlinear conjugate gradient method](solver/conjugategradient/nonlinear_cg/struct.NonlinearConjugateGradient.html)
//! - [Newton methods](solver/newton/index.html)
//!   - [Newton's method](solver/newton/newton_method/struct.Newton.html)
//!   - [Newton-CG](solver/newton/newton_cg/struct.NewtonCG.html)
//! - [Quasi-Newton methods](solver/quasinewton/index.html)
//!   - [BFGS](solver/quasinewton/bfgs/struct.BFGS.html)
//! - [Landweber iteration](solver/landweber/struct.Landweber.html)
//! - [Simulated Annealing](solver/simulatedannealing/struct.SimulatedAnnealing.html)
//!
//! # Usage
//!
//! Add this to your `Cargo.toml`:
//!
//! ```toml
//! [dependencies]
//! argmin = "0.1.7"
//! ```
//!
//! ## Optional features
//!
//! There are additional features which can be activated in `Cargo.toml`:
//!
//! ```toml
//! [dependencies]
//! argmin = { version = "0.1.7", features = ["ctrlc", "ndarrayl"] }
//! ```
//!
//! These may become default features in the future. Without these features compilation to
//! `wasm32-unknown-unkown` seems to be possible.
//!
//! - `ctrlc`: Uses the `ctrlc` crate to properly stop the optimization (and return the current best
//!    result) after pressing Ctrl+C.
//! - `ndarrayl`: Support for `ndarray` and `ndarray-linalg`.
//!
//! # Defining a problem
//!
//! A problem can be defined by implementing the `ArgminOp` trait which comes with the
//! associated types `Param`, `Output` and `Hessian`. `Param` is the type of your
//! parameter vector (i.e. the input to your cost function), `Output` is the type returned
//! by the cost function and `Hessian` is the type of the Hessian.
//! The trait provides the following methods:
//!
//! - `apply(&self, p: &Self::Param) -> Result<Self::Output, Error>`: Applys the cost
//!   function to parameters `p` of type `Self::Param` and returns the cost function value.
//! - `gradient(&self, p: &Self::Param) -> Result<Self::Param, Error>`: Computes the
//!   gradient at `p`. Optional. By default returns an `Err` if not implemented.
//! - `hessian(&self, p: &Self::Param) -> Result<Self::Hessian, Error>`: Computes the Hessian
//!   at `p`. Optional. By default returns an `Err` if not implemented. The type of `Hessian` can
//!   be set to `()` if this method is not implemented.
//!
//!
//! The following code snippet shows an example of how to use the Rosenbrock test functions from
//! `argmin-testfunctions` in argmin:
//!
//! ```rust
//! # extern crate argmin;
//! # extern crate argmin_testfunctions;
//! # extern crate ndarray;
//! # use argmin::testfunctions::{rosenbrock_2d, rosenbrock_2d_derivative, rosenbrock_2d_hessian};
//! # use argmin::prelude::*;
//! // [Imports omited]
//!
//! /// First, create a struct for your problem
//! #[derive(Clone, Default)]
//! struct Rosenbrock {
//!     a: f64,
//!     b: f64,
//! }
//!
//! /// Implement `ArgminOp` for `Rosenbrock`
//! impl ArgminOp for Rosenbrock {
//!     /// Type of the parameter vector
//!     type Param = ndarray::Array1<f64>;
//!     /// Type of the return value computed by the cost function
//!     type Output = f64;
//!     /// Type of the Hessian. If no Hessian is available or needed for the used solver, this can
//!     /// be set to `()`
//!     type Hessian = ndarray::Array2<f64>;
//!
//!     /// Apply the cost function to a parameter `p`
//!     fn apply(&self, p: &Self::Param) -> Result<Self::Output, Error> {
//!         Ok(rosenbrock_2d(&p.to_vec(), self.a, self.b))
//!     }
//!
//!     /// Compute the gradient at parameter `p`. This is optional: If not implemented, this
//!     /// method will return an `Err` when called.
//!     fn gradient(&self, p: &Self::Param) -> Result<Self::Param, Error> {
//!         Ok(ndarray::Array1::from_vec(rosenbrock_2d_derivative(&p.to_vec(), self.a, self.b)))
//!     }
//!
//!     /// Compute the Hessian at parameter `p`. This is optional: If not implemented, this method
//!     /// will return an `Err` when called.
//!     fn hessian(&self, p: &Self::Param) -> Result<Self::Hessian, Error> {
//!         let h = rosenbrock_2d_hessian(&p.to_vec(), self.a, self.b);
//!         Ok(ndarray::Array::from_shape_vec((2, 2), h).unwrap())
//!     }
//! }
//! ```
//!
//! # Running a solver
//!
//! The following example shows how to use the previously shown definition of a problem in a
//! Steepest Descent (Gradient Descent) solver.
//!
//! ```
//! extern crate argmin;
//! extern crate ndarray;
