1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
use std::cell::{Cell, RefCell};
use std::collections::HashMap;
use std::sync::atomic::{AtomicUsize, Ordering};
use std::{fmt, thread};

use futures::sync::mpsc::{unbounded, UnboundedReceiver, UnboundedSender};
use futures::sync::oneshot::{channel, Canceled, Sender};
use futures::{future, Async, Future, IntoFuture, Poll, Stream};
use tokio_current_thread::spawn;

use crate::builder::Builder;
use crate::system::System;

use copyless::BoxHelper;

thread_local!(
    static ADDR: RefCell<Option<Arbiter>> = RefCell::new(None);
    static RUNNING: Cell<bool> = Cell::new(false);
    static Q: RefCell<Vec<Box<Future<Item = (), Error = ()>>>> = RefCell::new(Vec::new());
);

pub(crate) static COUNT: AtomicUsize = AtomicUsize::new(0);

pub(crate) enum ArbiterCommand {
    Stop,
    Execute(Box<Future<Item = (), Error = ()> + Send>),
    ExecuteFn(Box<FnExec>),
}

impl fmt::Debug for ArbiterCommand {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match self {
            ArbiterCommand::Stop => write!(f, "ArbiterCommand::Stop"),
            ArbiterCommand::Execute(_) => write!(f, "ArbiterCommand::Execute"),
            ArbiterCommand::ExecuteFn(_) => write!(f, "ArbiterCommand::ExecuteFn"),
        }
    }
}

#[derive(Debug, Clone)]
/// Arbiters provide an asynchronous execution environment for actors, functions
/// and futures. When an Arbiter is created, they spawn a new OS thread, and
/// host an event loop. Some Arbiter functions execute on the current thread.
pub struct Arbiter(UnboundedSender<ArbiterCommand>);

impl Default for Arbiter {
    fn default() -> Self {
        Self::new()
    }
}

impl Arbiter {
    pub(crate) fn new_system() -> Self {
        let (tx, rx) = unbounded();

        let arb = Arbiter(tx);
        ADDR.with(|cell| *cell.borrow_mut() = Some(arb.clone()));
        RUNNING.with(|cell| cell.set(false));
        Arbiter::spawn(ArbiterController { stop: None, rx });

        arb
    }

    /// Returns the current thread's arbiter's address. If no Arbiter is present, then this
    /// function will panic!
    pub fn current() -> Arbiter {
        ADDR.with(|cell| match *cell.borrow() {
            Some(ref addr) => addr.clone(),
            None => panic!("Arbiter is not running"),
        })
    }

    /// Stop arbiter from continuing it's event loop.
    pub fn stop(&self) {
        let _ = self.0.unbounded_send(ArbiterCommand::Stop);
    }

    /// Spawn new thread and run event loop in spawned thread.
    /// Returns address of newly created arbiter.
    pub fn new() -> Arbiter {
        let id = COUNT.fetch_add(1, Ordering::Relaxed);
        let name = format!("actix-rt:worker:{}", id);
        let sys = System::current();
        let (arb_tx, arb_rx) = unbounded();
        let arb_tx2 = arb_tx.clone();

        let _ = thread::Builder::new().name(name.clone()).spawn(move || {
            let mut rt = Builder::new().build_rt().expect("Can not create Runtime");
            let arb = Arbiter(arb_tx);

            let (stop, stop_rx) = channel();
            RUNNING.with(|cell| cell.set(true));

            System::set_current(sys);

            // start arbiter controller
            rt.spawn(ArbiterController {
                stop: Some(stop),
                rx: arb_rx,
            });
            ADDR.with(|cell| *cell.borrow_mut() = Some(arb.clone()));

            // register arbiter
            let _ = System::current()
                .sys()
                .unbounded_send(SystemCommand::RegisterArbiter(id, arb.clone()));

            // run loop
            let _ = match rt.block_on(stop_rx) {
                Ok(code) => code,
                Err(_) => 1,
            };

            // unregister arbiter
            let _ = System::current()
                .sys()
                .unbounded_send(SystemCommand::UnregisterArbiter(id));
        });

        Arbiter(arb_tx2)
    }

    pub(crate) fn run_system() {
        RUNNING.with(|cell| cell.set(true));
        Q.with(|cell| {
            let mut v = cell.borrow_mut();
            for fut in v.drain(..) {
                spawn(fut);
            }
        });
    }

    pub(crate) fn stop_system() {
        RUNNING.with(|cell| cell.set(false));
    }

    /// Spawn a future on the current thread. This does not create a new Arbiter
    /// or Arbiter address, it is simply a helper for spawning futures on the current
    /// thread.
    pub fn spawn<F>(future: F)
    where
        F: Future<Item = (), Error = ()> + 'static,
    {
        RUNNING.with(move |cell| {
            if cell.get() {
                spawn(Box::alloc().init(future));
            } else {
                Q.with(move |cell| cell.borrow_mut().push(Box::alloc().init(future)));
            }
        });
    }

