1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
//! This crate provides a safe and convenient store for one value of each type.
//!
//! Your starting point is [`Map`]. It has an example.

#![warn(missing_docs, unused_results)]

#![cfg_attr(not(feature = "std"), no_std)]

use core::any::{Any, TypeId};
use core::convert::TryInto;
use core::hash::{Hasher, BuildHasherDefault};
use core::marker::PhantomData;

#[cfg(not(any(feature = "std", feature = "hashbrown")))]
compile_error!("anymap: you must enable the 'std' feature or the 'hashbrown' feature");

#[cfg(not(feature = "std"))]
extern crate alloc;

#[cfg(not(feature = "std"))]
use alloc::boxed::Box;

use any::{UncheckedAnyExt, IntoBox};
pub use any::CloneAny;

#[cfg(all(feature = "std", not(feature = "hashbrown")))]
/// A re-export of [`std::collections::hash_map`] for raw access.
///
/// If the `hashbrown` feature gets enabled, this will become an export of `hashbrown::hash_map`.
///
/// As with [`RawMap`][crate::RawMap], this is exposed for compatibility reasons, since features
/// are supposed to be additive. This *is* imperfect, since the two modules are incompatible in a
/// few places (e.g. hashbrown’s entry types have an extra generic parameter), but it’s close, and
/// much too useful to give up the whole concept.
pub use std::collections::hash_map as raw_hash_map;

#[cfg(feature = "hashbrown")]
/// A re-export of [`hashbrown::hash_map`] for raw access.
///
/// If the `hashbrown` feature was disabled, this would become an export of
/// `std::collections::hash_map`.
///
/// As with [`RawMap`][crate::RawMap], this is exposed for compatibility reasons, since features
/// are supposed to be additive. This *is* imperfect, since the two modules are incompatible in a
/// few places (e.g. hashbrown’s entry types have an extra generic parameter), but it’s close, and
/// much too useful to give up the whole concept.
pub use hashbrown::hash_map as raw_hash_map;

use self::raw_hash_map::HashMap;

mod any;

/// Raw access to the underlying `HashMap`.
///
/// This is a public type alias because the underlying `HashMap` could be
/// `std::collections::HashMap` or `hashbrown::HashMap`, depending on the crate features enabled.
/// For that reason, you should refer to this type as `anymap::RawMap` rather than
/// `std::collections::HashMap` to avoid breakage if something else in your crate tree enables
/// hashbrown.
///
/// See also [`raw_hash_map`], an export of the corresponding `hash_map` module.
pub type RawMap<A> = HashMap<TypeId, Box<A>, BuildHasherDefault<TypeIdHasher>>;

/// A collection containing zero or one values for any given type and allowing convenient,
/// type-safe access to those values.
///
/// The type parameter `A` allows you to use a different value type; normally you will want it to
/// be `core::any::Any` (also known as `std::any::Any`), but there are other choices:
///
/// - If you want the entire map to be cloneable, use `CloneAny` instead of `Any`; with that, you
///   can only add types that implement `Clone` to the map.
/// - You can add on `+ Send` or `+ Send + Sync` (e.g. `Map<dyn Any + Send>`) to add those auto
///   traits.
///
/// Cumulatively, there are thus six forms of map:
///
/// - <code>[Map]&lt;dyn [core::any::Any]&gt;</code>, also spelled [`AnyMap`] for convenience.
/// - <code>[Map]&lt;dyn [core::any::Any] + Send&gt;</code>
/// - <code>[Map]&lt;dyn [core::any::Any] + Send + Sync&gt;</code>
/// - <code>[Map]&lt;dyn [CloneAny]&gt;</code>
/// - <code>[Map]&lt;dyn [CloneAny] + Send&gt;</code>
/// - <code>[Map]&lt;dyn [CloneAny] + Send + Sync&gt;</code>
///
/// ## Example
///
/// (Here using the [`AnyMap`] convenience alias; the first line could use
/// <code>[anymap::Map][Map]::&lt;[core::any::Any]&gt;::new()</code> instead if desired.)
///
/// ```rust
/// let mut data = anymap::AnyMap::new();
/// assert_eq!(data.get(), None::<&i32>);
/// data.insert(42i32);
/// assert_eq!(data.get(), Some(&42i32));
/// data.remove::<i32>();
/// assert_eq!(data.get::<i32>(), None);
///
/// #[derive(Clone, PartialEq, Debug)]
/// struct Foo {
///     str: String,
/// }
///
/// assert_eq!(data.get::<Foo>(), None);
/// data.insert(Foo { str: format!("foo") });
/// assert_eq!(data.get(), Some(&Foo { str: format!("foo") }));
/// data.get_mut::<Foo>().map(|foo| foo.str.push('t'));
/// assert_eq!(&*data.get::<Foo>().unwrap().str, "foot");
/// ```
///
/// Values containing non-static references are not permitted.
#[derive(Debug)]
pub struct Map<A: ?Sized + UncheckedAnyExt = dyn Any> {
    raw: RawMap<A>,
}

