1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
use crate::const_utils::{
    min_usize,
};

use std::iter::ExactSizeIterator;


#[must_use="FieldAccessibility is returned by value by every mutating method."]
#[derive(StableAbi)]
#[sabi(inside_abi_stable_crate)]
#[derive(Debug,Copy,Clone,PartialEq,Eq)]
#[repr(transparent)]
pub struct FieldAccessibility{
    bits:u64,
}


/// Whether a field is accessible.
#[derive(StableAbi)]
#[sabi(inside_abi_stable_crate)]
#[derive(Debug,Copy,Clone,PartialEq,Eq)]
#[repr(C)]
pub enum IsAccessible{
    No=0,
    Yes=1,
}

impl IsAccessible{
    pub const fn new(is_accessible:bool)->Self{
        [IsAccessible::No,IsAccessible::Yes][is_accessible as usize]
    }
    pub const fn is_accessible(self)->bool{
        self as usize!=0
    }
}


impl FieldAccessibility{
    /// Creates a FieldAccessibility where the first `field_count` fields are accessible.
    #[inline]
    pub const fn with_field_count(field_count:usize)->Self{
        let (n,overflowed)=1u64.overflowing_shl(field_count as u32);
        Self{
            bits:n.wrapping_sub([1,2][overflowed as usize])
        }
    }

    /// Creates a FieldAccessibility where no field is accessible.
    #[inline]
    pub const fn empty()->Self{
        Self{
            bits:0,
        }
    }

    #[inline]
    const fn index_to_bits(index:usize)->u64{
        let index=index as u32;
        [0,1u64.wrapping_shl(index)][(index <= 63) as usize]
    }

    /// Sets the accessibility of a field based on `cond`,
    /// on IsAccessible::Yes the field becomes accessible,
    /// on IsAccessible::No the field becomes inaccessible.
    #[inline]
    pub const fn set_accessibility(mut self,index:usize,cond:IsAccessible)->Self{
        let bits=Self::index_to_bits(index);
        self.bits=[self.bits&!bits,self.bits|bits][cond as usize];
        self
    }

    /// Truncates self so that only the first `length` are accessible.
    pub const fn truncated(mut self,length:usize)->Self{
        let mask=Self::with_field_count(length).bits();
        self.bits&=mask;
        self
    }

    /// Queries whether the field at the `index` position is accessible.
    #[inline]
    pub const fn is_accessible(self,index:usize)->bool{
        let bits=Self::index_to_bits(index);
        (self.bits&bits)!=0
    }

    #[inline]
    pub const fn bits(self)->u64{
        self.bits
    }

    pub const fn iter_field_count(self,field_count:usize)->FieldAccessibilityIter{
        FieldAccessibilityIter{
            field_count:min_usize(64,field_count),
            bits:self.bits()
        }
    }

    pub fn is_compatible(self,other:Self,field_count:usize)->bool{
        let all_accessible=Self::with_field_count(field_count);
        let implication=(!self.bits|other.bits)&all_accessible.bits;
        println!(
            "self:{:b}\nother:{:b}\nall_accessible:{:b}\nimplication:{:b}", 
            self.bits,
            other.bits,
            all_accessible.bits,
            implication,
        );
        implication==all_accessible.bits
    }

}


////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////



#[derive(Debug,Clone)]
pub struct FieldAccessibilityIter{
    pub field_count:usize,
    pub bits:u64,
}


impl FieldAccessibilityIter{
    #[inline]
    fn next_inner<F>(&mut self,f:F)->Option<IsAccessible>
    where F:FnOnce(&mut Self)->bool
    {
        if self.field_count==0 {
            None
        }else{
            Some(IsAccessible::new(f(self)))
        }
    }
}
impl Iterator for FieldAccessibilityIter{
    type Item=IsAccessible;

    fn next(&mut self)->Option<IsAccessible>{
        self.next_inner(|this|{
            this.field_count-=1;
            let cond=(this.bits&1)!=0;
            this.bits>>=1;
            cond
        })
    }

    #[inline]
    fn size_hint(&self)->(usize,Option<usize>) {
        (self.len(),Some(self.len()))
    }
}


impl DoubleEndedIterator for FieldAccessibilityIter{
    fn next_back(&mut self)->Option<IsAccessible>{
        self.next_inner(|this|{
            this.field_count-=1;
            (this.bits&(1<<this.field_count))!=0
        })
    }
}

impl ExactSizeIterator for FieldAccessibilityIter{
    #[inline]
    fn len(&self)->usize{
        self.field_count
    }
}



////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////



#[cfg(test)]
mod tests{
    use super::*;
    
    #[test]
    fn with_field_count(){
        for count in 0..=64 {
            let accessibility=FieldAccessibility::with_field_count(count);

            for i in 0..64 {
                assert_eq!(
                    accessibility.is_accessible(i),
                    i < count,
                    "count={} accessibility={:b}",
                    count,
                    accessibility.bits()
                );
            }
        }
    }
    
    #[test]
    fn set_accessibility(){
        let mut accessibility=FieldAccessibility::with_field_count(8);
        assert_eq!(0b_1111_1111,accessibility.bits());
        
        {
            let mut accessibility=accessibility;
            
            accessibility=accessibility.set_accessibility(0,IsAccessible::No);
            assert_eq!(0b_1111_1110,accessibility.bits());

            accessibility=accessibility.set_accessibility(2,IsAccessible::No);
            assert_eq!(0b_1111_1010,accessibility.bits());

            accessibility=accessibility.set_accessibility(1,IsAccessible::No);
            assert_eq!(0b_1111_1000,accessibility.bits());
        }
        
        accessibility=accessibility.set_accessibility(3,IsAccessible::No);
        assert_eq!(0b_1111_0111,accessibility.bits());
        
        accessibility=accessibility.set_accessibility(5,IsAccessible::No);
        assert_eq!(0b_1101_0111,accessibility.bits());
        
        accessibility=accessibility.set_accessibility(6,IsAccessible::No);
        assert_eq!(0b_1001_0111,accessibility.bits());
        
        accessibility=accessibility.set_accessibility(10,IsAccessible::Yes);
        assert_eq!(0b_0100_1001_0111,accessibility.bits());
            
        accessibility=accessibility.set_accessibility(63,IsAccessible::Yes);
        assert_eq!((1<<63)|0b_0100_1001_0111,accessibility.bits());
        
    }
    
    
    #[test]
    fn empty(){
        let accessibility=FieldAccessibility::empty();

        for i in 0..64 {
            assert!(
                !accessibility.is_accessible(i),
                "i={} accessibility={:b}",
                i,
                accessibility.bits()
            );
        }
    }
    
    #[test]
    fn iter_test(){
        let iter=FieldAccessibility::with_field_count(8)
            .set_accessibility(1,IsAccessible::No)
            .set_accessibility(3,IsAccessible::No)
            .iter_field_count(10)
            .map(IsAccessible::is_accessible);
        
        let expected=vec![true,false,true,false,true,true,true,true,false,false];
        let expected_rev=expected.iter().cloned().rev().collect::<Vec<bool>>();

        assert_eq!(
            iter.clone().collect::<Vec<bool>>(),
            expected
        );
        
        assert_eq!(
            iter.clone().rev().collect::<Vec<bool>>(),
            expected_rev
        );
    }
    
}