1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
//
// A rust binding for the GSL library by Guillaume Gomez (guillaume1.gomez@gmail.com)
//

/*!
#Vectors

Vectors are defined by a gsl_vector structure which describes a slice of a block. Different vectors can be created which point to the 
same block. A vector slice is a set of equally-spaced elements of an area of memory.

The gsl_vector structure contains five components, the size, the stride, a pointer to the memory where the elements are stored, data, a 
pointer to the block owned by the vector, block, if any, and an ownership flag, owner. The structure is very simple and looks like this,

```C
typedef struct
{
  size_t size;
  size_t stride;
  double * data;
  gsl_block * block;
  int owner;
} gsl_vector;
```

The size is simply the number of vector elements. The range of valid indices runs from 0 to size-1. The stride is the step-size from one 
element to the next in physical memory, measured in units of the appropriate datatype. The pointer data gives the location of the first 
element of the vector in memory. The pointer block stores the location of the memory block in which the vector elements are located (if 
any). If the vector owns this block then the owner field is set to one and the block will be deallocated when the vector is freed. If the 
vector points to a block owned by another object then the owner field is zero and any underlying block will not be deallocated with the 
vector.
!*/

use std::fmt;
use std::fmt::{Formatter, Debug};
use ffi;
use enums;

pub struct VectorView {
    v: ffi::gsl_vector_view
}

impl VectorView {
    /// These functions return a vector view of a subvector of another vector v. The start of the new vector is offset by offset elements
    /// from the start of the original vector. The new vector has n elements. Mathematically, the i-th element of the new vector v’ is given by,
    /// 
    /// v'(i) = v->data[(offset + i)*v->stride]
    /// 
    /// where the index i runs from 0 to n-1.
    /// 
    /// The data pointer of the returned vector struct is set to null if the combined parameters (offset,n) overrun the end of the original
    /// vector.
    /// 
    /// The new vector is only a view of the block underlying the original vector, v. The block containing the elements of v is not owned by
    /// the new vector. When the view goes out of scope the original vector v and its block will continue to exist. The original memory can
    /// only be deallocated by freeing the original vector. Of course, the original vector should not be deallocated while the view is still
    /// in use.
    /// 
    /// The function gsl_vector_const_subvector is equivalent to gsl_vector_subvector but can be used for vectors which are declared const.
    pub fn from_vector(v: &VectorF64, offset: usize, n: usize) -> VectorView {
        unsafe {
            VectorView {
                v: ffi::gsl_vector_subvector(v.vec, offset, n)
            }
        }
    }

    /// These functions return a vector view of a subvector of another vector v with an additional stride argument. The subvector is formed
    /// in the same way as for gsl_vector_subvector but the new vector has n elements with a step-size of stride from one element to the
    /// next in the original vector. Mathematically, the i-th element of the new vector v’ is given by,
    /// 
    /// v'(i) = v->data[(offset + i*stride)*v->stride]
    /// where the index i runs from 0 to n-1.
    /// 
    /// Note that subvector views give direct access to the underlying elements of the original vector. For example, the following code will
    /// zero the even elements of the vector v of length n, while leaving the odd elements untouched,
    /// 
    /// ```C
    /// gsl_vector_view v_even 
    ///   = gsl_vector_subvector_with_stride (v, 0, 2, n/2);
    /// gsl_vector_set_zero (&v_even.vector);
    /// ```
    /// A vector view can be passed to any subroutine which takes a vector argument just as a directly allocated vector would be, using &view.vector.
    /// For example, the following code computes the norm of the odd elements of v using the BLAS routine DNRM2,
    /// 
    /// ```C
    /// gsl_vector_view v_odd 
    ///   = gsl_vector_subvector_with_stride (v, 1, 2, n/2);
    /// double r = gsl_blas_dnrm2 (&v_odd.vector);
    /// ```
    /// The function gsl_vector_const_subvector_with_stride is equivalent to gsl_vector_subvector_with_stride but can be used for vectors which
    /// are declared const.
    pub fn from_vector_with_stride(v: &VectorF64, offset: usize, stride: usize, n: usize) -> VectorView {
        unsafe {
            VectorView {
                v: ffi::gsl_vector_subvector_with_stride(v.vec, offset, stride, n)
            }
        }
    }