// #[derive(Clone)] would want A to implement Clone, but in reality it’s only Box<A> that can.
impl<A: ?Sized + UncheckedAnyExt> Clone for Map<A> where Box<A>: Clone {
    #[inline]
    fn clone(&self) -> Map<A> {
        Map {
            raw: self.raw.clone(),
        }
    }
}

/// The most common type of `Map`: just using `Any`; <code>[Map]&lt;dyn [Any]&gt;</code>.
///
/// Why is this a separate type alias rather than a default value for `Map<A>`? `Map::new()`
/// doesn’t seem to be happy to infer that it should go with the default value.
/// It’s a bit sad, really. Ah well, I guess this approach will do.
pub type AnyMap = Map<dyn Any>;

impl<A: ?Sized + UncheckedAnyExt> Default for Map<A> {
    #[inline]
    fn default() -> Map<A> {
        Map::new()
    }
}

impl<A: ?Sized + UncheckedAnyExt> Map<A> {
    /// Create an empty collection.
    #[inline]
    pub fn new() -> Map<A> {
        Map {
            raw: RawMap::with_hasher(Default::default()),
        }
    }

    /// Creates an empty collection with the given initial capacity.
    #[inline]
    pub fn with_capacity(capacity: usize) -> Map<A> {
        Map {
            raw: RawMap::with_capacity_and_hasher(capacity, Default::default()),
        }
    }

    /// Returns the number of elements the collection can hold without reallocating.
    #[inline]
    pub fn capacity(&self) -> usize {
        self.raw.capacity()
    }

    /// Reserves capacity for at least `additional` more elements to be inserted
    /// in the collection. The collection may reserve more space to avoid
    /// frequent reallocations.
    ///
    /// # Panics
    ///
    /// Panics if the new allocation size overflows `usize`.
    #[inline]
    pub fn reserve(&mut self, additional: usize) {
        self.raw.reserve(additional)
    }

    /// Shrinks the capacity of the collection as much as possible. It will drop
    /// down as much as possible while maintaining the internal rules
    /// and possibly leaving some space in accordance with the resize policy.
    #[inline]
    pub fn shrink_to_fit(&mut self) {
        self.raw.shrink_to_fit()
    }

    // Additional stable methods (as of 1.60.0-nightly) that could be added:
    // try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError>    (1.57.0)
    // shrink_to(&mut self, min_capacity: usize)                                   (1.56.0)

    /// Returns the number of items in the collection.
    #[inline]
    pub fn len(&self) -> usize {
        self.raw.len()
    }

    /// Returns true if there are no items in the collection.
    #[inline]
    pub fn is_empty(&self) -> bool {
        self.raw.is_empty()
    }

    /// Removes all items from the collection. Keeps the allocated memory for reuse.
    #[inline]
    pub fn clear(&mut self) {
        self.raw.clear()
    }

    /// Returns a reference to the value stored in the collection for the type `T`, if it exists.
    #[inline]
    pub fn get<T: IntoBox<A>>(&self) -> Option<&T> {
        self.raw.get(&TypeId::of::<T>())
            .map(|any| unsafe { any.downcast_ref_unchecked::<T>() })
    }

    /// Returns a mutable reference to the value stored in the collection for the type `T`,
    /// if it exists.
    #[inline]
    pub fn get_mut<T: IntoBox<A>>(&mut self) -> Option<&mut T> {
        self.raw.get_mut(&TypeId::of::<T>())
            .map(|any| unsafe { any.downcast_mut_unchecked::<T>() })
    }

    /// Sets the value stored in the collection for the type `T`.
    /// If the collection already had a value of type `T`, that value is returned.
    /// Otherwise, `None` is returned.
    #[inline]
    pub fn insert<T: IntoBox<A>>(&mut self, value: T) -> Option<T> {
        unsafe {
            self.raw.insert(TypeId::of::<T>(), value.into_box())
                .map(|any| *any.downcast_unchecked::<T>())
        }
    }

    // rustc 1.60.0-nightly has another method try_insert that would be nice to add when stable.

