1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
// Copyright 2015 Brendan Zabarauskas
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! A crate that provides facilities for testing the approximate equality of floating-point
//! based types, using either relative difference, or units in the last place (ULPs)
//! comparisons.
//!
//! You can also use the `approx_{eq, ne}!` `assert_approx_{eq, ne}!` macros to test for equality
//! using a more positional style.
//!
//! ```rust
//! #[macro_use]
//! extern crate approx;
//! use std::f64;
//!
//! # fn main() {
//! relative_eq!(1.0, 1.0);
//! relative_eq!(1.0, 1.0, epsilon = f64::EPSILON);
//! relative_eq!(1.0, 1.0, max_relative = 1.0);
//! relative_eq!(1.0, 1.0, epsilon = f64::EPSILON, max_relative = 1.0);
//! relative_eq!(1.0, 1.0, max_relative = 1.0, epsilon = f64::EPSILON);
//!
//! ulps_eq!(1.0, 1.0);
//! ulps_eq!(1.0, 1.0, epsilon = f64::EPSILON);
//! ulps_eq!(1.0, 1.0, max_ulps = 4);
//! ulps_eq!(1.0, 1.0, epsilon = f64::EPSILON, max_ulps = 4);
//! ulps_eq!(1.0, 1.0, max_ulps = 4, epsilon = f64::EPSILON);
//! # }
//! ```
//!
//! ## Implementing approximate equality for custom types
//!
//! The `ApproxEq` trait allows approximate equalities to be implemented on types, based on the
//! fundamental floating point implementations.
//!
//! For example, we might want to be able to do approximate assertions on a complex number type:
//!
//! ```rust
//! #[macro_use]
//! extern crate approx;
//! # use approx::ApproxEq;
//! #[derive(Debug)]
//! struct Complex<T> {
//!     x: T,
//!     i: T,
//! }
//! # impl<T: ApproxEq> ApproxEq for Complex<T> where T::Epsilon: Copy {
//! #     type Epsilon = T::Epsilon;
//! #     fn default_epsilon() -> T::Epsilon { T::default_epsilon() }
//! #     fn default_max_relative() -> T::Epsilon { T::default_max_relative() }
//! #     fn default_max_ulps() -> u32 { T::default_max_ulps() }
//! #     fn relative_eq(&self, other: &Self, epsilon: T::Epsilon, max_relative: T::Epsilon) -> bool { T::relative_eq(&self.x, &other.x, epsilon, max_relative) && T::relative_eq(&self.i, &other.i, epsilon, max_relative) }
//! #     fn ulps_eq(&self, other: &Self, epsilon: T::Epsilon, max_ulps: u32) -> bool { T::ulps_eq(&self.x, &other.x, epsilon, max_ulps) && T::ulps_eq(&self.i, &other.i, epsilon, max_ulps) }
//! # }
//!
//! # fn main() {
//! let x = Complex { x: 1.2, i: 2.3 };
//!
//! assert_relative_eq!(x, x);
//! assert_ulps_eq!(x, x, max_ulps = 4);
//! # }
//! ```
//!
//! To do this we can implement `ApproxEq` generically in terms of a type parameter that also
//! implements `ApproxEq`. This means that we can make comparisons for either `Complex<f32>` or
//! `Complex<f64>`:
//!
//! ```rust
//! # use approx::ApproxEq;
//! # #[derive(Debug)]
//! # struct Complex<T> { x: T, i: T, }
//! #
//! impl<T: ApproxEq> ApproxEq for Complex<T> where
//!     T::Epsilon: Copy,
//! {
//!     type Epsilon = T::Epsilon;
//!
//!     fn default_epsilon() -> T::Epsilon {
//!         T::default_epsilon()
//!     }
//!
//!     fn default_max_relative() -> T::Epsilon {
//!         T::default_max_relative()
//!     }
//!
//!     fn default_max_ulps() -> u32 {
//!         T::default_max_ulps()
//!     }
//!
//!     fn relative_eq(&self, other: &Self, epsilon: T::Epsilon, max_relative: T::Epsilon) -> bool {
//!         T::relative_eq(&self.x, &other.x, epsilon, max_relative) &&
//!         T::relative_eq(&self.i, &other.i, epsilon, max_relative)
//!     }
//!
//!     fn ulps_eq(&self, other: &Self, epsilon: T::Epsilon, max_ulps: u32) -> bool {
//!         T::ulps_eq(&self.x, &other.x, epsilon, max_ulps) &&
//!         T::ulps_eq(&self.i, &other.i, epsilon, max_ulps)
//!     }
//! }
//! ```
//!
//! # References
//!
//! Floating point is hard! Thanks goes to these links for helping to make things a _little_
//! easier to understand:
//!
//! - [Comparing Floating Point Numbers, 2012 Edition]
//!   (https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/)
//! - [The Floating Point Guide - Comparison](http://floating-point-gui.de/errors/comparison/)
//! - [What Every Computer Scientist Should Know About Floating-Point Arithmetic]
//!   (https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html)

