1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
// Copyright 2018 Stefan Kroboth
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.

//! Conjugate Gradient method
//!
//! TODO

use std;
use ndarray::{Array1, Array2};
use errors::*;
use prelude::*;
use operator::ArgminOperator;
use result::ArgminResult;
use termination::TerminationReason;

/// Conjugate Gradient method struct (duh)
pub struct ConjugateGradient<'a> {
    /// Maximum number of iterations
    max_iters: u64,
    /// current state
    state: Option<ConjugateGradientState<'a>>,
}

/// Indicates the current state of the Conjugate Gradient algorithm
struct ConjugateGradientState<'a> {
    /// Reference to the operator
    operator: &'a ArgminOperator<'a>,
    /// Current parameter vector
    param: Array1<f64>,
    /// Conjugate vector
    p: Array1<f64>,
    /// Residual
    r: Array1<f64>,
    /// Current number of iteration
    iter: u64,
    /// Current l2 norm of difference
    norm: f64,
}

impl<'a> ConjugateGradientState<'a> {
    /// Constructor for `ConjugateGradientState`
    pub fn new(
        operator: &'a ArgminOperator<'a>,
        param: Array1<f64>,
        p: Array1<f64>,
        r: Array1<f64>,
    ) -> Self {
        ConjugateGradientState {
            operator: operator,
            param: param,
            p: p,
            r: r,
            iter: 0_u64,
            norm: std::f64::NAN,
        }
    }
}

impl<'a> ConjugateGradient<'a> {
    /// Return a `ConjugateGradient` struct
    pub fn new() -> Self {
        ConjugateGradient {
            max_iters: std::u64::MAX,
            state: None,
        }
    }

    /// Set maximum number of iterations
    pub fn max_iters(&mut self, max_iters: u64) -> &mut Self {
        self.max_iters = max_iters;
        self
    }
}

impl<'a> ArgminSolver<'a> for ConjugateGradient<'a> {
    type Parameter = Array1<f64>;
    type CostValue = f64;
    type Hessian = Array2<f64>;
    type StartingPoints = Self::Parameter;
    type ProblemDefinition = &'a ArgminOperator<'a>;

    /// Initialize with a given problem and a starting point
    fn init(
        &mut self,
        operator: Self::ProblemDefinition,
        init_param: &Self::StartingPoints,
    ) -> Result<()> {
        let mut r = operator.y - &operator.apply(init_param);
        if !operator.operator.is_square() {
            r = operator.apply_transpose(&r);
        }
        let p = r.clone();
        self.state = Some(ConjugateGradientState::new(
            operator,
            init_param.clone(),
            r,
            p,
        ));
        Ok(())
    }

    /// Compute next point
    fn next_iter(&mut self) -> Result<ArgminResult<Self::Parameter, Self::CostValue>> {
        let mut state = self.state.take().unwrap();
        let mut ap = state.operator.apply(&state.p);
        if !state.operator.operator.is_square() {
            ap = state.operator.apply_transpose(&ap);
        }
        let rtr = state.r.iter().map(|a| a.powf(2.0)).sum::<f64>();
        let alpha: f64 = rtr
            / state
                .p
                .iter()
                .zip(ap.iter())
                .map(|(a, b)| a * b)
                .sum::<f64>();
        state.param = state.param + alpha * &state.p;
        state.r = state.r - alpha * &ap;
        let beta: f64 = state.r.iter().map(|a| a.powf(2.0)).sum::<f64>() / rtr;
        state.p = beta * &state.p + &state.r;
        state.iter += 1;
        state.norm = state.r.iter().map(|a| a.powf(2.0)).sum::<f64>().sqrt();
        let mut out = ArgminResult::new(state.param.clone(), state.norm, state.iter);
        self.state = Some(state);
        out.set_termination_reason(self.terminate());
        Ok(out)
    }

    /// Indicates whether any of the stopping criteria are met
    make_terminate!(self,
        self.state.as_ref().unwrap().iter >= self.max_iters, TerminationReason::MaxItersReached;
        self.state.as_ref().unwrap().norm <= self.state.as_ref().unwrap().operator.target_cost, TerminationReason::TargetCostReached;
    );

    /// Run Conjugate Gradient method
    make_run!(
        Self::ProblemDefinition,
        Self::StartingPoints,
        Self::Parameter,
        Self::CostValue
    );
}

impl<'a> Default for ConjugateGradient<'a> {
    fn default() -> Self {
        Self::new()
    }
}