    /// Removes the `T` value from the collection,
    /// returning it if there was one or `None` if there was not.
    #[inline]
    pub fn remove<T: IntoBox<A>>(&mut self) -> Option<T> {
        self.raw.remove(&TypeId::of::<T>())
            .map(|any| *unsafe { any.downcast_unchecked::<T>() })
    }

    /// Returns true if the collection contains a value of type `T`.
    #[inline]
    pub fn contains<T: IntoBox<A>>(&self) -> bool {
        self.raw.contains_key(&TypeId::of::<T>())
    }

    /// Gets the entry for the given type in the collection for in-place manipulation
    #[inline]
    pub fn entry<T: IntoBox<A>>(&mut self) -> Entry<A, T> {
        match self.raw.entry(TypeId::of::<T>()) {
            raw_hash_map::Entry::Occupied(e) => Entry::Occupied(OccupiedEntry {
                inner: e,
                type_: PhantomData,
            }),
            raw_hash_map::Entry::Vacant(e) => Entry::Vacant(VacantEntry {
                inner: e,
                type_: PhantomData,
            }),
        }
    }

    /// Get access to the raw hash map that backs this.
    ///
    /// This will seldom be useful, but it’s conceivable that you could wish to iterate over all
    /// the items in the collection, and this lets you do that.
    ///
    /// To improve compatibility with Cargo features, interact with this map through the names
    /// [`anymap::RawMap`][RawMap] and [`anymap::raw_hash_map`][raw_hash_map], rather than through
    /// `std::collections::{HashMap, hash_map}` or `hashbrown::{HashMap, hash_map}`, for anything
    /// beyond self methods. Otherwise, if you use std and another crate in the tree enables
    /// hashbrown, your code will break.
    #[inline]
    pub fn as_raw(&self) -> &RawMap<A> {
        &self.raw
    }

    /// Get mutable access to the raw hash map that backs this.
    ///
    /// This will seldom be useful, but it’s conceivable that you could wish to iterate over all
    /// the items in the collection mutably, or drain or something, or *possibly* even batch
    /// insert, and this lets you do that.
    ///
    /// To improve compatibility with Cargo features, interact with this map through the names
    /// [`anymap::RawMap`][RawMap] and [`anymap::raw_hash_map`][raw_hash_map], rather than through
    /// `std::collections::{HashMap, hash_map}` or `hashbrown::{HashMap, hash_map}`, for anything
    /// beyond self methods. Otherwise, if you use std and another crate in the tree enables
    /// hashbrown, your code will break.
    ///
    /// # Safety
    ///
    /// If you insert any values to the raw map, the key (a `TypeId`) must match the value’s type,
    /// or *undefined behaviour* will occur when you access those values.
    ///
    /// (*Removing* entries is perfectly safe.)
    #[inline]
    pub unsafe fn as_raw_mut(&mut self) -> &mut RawMap<A> {
        &mut self.raw
    }

    /// Convert this into the raw hash map that backs this.
    ///
    /// This will seldom be useful, but it’s conceivable that you could wish to consume all the
    /// items in the collection and do *something* with some or all of them, and this lets you do
    /// that, without the `unsafe` that `.as_raw_mut().drain()` would require.
    ///
    /// To improve compatibility with Cargo features, interact with this map through the names
    /// [`anymap::RawMap`][RawMap] and [`anymap::raw_hash_map`][raw_hash_map], rather than through
    /// `std::collections::{HashMap, hash_map}` or `hashbrown::{HashMap, hash_map}`, for anything
    /// beyond self methods. Otherwise, if you use std and another crate in the tree enables
    /// hashbrown, your code will break.
    #[inline]
    pub fn into_raw(self) -> RawMap<A> {
        self.raw
    }

    /// Construct a map from a collection of raw values.
    ///
    /// You know what? I can’t immediately think of any legitimate use for this, especially because
    /// of the requirement of the `BuildHasherDefault<TypeIdHasher>` generic in the map.
    ///
    /// Perhaps this will be most practical as `unsafe { Map::from_raw(iter.collect()) }`, iter
    /// being an iterator over `(TypeId, Box<A>)` pairs. Eh, this method provides symmetry with
    /// `into_raw`, so I don’t care if literally no one ever uses it. I’m not even going to write a
    /// test for it, it’s so trivial.
    ///
    /// To improve compatibility with Cargo features, interact with this map through the names
    /// [`anymap::RawMap`][RawMap] and [`anymap::raw_hash_map`][raw_hash_map], rather than through
    /// `std::collections::{HashMap, hash_map}` or `hashbrown::{HashMap, hash_map}`, for anything
    /// beyond self methods. Otherwise, if you use std and another crate in the tree enables
    /// hashbrown, your code will break.
    ///
    /// # Safety
    ///
    /// For all entries in the raw map, the key (a `TypeId`) must match the value’s type,
    /// or *undefined behaviour* will occur when you access that entry.
    #[inline]
    pub unsafe fn from_raw(raw: RawMap<A>) -> Map<A> {
        Self { raw }
    }
}