#![cfg_attr(feature="no_std", no_std)]
#![cfg_attr(feature="no_std", feature(core_float))]
#[cfg(feature="no_std")]
use core as std;

#[cfg(feature="no_std")]
#[allow(unused_imports)] // Get a warning otherwise. This seems like a bug.
use core::num::Float;

mod macros;

/// Equality comparisons based on floating point tolerances.
pub trait ApproxEq: Sized {
    /// Used for specifying relative comparisons.
    type Epsilon;

    /// The default tolerance to use when testing values that are close together.
    ///
    /// This is used when no `epsilon` value is supplied to the `relative_eq` or `ulps_eq` macros.
    fn default_epsilon() -> Self::Epsilon;

    /// The default relative tolerance for testing values that are far-apart.
    ///
    /// This is used when no `max_relative` value is supplied to the `relative_eq` macro.
    fn default_max_relative() -> Self::Epsilon;

    /// The default ULPs to tolerate when testing values that are far-apart.
    ///
    /// This is used when no `max_relative` value is supplied to the `relative_eq` macro.
    fn default_max_ulps() -> u32;

    /// A test for equality that uses a relative comparison if the values are far apart.
    fn relative_eq(&self, other: &Self, epsilon: Self::Epsilon, max_relative: Self::Epsilon) -> bool;

    /// The inverse of `ApproxEq::relative_eq`.
    fn relative_ne(&self, other: &Self, epsilon: Self::Epsilon, max_relative: Self::Epsilon) -> bool {
        !Self::relative_eq(self, other, epsilon, max_relative)
    }

    /// A test for equality that uses units in the last place (ULP) if the values are far apart.
    fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool;

    /// The inverse of `ApproxEq::ulps_eq`.
    fn ulps_ne(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool {
        !Self::ulps_eq(self, other, epsilon, max_ulps)
    }
}

macro_rules! impl_float_relative_eq {
    ($T:ident, $U:ident) => {
        impl ApproxEq for $T {
            type Epsilon = $T;

            #[inline]
            fn default_epsilon() -> $T { std::$T::EPSILON }

            #[inline]
            fn default_max_relative() -> $T { std::$T::EPSILON }

            #[inline]
            fn default_max_ulps() -> u32 { 4 }

            #[inline]
            fn relative_eq(&self, other: &$T, epsilon: $T, max_relative: $T) -> bool {
                // Implementation based on: [Comparing Floating Point Numbers, 2012 Edition]
                // (https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/)

                // Handle infinities
                if self == other { return true; }

                let abs_diff = $T::abs(self - other);

                // For when the numbers are really close together
                if abs_diff <= epsilon { return true };

                // Use a relative difference comparison
                let abs_self = $T::abs(*self);
                let abs_other = $T::abs(*other);
                let largest = if abs_other > abs_self { abs_other } else { abs_self };

                abs_diff <= largest * max_relative
            }

            #[inline]
            fn ulps_eq(&self, other: &$T, epsilon: $T, max_ulps: u32) -> bool {
                // Implementation based on: [Comparing Floating Point Numbers, 2012 Edition]
                // (https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/)

                // For when the numbers are really close together
                if $T::abs(self - other) <= epsilon { return true }

                // Trivial negative sign check
                if self.signum() != other.signum() {
                    // Handle -0 == +0
                    return self == other;
                }

                let int_self: $U = unsafe { std::mem::transmute(*self) };
                let int_other: $U = unsafe { std::mem::transmute(*other) };

                // ULPS difference comparison
                $U::abs(int_self - int_other) < max_ulps as $U
            }
        }
    }
}

impl_float_relative_eq!(f32, i32);
impl_float_relative_eq!(f64, i64);


impl<'a, T: ApproxEq> ApproxEq for &'a T {
    type Epsilon = T::Epsilon;

    #[inline]
    fn default_epsilon() -> Self::Epsilon {
        T::default_epsilon()
    }

    #[inline]
    fn default_max_relative() -> Self::Epsilon {
        T::default_max_relative()
    }

    #[inline]
    fn default_max_ulps() -> u32 {
        T::default_max_ulps()
    }

    #[inline]
    fn relative_eq(&self, other: &&'a T, epsilon: T::Epsilon, max_relative: T::Epsilon) -> bool {
        T::relative_eq(*self, *other, epsilon, max_relative)
    }

    #[inline]
    fn ulps_eq(&self, other: &&'a T, epsilon: T::Epsilon, max_ulps: u32) -> bool {
        T::ulps_eq(*self, *other, epsilon, max_ulps)
    }
}

impl<'a, T: ApproxEq> ApproxEq for &'a mut T {
    type Epsilon = T::Epsilon;

    #[inline]
    fn default_epsilon() -> Self::Epsilon {
        T::default_epsilon()
    }

    #[inline]
    fn default_max_relative() -> Self::Epsilon {
        T::default_max_relative()
    }

    #[inline]
    fn default_max_ulps() -> u32 {
        T::default_max_ulps()
    }

    #[inline]
    fn relative_eq(&self, other: &&'a mut T, epsilon: T::Epsilon, max_relative: T::Epsilon) -> bool {
        T::relative_eq(*self, *other, epsilon, max_relative)
    }