    /// Executes a future on the current thread. This does not create a new Arbiter
    /// or Arbiter address, it is simply a helper for executing futures on the current
    /// thread.
    pub fn spawn_fn<F, R>(f: F)
    where
        F: FnOnce() -> R + 'static,
        R: IntoFuture<Item = (), Error = ()> + 'static,
    {
        Arbiter::spawn(future::lazy(f))
    }

    /// Send a future to the Arbiter's thread, and spawn it.
    pub fn send<F>(&self, future: F)
    where
        F: Future<Item = (), Error = ()> + Send + 'static,
    {
        let _ = self
            .0
            .unbounded_send(ArbiterCommand::Execute(Box::new(future)));
    }

    /// Send a function to the Arbiter's thread, and execute it. Any result from the function
    /// is discarded.
    pub fn exec_fn<F>(&self, f: F)
    where
        F: FnOnce() + Send + 'static,
    {
        let _ = self
            .0
            .unbounded_send(ArbiterCommand::ExecuteFn(Box::new(move || {
                let _ = f();
            })));
    }

    /// Send a function to the Arbiter's thread. This function will be executed asynchronously.
    /// A future is created, and when resolved will contain the result of the function sent
    /// to the Arbiters thread.
    pub fn exec<F, R>(&self, f: F) -> impl Future<Item = R, Error = Canceled>
    where
        F: FnOnce() -> R + Send + 'static,
        R: Send + 'static,
    {
        let (tx, rx) = channel();
        let _ = self
            .0
            .unbounded_send(ArbiterCommand::ExecuteFn(Box::new(move || {
                if !tx.is_canceled() {
                    let _ = tx.send(f());
                }
            })));
        rx
    }
}

struct ArbiterController {
    stop: Option<Sender<i32>>,
    rx: UnboundedReceiver<ArbiterCommand>,
}

impl Drop for ArbiterController {
    fn drop(&mut self) {
        if thread::panicking() {
            eprintln!("Panic in Arbiter thread, shutting down system.");
            if System::current().stop_on_panic() {
                System::current().stop_with_code(1)
            }
        }
    }
}

impl Future for ArbiterController {
    type Item = ();
    type Error = ();

    fn poll(&mut self) -> Poll<Self::Item, Self::Error> {
        loop {
            match self.rx.poll() {
                Ok(Async::Ready(None)) | Err(_) => return Ok(Async::Ready(())),
                Ok(Async::Ready(Some(item))) => match item {
                    ArbiterCommand::Stop => {
                        if let Some(stop) = self.stop.take() {
                            let _ = stop.send(0);
                        };
                        return Ok(Async::Ready(()));
                    }
                    ArbiterCommand::Execute(fut) => {
                        spawn(fut);
                    }
                    ArbiterCommand::ExecuteFn(f) => {
                        f.call_box();
                    }
                },
                Ok(Async::NotReady) => return Ok(Async::NotReady),
            }
        }
    }
}

#[derive(Debug)]
pub(crate) enum SystemCommand {
    Exit(i32),
    RegisterArbiter(usize, Arbiter),
    UnregisterArbiter(usize),
}

#[derive(Debug)]
pub(crate) struct SystemArbiter {
    stop: Option<Sender<i32>>,
    commands: UnboundedReceiver<SystemCommand>,
    arbiters: HashMap<usize, Arbiter>,
}

impl SystemArbiter {
    pub(crate) fn new(stop: Sender<i32>, commands: UnboundedReceiver<SystemCommand>) -> Self {
        SystemArbiter {
            commands,
            stop: Some(stop),
            arbiters: HashMap::new(),
        }
    }
}

impl Future for SystemArbiter {
    type Item = ();
    type Error = ();

    fn poll(&mut self) -> Poll<Self::Item, Self::Error> {
        loop {
            match self.commands.poll() {
                Ok(Async::Ready(None)) | Err(_) => return Ok(Async::Ready(())),
                Ok(Async::Ready(Some(cmd))) => match cmd {
                    SystemCommand::Exit(code) => {
                        // stop arbiters
                        for arb in self.arbiters.values() {
                            arb.stop();
                        }
                        // stop event loop
                        if let Some(stop) = self.stop.take() {
                            let _ = stop.send(code);
                        }
                    }
                    SystemCommand::RegisterArbiter(name, hnd) => {
                        self.arbiters.insert(name, hnd);
                    }
                    SystemCommand::UnregisterArbiter(name) => {
                        self.arbiters.remove(&name);
                    }
                },
                Ok(Async::NotReady) => return Ok(Async::NotReady),
            }
        }
    }
}

pub trait FnExec: Send + 'static {
    fn call_box(self: Box<Self>);
}

impl<F> FnExec for F
where
    F: FnOnce() + Send + 'static,
{
    #[cfg_attr(feature = "cargo-clippy", allow(boxed_local))]
    fn call_box(self: Box<Self>) {
        (*self)()
    }
}