impl<A: ?Sized + UncheckedAnyExt> Extend<Box<A>> for Map<A> {
    #[inline]
    fn extend<T: IntoIterator<Item = Box<A>>>(&mut self, iter: T) {
        for item in iter {
            let _ = self.raw.insert(item.type_id(), item);
        }
    }
}

/// A view into a single occupied location in an `Map`.
pub struct OccupiedEntry<'a, A: ?Sized + UncheckedAnyExt, V: 'a> {
    #[cfg(all(feature = "std", not(feature = "hashbrown")))]
    inner: raw_hash_map::OccupiedEntry<'a, TypeId, Box<A>>,
    #[cfg(feature = "hashbrown")]
    inner: raw_hash_map::OccupiedEntry<'a, TypeId, Box<A>, BuildHasherDefault<TypeIdHasher>>,
    type_: PhantomData<V>,
}

/// A view into a single empty location in an `Map`.
pub struct VacantEntry<'a, A: ?Sized + UncheckedAnyExt, V: 'a> {
    #[cfg(all(feature = "std", not(feature = "hashbrown")))]
    inner: raw_hash_map::VacantEntry<'a, TypeId, Box<A>>,
    #[cfg(feature = "hashbrown")]
    inner: raw_hash_map::VacantEntry<'a, TypeId, Box<A>, BuildHasherDefault<TypeIdHasher>>,
    type_: PhantomData<V>,
}

/// A view into a single location in an `Map`, which may be vacant or occupied.
pub enum Entry<'a, A: ?Sized + UncheckedAnyExt, V: 'a> {
    /// An occupied Entry
    Occupied(OccupiedEntry<'a, A, V>),
    /// A vacant Entry
    Vacant(VacantEntry<'a, A, V>),
}

impl<'a, A: ?Sized + UncheckedAnyExt, V: IntoBox<A>> Entry<'a, A, V> {
    /// Ensures a value is in the entry by inserting the default if empty, and returns
    /// a mutable reference to the value in the entry.
    #[inline]
    pub fn or_insert(self, default: V) -> &'a mut V {
        match self {
            Entry::Occupied(inner) => inner.into_mut(),
            Entry::Vacant(inner) => inner.insert(default),
        }
    }

    /// Ensures a value is in the entry by inserting the result of the default function if empty,
    /// and returns a mutable reference to the value in the entry.
    #[inline]
    pub fn or_insert_with<F: FnOnce() -> V>(self, default: F) -> &'a mut V {
        match self {
            Entry::Occupied(inner) => inner.into_mut(),
            Entry::Vacant(inner) => inner.insert(default()),
        }
    }

    /// Ensures a value is in the entry by inserting the default value if empty,
    /// and returns a mutable reference to the value in the entry.
    #[inline]
    pub fn or_default(self) -> &'a mut V where V: Default {
        match self {
            Entry::Occupied(inner) => inner.into_mut(),
            Entry::Vacant(inner) => inner.insert(Default::default()),
        }
    }

    /// Provides in-place mutable access to an occupied entry before any potential inserts into the
    /// map.
    #[inline]
    // std::collections::hash_map::Entry::and_modify doesn’t have #[must_use], I’ll follow suit.
    #[allow(clippy::return_self_not_must_use)]
    pub fn and_modify<F: FnOnce(&mut V)>(self, f: F) -> Self {
        match self {
            Entry::Occupied(mut inner) => {
                f(inner.get_mut());
                Entry::Occupied(inner)
            },
            Entry::Vacant(inner) => Entry::Vacant(inner),
        }
    }

    // Additional stable methods (as of 1.60.0-nightly) that could be added:
    // insert_entry(self, value: V) -> OccupiedEntry<'a, K, V>                             (1.59.0)
}

impl<'a, A: ?Sized + UncheckedAnyExt, V: IntoBox<A>> OccupiedEntry<'a, A, V> {
    /// Gets a reference to the value in the entry
    #[inline]
    pub fn get(&self) -> &V {
        unsafe { self.inner.get().downcast_ref_unchecked() }
    }