//! use argmin::testfunctions::{rosenbrock_2d, rosenbrock_2d_derivative, rosenbrock_2d_hessian};
//! use argmin::prelude::*;
//! use argmin::solver::gradientdescent::SteepestDescent;
//!
//! #[derive(Clone, Default)]
//! struct Rosenbrock {
//!     a: f64,
//!     b: f64,
//! }
//!
//! impl ArgminOp for Rosenbrock {
//!     type Param = ndarray::Array1<f64>;
//!     type Output = f64;
//!     type Hessian = ();
//!
//!    fn apply(&self, p: &Self::Param) -> Result<Self::Output, Error> {
//!        Ok(rosenbrock_2d(&p.to_vec(), self.a, self.b))
//!    }
//!
//!    fn gradient(&self, p: &Self::Param) -> Result<Self::Param, Error> {
//!        Ok(ndarray::Array1::from_vec(rosenbrock_2d_derivative(&p.to_vec(), self.a, self.b)))
//!    }
//! }
//!
//! fn run() -> Result<(), Error> {
//!     // Define cost function
//!     let cost = Rosenbrock { a: 1.0, b: 100.0 };
//!
//!     // Define inital parameter vector
//!     let init_param = ndarray::Array1::from_vec(vec![-1.2, 1.0]);
//!
//!     // Create solver
//!     let mut solver = SteepestDescent::new(cost, init_param)?;
//!
//!     // Set the maximum number of iterations to 1000
//!     solver.set_max_iters(1000);
//!
//!     // Attach a terminal logger (slog) to the solver
//!     solver.add_logger(ArgminSlogLogger::term());
//!
//!     // Run the solver
//!     solver.run()?;
//!
//!     // Print the result
//!     println!("{:?}", solver.result());
//!     Ok(())
//! }
//!
//! fn main() {
//!     if let Err(ref e) = run() {
//!         println!("{} {}", e.as_fail(), e.backtrace());
//!         std::process::exit(1);
//!     }
//! }
//! ```
//!
//! Executing `solver.run()?` performs the actual optimization. In addition, there is
//! `solver.run_fast()?`, which only executes the optimization algorithm and avoids all convenience
//! functionality such as logging.
//!
//! # Logging
//!
//! Information such as the current iteration number, cost function value, and other metrics can be
//! logged using any object which implements `argmin_core::ArgminLogger`. So far loggers based on
//! the `slog` crate have been implemented: `ArgminSlogLogger::term` logs to the terminal and
//! `ArgminSlogLogger::file` logs to a file in JSON format. Both loggers come with a `*_noblock`
//! version which does not block the execution for logging, but may drop log entries when the
//! buffer fills up.
//!
//! ```
//! # extern crate argmin;
//! # extern crate ndarray;
//! # use argmin::testfunctions::{rosenbrock_2d, rosenbrock_2d_derivative, rosenbrock_2d_hessian};
//! # use argmin::prelude::*;
//! # use argmin::solver::gradientdescent::SteepestDescent;
//! # #[derive(Clone, Default)]
//! # struct Rosenbrock {
//! #     a: f64,
//! #     b: f64,
//! # }
//! # impl ArgminOp for Rosenbrock {
//! #     type Param = ndarray::Array1<f64>;
//! #     type Output = f64;
//! #     type Hessian = ();
//! #    fn apply(&self, p: &Self::Param) -> Result<Self::Output, Error> {
//! #        Ok(rosenbrock_2d(&p.to_vec(), self.a, self.b))
//! #    }
//! #    fn gradient(&self, p: &Self::Param) -> Result<Self::Param, Error> {
//! #        Ok(ndarray::Array1::from_vec(rosenbrock_2d_derivative(&p.to_vec(), self.a, self.b)))
//! #    }
//! # }
//! # fn run() -> Result<(), Error> {
//! #     let cost = Rosenbrock { a: 1.0, b: 100.0 };
//! #     let init_param = ndarray::Array1::from_vec(vec![-1.2, 1.0]);
//! let mut solver = SteepestDescent::new(cost, init_param)?;
//! #     solver.set_max_iters(10);
//! // Log to the terminal
//! solver.add_logger(ArgminSlogLogger::term());
//! // Log to the terminal without blocking
//! solver.add_logger(ArgminSlogLogger::term_noblock());
//! // Log to the file `log1.log`
//! solver.add_logger(ArgminSlogLogger::file("log1.log")?);
//! // Log to the file `log2.log` without blocking
//! solver.add_logger(ArgminSlogLogger::file_noblock("log2.log")?);
//! #     solver.run()?;
//! #     Ok(())
//! # }
//! # fn main() {
//! #     if let Err(ref e) = run() {
//! #         println!("{} {}", e.as_fail(), e.backtrace());
//! #         std::process::exit(1);
//! #     }
//! # }
//! ```
//!
//! # Implementing an optimization algorithm
//!
//! In this section we are going to implement the Landweber solver, which essentially is a special
//! form of gradient descent. In iteration `k`, the new parameter vector `x_{k+1}` is calculated
//! from the previous parameter vector `x_k` and the gradient at `x_k` according to the following