    #[inline]
    fn ulps_eq(&self, other: &&'a mut T, epsilon: T::Epsilon, max_ulps: u32) -> bool {
        T::ulps_eq(*self, *other, epsilon, max_ulps)
    }
}

/// The requisite parameters for testing for approximate equality.
pub struct Relative<'a, T: 'a + ApproxEq> {
    /// The left-hand side of the approximate equality comparison.
    pub lhs: &'a T,
    /// The right-hand side of the approximate equality comparison.
    pub rhs: &'a T,
    /// The tolerance to use when testing values that are close together.
    pub epsilon: T::Epsilon,
    /// The relative tolerance for testing values that are far-apart.
    pub max_relative: T::Epsilon,
}

impl<'a, T> Relative<'a, T> where T: ApproxEq {
    /// The beginning of a chained equality expression, using a relative based comparison.
    ///
    /// ```rust
    /// use std::f64;
    /// use approx::Relative;
    ///
    /// Relative::new(&1.0, &1.0).eq();
    /// Relative::new(&1.0, &1.0).epsilon(f64::EPSILON).eq();
    /// Relative::new(&1.0, &1.0).max_relative(1.0).eq();
    /// Relative::new(&1.0, &1.0).epsilon(f64::EPSILON).max_relative(1.0).eq();
    /// Relative::new(&1.0, &1.0).max_relative(1.0).epsilon(f64::EPSILON).eq();
    /// ```
    #[inline]
    pub fn new(lhs: &'a T, rhs: &'a T) -> Relative<'a, T> {
        Relative {
            lhs: lhs,
            rhs: rhs,
            epsilon: T::default_epsilon(),
            max_relative: T::default_max_relative(),
        }
    }

    /// Replace the epsilon value with the one specified.
    #[inline]
    pub fn epsilon(self, epsilon: T::Epsilon) -> Relative<'a, T> {
        Relative { epsilon: epsilon, ..self }
    }

    /// Replace the maximum relative value with the one specified.
    #[inline]
    pub fn max_relative(self, max_relative: T::Epsilon) -> Relative<'a, T> {
        Relative { max_relative: max_relative, ..self }
    }

    /// Peform the equality comparison
    #[inline]
    pub fn eq(self) -> bool {
        let Relative { lhs, rhs, epsilon, max_relative } = self;
        T::relative_eq(lhs, rhs, epsilon, max_relative)
    }

    /// Peform the inequality comparison
    #[inline]
    pub fn ne(self) -> bool {
        let Relative { lhs, rhs, epsilon, max_relative } = self;
        T::relative_ne(lhs, rhs, epsilon, max_relative)
    }
}

/// The requisite parameters for testing for approximate equality.
pub struct Ulps<'a, T: 'a + ApproxEq> {
    /// The left-hand side of the approximate equality comparison.
    pub lhs: &'a T,
    /// The right-hand side of the approximate equality comparison.
    pub rhs: &'a T,
    /// The tolerance to use when testing values that are close together.
    pub epsilon: T::Epsilon,
    /// The ULPs to tolerate when testing values that are far-apart.
    pub max_ulps: u32,
}

impl<'a, T> Ulps<'a, T> where T: ApproxEq {
    /// The beginning of a chained equality expression, using an ULPs based comparison.
    ///
    /// ```rust
    /// use std::f64;
    /// use approx::Ulps;
    ///
    /// Ulps::new(&1.0, &1.0).eq();
    /// Ulps::new(&1.0, &1.0).epsilon(f64::EPSILON).eq();
    /// Ulps::new(&1.0, &1.0).max_ulps(4).eq();
    /// Ulps::new(&1.0, &1.0).epsilon(f64::EPSILON).max_ulps(4).eq();
    /// Ulps::new(&1.0, &1.0).max_ulps(4).epsilon(f64::EPSILON).eq();
    /// ```
    #[inline]
    pub fn new(lhs: &'a T, rhs: &'a T) -> Ulps<'a, T> {
        Ulps {
            lhs: lhs,
            rhs: rhs,
            epsilon: T::default_epsilon(),
            max_ulps: T::default_max_ulps(),
        }
    }

    /// Replace the epsilon value with the one specified.
    #[inline]
    pub fn epsilon(self, epsilon: T::Epsilon) -> Ulps<'a, T> {
        Ulps { epsilon: epsilon, ..self }
    }

    /// Replace the max ulps value with the one specified.
    #[inline]
    pub fn max_ulps(self, max_ulps:u32) -> Ulps<'a, T> {
        Ulps { max_ulps: max_ulps, ..self }
    }

    /// Peform the equality comparison
    #[inline]
    pub fn eq(self) -> bool {
        let Ulps { lhs, rhs, epsilon, max_ulps } = self;
        T::ulps_eq(lhs, rhs, epsilon, max_ulps)
    }

    /// Peform the inequality comparison
    #[inline]
    pub fn ne(self) -> bool {
        let Ulps { lhs, rhs, epsilon, max_ulps } = self;
        T::ulps_ne(lhs, rhs, epsilon, max_ulps)
    }
}