    /// Gets a mutable reference to the value in the entry
    #[inline]
    pub fn get_mut(&mut self) -> &mut V {
        unsafe { self.inner.get_mut().downcast_mut_unchecked() }
    }

    /// Converts the OccupiedEntry into a mutable reference to the value in the entry
    /// with a lifetime bound to the collection itself
    #[inline]
    pub fn into_mut(self) -> &'a mut V {
        unsafe { self.inner.into_mut().downcast_mut_unchecked() }
    }

    /// Sets the value of the entry, and returns the entry's old value
    #[inline]
    pub fn insert(&mut self, value: V) -> V {
        unsafe { *self.inner.insert(value.into_box()).downcast_unchecked() }
    }

    /// Takes the value out of the entry, and returns it
    #[inline]
    pub fn remove(self) -> V {
        unsafe { *self.inner.remove().downcast_unchecked() }
    }
}

impl<'a, A: ?Sized + UncheckedAnyExt, V: IntoBox<A>> VacantEntry<'a, A, V> {
    /// Sets the value of the entry with the VacantEntry's key,
    /// and returns a mutable reference to it
    #[inline]
    pub fn insert(self, value: V) -> &'a mut V {
        unsafe { self.inner.insert(value.into_box()).downcast_mut_unchecked() }
    }
}

/// A hasher designed to eke a little more speed out, given `TypeId`’s known characteristics.
///
/// Specifically, this is a no-op hasher that expects to be fed a u64’s worth of
/// randomly-distributed bits. It works well for `TypeId` (eliminating start-up time, so that my
/// get_missing benchmark is ~30ns rather than ~900ns, and being a good deal faster after that, so
/// that my insert_and_get_on_260_types benchmark is ~12μs instead of ~21.5μs), but will
/// panic in debug mode and always emit zeros in release mode for any other sorts of inputs, so
/// yeah, don’t use it! 😀
#[derive(Default)]
pub struct TypeIdHasher {
    value: u64,
}

impl Hasher for TypeIdHasher {
    #[inline]
    fn write(&mut self, bytes: &[u8]) {
        // This expects to receive exactly one 64-bit value, and there’s no realistic chance of
        // that changing, but I don’t want to depend on something that isn’t expressly part of the
        // contract for safety. But I’m OK with release builds putting everything in one bucket
        // if it *did* change (and debug builds panicking).
        debug_assert_eq!(bytes.len(), 8);
        let _ = bytes.try_into()
            .map(|array| self.value = u64::from_ne_bytes(array));
    }

    #[inline]
    fn finish(&self) -> u64 { self.value }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[derive(Clone, Debug, PartialEq)] struct A(i32);
    #[derive(Clone, Debug, PartialEq)] struct B(i32);
    #[derive(Clone, Debug, PartialEq)] struct C(i32);
    #[derive(Clone, Debug, PartialEq)] struct D(i32);
    #[derive(Clone, Debug, PartialEq)] struct E(i32);
    #[derive(Clone, Debug, PartialEq)] struct F(i32);
    #[derive(Clone, Debug, PartialEq)] struct J(i32);

    macro_rules! test_entry {
        ($name:ident, $init:ty) => {
            #[test]
            fn $name() {
                let mut map = <$init>::new();
                assert_eq!(map.insert(A(10)), None);
                assert_eq!(map.insert(B(20)), None);
                assert_eq!(map.insert(C(30)), None);
                assert_eq!(map.insert(D(40)), None);
                assert_eq!(map.insert(E(50)), None);
                assert_eq!(map.insert(F(60)), None);

                // Existing key (insert)
                match map.entry::<A>() {
                    Entry::Vacant(_) => unreachable!(),
                    Entry::Occupied(mut view) => {
                        assert_eq!(view.get(), &A(10));
                        assert_eq!(view.insert(A(100)), A(10));
                    }
                }
                assert_eq!(map.get::<A>().unwrap(), &A(100));
                assert_eq!(map.len(), 6);


                // Existing key (update)
                match map.entry::<B>() {
                    Entry::Vacant(_) => unreachable!(),
                    Entry::Occupied(mut view) => {
                        let v = view.get_mut();
                        let new_v = B(v.0 * 10);
                        *v = new_v;
                    }
                }
                assert_eq!(map.get::<B>().unwrap(), &B(200));
                assert_eq!(map.len(), 6);