//! update rule:
//!
//! `x_{k+1} = x_k - omega * \nabla f(x_k)`
//!
//! In order to implement this using the argmin framework, one first needs to define a struct which
//! holds data/parameters needed during the execution of the algorithm. In addition a field with
//! the name `base` and type `ArgminBase<'a, T, U, H>` is needed, where `T` is the type of the
//! parameter vector, `U` is the type of the return values of the cost function and `H` is the type
//! of the Hessian (which can be `()` if not available).
//!
//! Deriving `ArgminSolver` for the struct using `#[derive(ArgminSolver)]` implements most of the
//! API. What remains to be implemented for the struct is a constructor and `ArgminNextIter`. The
//! latter is essentially an implementation of a single iteration of the algorithm.
//!
//! ```
//! // needed for `#[derive(ArgminSolver)]`
//! # extern crate argmin_codegen;
//! use argmin_codegen::ArgminSolver;
//! use argmin::prelude::*;
//! use std::default::Default;
//!
//! // The `Landweber` struct holds the `omega` parameter and has a field `base` which is of type
//! // `ArgminBase`. The struct is generic over the ArgminOp `O` which holds type information about
//! // the parameter vector which (in this particular case) has to implement
//! // `ArgminScaledSub<T, f64>`, which is neede for the update rule.
//! // Deriving `ArgminSolver` implements a large portion of the API and provides many convenience
//! // functions. It requires that `ArgminIter` is implemented on `Landweber` as well.
//! #[derive(ArgminSolver)]
//! pub struct Landweber<O>
//! where
//!     <O as ArgminOp>::Param: ArgminScaledSub<<O as ArgminOp>::Param, f64, <O as ArgminOp>::Param>,
//!     O: ArgminOp,
//! {
//!     omega: f64,
//!     base: ArgminBase<O>,
//! }
//!
//! // For convenience, a constructor can/should be implemented
//! impl<O> Landweber<O>
//! where
//!     <O as ArgminOp>::Param: ArgminScaledSub<<O as ArgminOp>::Param, f64, <O as ArgminOp>::Param>,
//!     O: ArgminOp,
//! {
//!     pub fn new(
//!         cost_function: O,
//!         omega: f64,
//!         init_param: <O as ArgminOp>::Param,
//!     ) -> Result<Self, Error> {
//!         Ok(Landweber {
//!             omega,
//!             base: ArgminBase::new(cost_function, init_param),
//!         })
//!     }
//! }
//!
//! // This implements a single iteration of the optimization algorithm.
//! impl<O> ArgminIter for Landweber<O>
//! where
//!     <O as ArgminOp>::Param: ArgminScaledSub<<O as ArgminOp>::Param, f64, <O as ArgminOp>::Param>,
//!     O: ArgminOp,
//! {
//!     type Param = <O as ArgminOp>::Param;
//!     type Output = <O as ArgminOp>::Output;
//!     type Hessian = <O as ArgminOp>::Hessian;
//!
//!     fn next_iter(&mut self) -> Result<ArgminIterData<Self::Param>, Error> {
//!         // Obtain current parameter vector
//!         // The method `cur_param()` has been implemented by deriving `ArgminSolver`.
//!         let param = self.cur_param();
//!         // Compute gradient at current parameter vector `param`
//!         // The method `gradient()` has been implemented by deriving `ArgminSolver`.
//!         let grad = self.gradient(&param)?;
//!         // Calculate new parameter vector based on update rule
//!         let new_param = param.scaled_sub(&self.omega, &grad);
//!         // Return new parameter vector. Since there is no need to compute the cost function
//!         // value, we return 0.0 instead.
//!         let out = ArgminIterData::new(new_param, 0.0);
//!         Ok(out)
//!     }
//! }
//! # fn main() {
//! # }
//! ```

#![warn(missing_docs)]
#![feature(custom_attribute)]
#![feature(unrestricted_attribute_tokens)]
#![allow(unused_attributes)]
// Explicitly disallow EQ comparison of floats. (This clippy lint is denied by default; however,
// this is just to make sure that it will always stay this way.)
#![deny(clippy::float_cmp)]

extern crate argmin_core;
#[macro_use]
extern crate argmin_codegen;
extern crate argmin_testfunctions;
extern crate rand;

/// Definition of all relevant traits and types
pub mod prelude;

/// Solvers
pub mod solver;

/// Macros
#[macro_use]
mod macros;

// #[cfg(test)]
// use macros::*;

use argmin_core::*;

/// Testfunctions
pub mod testfunctions {
    //! # Testfunctions
    //!
    //! Reexport of `argmin-testfunctions`.
    pub use argmin_testfunctions::*;
}