1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
mod convert;

///# aHash
///
/// This hashing algorithm is intended to be a DOS resistant, hardware specific, alternative to FxHash.
/// It provides a high speed hash algorithm, but unlike FxHash it is a Keyed hash. This allows it to be used
/// in a HashMap without allowing for the possibility that an malicious user can induce a collision.
///
/// # How aHash works
///
/// aHash uses the hardware AES instruction on x86 processors to provide a keyed hash function.
/// It uses two rounds of AES per hash. So it should not be considered cryptographically secure.

use crate::convert::Convert;
use std::collections::{HashMap};
use std::default::Default;
use std::hash::{BuildHasherDefault, Hasher};
use std::mem::transmute;

/// A builder for an AHasher that uses a thread local random number to generate the keys.
/// To controll the keys uses instead call [AHasher](struct.AHasher.html#method.new_with_keys)
pub type ABuildHasher = BuildHasherDefault<AHasher>;

/// A `HashMap` using a default aHash hasher.
pub type AHashMap<K, V> = HashMap<K, V, ABuildHasher>;

const DEFAULT_KEYS: [u64; 2] = [0x6c62_272e_07bb_0142, 0x517c_c1b7_2722_0a95];

#[derive(Debug, Clone)]
pub struct AHasher {
    buffer: [u64; 2],
}

impl AHasher {
    pub fn new_with_keys(key0: u64, key1: u64) -> AHasher {
        AHasher { buffer:[key0, key1] }
    }
}

impl Default for AHasher {
    #[inline]
    fn default() -> AHasher {
        AHasher { buffer: [DEFAULT_KEYS[0], DEFAULT_KEYS[1]] }
    }
}

macro_rules! as_array {
    ($input:expr, $len:expr) => {{
        {
            #[inline]
            fn as_array<T>(slice: &[T]) -> &[T; $len] {
                assert_eq!(slice.len(), $len);
                unsafe {
                    &*(slice.as_ptr() as *const [_; $len])
                }
            }
            as_array($input)
        }
    }}
}

//Note that each of the write_XX methods passes the arguments slightly differently to hash.
//This is done so that an u8 and a u64 that both contain the same value will produce different hashes.
impl Hasher for AHasher {
    #[inline]
    fn write_u8(&mut self, i: u8) {
        self.buffer = hash([self.buffer[1], self.buffer[0] ^ i as u64].convert(), self.buffer.convert()).convert();

    }

    #[inline]
    fn write_u16(&mut self, i: u16) {
        self.buffer = hash([self.buffer[1] ^ i as u64, self.buffer[0]].convert(), self.buffer.convert()).convert();

    }

    #[inline]
    fn write_u32(&mut self, i: u32) {
        self.buffer = hash([self.buffer[0], self.buffer[1]  ^ i as u64].convert(), self.buffer.convert()).convert();
    }

    #[inline]
    fn write_u128(&mut self, i: u128) {
        let buffer: u128 = self.buffer.convert(); 
        self.buffer = hash((buffer ^ i).convert(), self.buffer.convert()).convert();
    }

    #[inline]
    fn write_usize(&mut self, i: usize) {
        self.write_u64(i as u64);
    }

    #[inline]
    fn write_u64(&mut self, i: u64) {
        self.buffer = hash([self.buffer[0] ^ i, self.buffer[1]].convert(), self.buffer.convert()).convert();
    }
    #[inline]
    fn write(&mut self, input: &[u8]) {
        let mut data = input;
        let mut remainder_low: u64 = self.buffer[0];
        let mut remainder_hi: u64 = self.buffer[1];
        if data.len() >= 16 {
            while data.len() >= 16 {
                let (block, rest) = data.split_at(16);
                let block: &[u8; 16] = as_array!(block, 16);
                self.buffer = hash(self.buffer.convert(), *block).convert();
                data = rest;
            }
            self.buffer = hash(self.buffer.convert(), self.buffer.convert()).convert();
        }
        if data.len() >= 8 {
            let (block, rest) = data.split_at(8);
            let val: u64 = as_array!(block, 8).convert();
            remainder_hi ^= val;
            remainder_hi = remainder_hi.rotate_left(32);
            data = rest;
        }
        if data.len() >= 4 {
            let (block, rest) = data.split_at(4);
            let val: u32 = as_array!(block, 4).convert();
            remainder_low ^= val as u64;
            remainder_low = remainder_low.rotate_left(32);
            data = rest;
        }
        if data.len() >= 2 {
            let (block, rest) = data.split_at(2);
            let val: u16 = as_array!(block, 2).convert();
            remainder_low ^= val as u64;
            remainder_low = remainder_low.rotate_left(16);
            data = rest;
        }
        if data.len() >= 1 {
            remainder_low ^= data[0] as u64;
            remainder_low = remainder_low.rotate_left(8);
        }
        self.buffer = hash([remainder_low, remainder_hi].convert(), self.buffer.convert()).convert();
    }
    #[inline]
    fn finish(&self) -> u64 {
        let result: [u64; 2] = hash(self.buffer.convert(), self.buffer.convert()).convert();
        result[0]//.wrapping_add(result[1])
    }
}

#[inline(always)]
fn hash(value: [u8; 16], xor: [u8; 16]) -> [u8; 16] {
    #[cfg(target_arch = "x86")]
    use core::arch::x86::*;
    #[cfg(target_arch = "x86_64")]
    use std::arch::x86_64::*;
    unsafe {
        let value = transmute(value);
        transmute(_mm_aesenc_si128(value, transmute(xor)))
    }
}

#[cfg(all(
    any(target_arch = "x86", target_arch = "x86_64"),
    target_feature = "aes"
))]
#[cfg(test)]
mod tests {
    use crate::convert::Convert;
    use crate::*;
    #[test]
    fn test_hash() {
        let mut result: [u64; 2] = [0x6c62272e07bb0142, 0x62b821756295c58d];
        let value: [u64; 2] = [1 << 32, 0xFEDCBA9876543210];
        result = hash(value.convert(), result.convert()).convert();
        result = hash(result.convert(), result.convert()).convert();
        let mut result2: [u64; 2] = [0x6c62272e07bb0142, 0x62b821756295c58d];
        let value2: [u64; 2] = [1, 0xFEDCBA9876543210];
        result2 = hash(value2.convert(), result2.convert()).convert();
        result2 = hash(result2.convert(), result.convert()).convert();
        let result: [u8; 16] = result.convert();
        let result2: [u8; 16] = result2.convert();
        assert_ne!(hex::encode(result), hex::encode(result2));
    }
    #[test]
    fn test_conversion() {
        let input: &[u8] = "dddddddd".as_bytes();
        let bytes: u64 = as_array!(input, 8).convert();
        assert_eq!(bytes, 0x6464646464646464);
    }

}