                // Existing key (remove)
                match map.entry::<C>() {
                    Entry::Vacant(_) => unreachable!(),
                    Entry::Occupied(view) => {
                        assert_eq!(view.remove(), C(30));
                    }
                }
                assert_eq!(map.get::<C>(), None);
                assert_eq!(map.len(), 5);


                // Inexistent key (insert)
                match map.entry::<J>() {
                    Entry::Occupied(_) => unreachable!(),
                    Entry::Vacant(view) => {
                        assert_eq!(*view.insert(J(1000)), J(1000));
                    }
                }
                assert_eq!(map.get::<J>().unwrap(), &J(1000));
                assert_eq!(map.len(), 6);

                // Entry.or_insert on existing key
                map.entry::<B>().or_insert(B(71)).0 += 1;
                assert_eq!(map.get::<B>().unwrap(), &B(201));
                assert_eq!(map.len(), 6);

                // Entry.or_insert on nonexisting key
                map.entry::<C>().or_insert(C(300)).0 += 1;
                assert_eq!(map.get::<C>().unwrap(), &C(301));
                assert_eq!(map.len(), 7);
            }
        }
    }

    test_entry!(test_entry_any, AnyMap);
    test_entry!(test_entry_cloneany, Map<dyn CloneAny>);

    #[test]
    fn test_default() {
        let map: AnyMap = Default::default();
        assert_eq!(map.len(), 0);
    }

    #[test]
    fn test_clone() {
        let mut map: Map<dyn CloneAny> = Map::new();
        let _ = map.insert(A(1));
        let _ = map.insert(B(2));
        let _ = map.insert(D(3));
        let _ = map.insert(E(4));
        let _ = map.insert(F(5));
        let _ = map.insert(J(6));
        let map2 = map.clone();
        assert_eq!(map2.len(), 6);
        assert_eq!(map2.get::<A>(), Some(&A(1)));
        assert_eq!(map2.get::<B>(), Some(&B(2)));
        assert_eq!(map2.get::<C>(), None);
        assert_eq!(map2.get::<D>(), Some(&D(3)));
        assert_eq!(map2.get::<E>(), Some(&E(4)));
        assert_eq!(map2.get::<F>(), Some(&F(5)));
        assert_eq!(map2.get::<J>(), Some(&J(6)));
    }

    #[test]
    fn test_varieties() {
        fn assert_send<T: Send>() { }
        fn assert_sync<T: Sync>() { }
        fn assert_clone<T: Clone>() { }
        fn assert_debug<T: ::core::fmt::Debug>() { }
        assert_send::<Map<dyn Any + Send>>();
        assert_send::<Map<dyn Any + Send + Sync>>();
        assert_sync::<Map<dyn Any + Send + Sync>>();
        assert_debug::<Map<dyn Any>>();
        assert_debug::<Map<dyn Any + Send>>();
        assert_debug::<Map<dyn Any + Send + Sync>>();
        assert_send::<Map<dyn CloneAny + Send>>();
        assert_send::<Map<dyn CloneAny + Send + Sync>>();
        assert_sync::<Map<dyn CloneAny + Send + Sync>>();
        assert_clone::<Map<dyn CloneAny + Send>>();
        assert_clone::<Map<dyn CloneAny + Send + Sync>>();
        assert_clone::<Map<dyn CloneAny + Send + Sync>>();
        assert_debug::<Map<dyn CloneAny>>();
        assert_debug::<Map<dyn CloneAny + Send>>();
        assert_debug::<Map<dyn CloneAny + Send + Sync>>();
    }

    #[test]
    fn type_id_hasher() {
        #[cfg(not(feature = "std"))]
        use alloc::vec::Vec;
        use core::hash::Hash;
        fn verify_hashing_with(type_id: TypeId) {
            let mut hasher = TypeIdHasher::default();
            type_id.hash(&mut hasher);
            // SAFETY: u64 is valid for all bit patterns.
            assert_eq!(hasher.finish(), unsafe { core::mem::transmute::<TypeId, u64>(type_id) });
        }
        // Pick a variety of types, just to demonstrate it’s all sane. Normal, zero-sized, unsized, &c.
        verify_hashing_with(TypeId::of::<usize>());
        verify_hashing_with(TypeId::of::<()>());
        verify_hashing_with(TypeId::of::<str>());
        verify_hashing_with(TypeId::of::<&str>());
        verify_hashing_with(TypeId::of::<Vec<u8>>());
    }
}