    /// These functions return a vector view of an array. The start of the new vector is given by base and has n elements. Mathematically,
    /// the i-th element of the new vector v’ is given by,
    /// 
    /// v'(i) = base[i]
    /// 
    /// where the index i runs from 0 to n-1.
    /// 
    /// The array containing the elements of v is not owned by the new vector view. When the view goes out of scope the original array will
    /// continue to exist. The original memory can only be deallocated by freeing the original pointer base. Of course, the original array
    /// should not be deallocated while the view is still in use.
    /// 
    /// The function gsl_vector_const_view_array is equivalent to gsl_vector_view_array but can be used for arrays which are declared const.
    pub fn from_array(base: &mut [f64]) -> VectorView {
        unsafe {
            VectorView {
                v: ffi::gsl_vector_view_array(base.as_mut_ptr(), base.len() as usize)
            }
        }
    }

    /// These functions return a vector view of an array base with an additional stride argument. The subvector is formed in the same way as
    /// for gsl_vector_view_array but the new vector has n elements with a step-size of stride from one element to the next in the original
    /// array. Mathematically, the i-th element of the new vector v’ is given by,
    /// 
    /// v'(i) = base[i*stride]
    /// 
    /// where the index i runs from 0 to n-1.
    /// 
    /// Note that the view gives direct access to the underlying elements of the original array. A vector view can be passed to any subroutine
    /// which takes a vector argument just as a directly allocated vector would be, using &view.vector.
    /// 
    /// The function gsl_vector_const_view_array_with_stride is equivalent to gsl_vector_view_array_with_stride but can be used for arrays
    /// which are declared const.
    pub fn from_array_with_stride(base: &mut [f64], stride: usize) -> VectorView {
        unsafe {
            VectorView {
                v: ffi::gsl_vector_view_array_with_stride(base.as_mut_ptr(), stride, base.len() as usize)
            }
        }
    }

    pub fn vector(&mut self) -> VectorF64 {
        unsafe {
            VectorF64 {
                vec: ::std::mem::transmute(&mut self.v),
                can_free: false,
            }
        }
    }
}

pub struct VectorF32 {
    vec: *mut ffi::gsl_vector_float,
    can_free: bool,
}

impl VectorF32 {
    /// create a new VectorF32 with all elements set to zero
    pub fn new(size: usize) -> Option<VectorF32> {
        let tmp = unsafe { ffi::gsl_vector_float_calloc(size) };

        if tmp.is_null() {
            None
        } else {
            Some(VectorF32 {
                vec: tmp,
                can_free: true,
            })
        }
    }

    pub fn from_slice(slice: &[f32]) -> Option<VectorF32> {
        let tmp = unsafe { ffi::gsl_vector_float_alloc(slice.len() as usize) };

        if tmp.is_null() {
            None
        } else {
            let mut v = VectorF32 {
                vec: tmp,
                can_free: true,
            };
            let mut pos = 0usize;

            for tmp in slice.iter() {
                v.set(pos, *tmp);
                pos += 1;
            }
            Some(v)
        }
    }

    pub fn len(&self) -> usize {
        if self.vec.is_null() {
            0usize
        } else {
            unsafe { (*self.vec).size }
        }
    }

    /// This function returns the i-th element of a vector v. If i lies outside the allowed range of 0 to n-1 then the error handler is invoked and 0 is returned.
    pub fn get(&self, i: usize) -> f32 {
        unsafe { ffi::gsl_vector_float_get(self.vec, i) }
    }

    /// This function sets the value of the i-th element of a vector v to x. If i lies outside the allowed range of 0 to n-1 then the error handler is invoked.
    pub fn set(&mut self, i: usize, x: f32) -> &mut VectorF32 {
        unsafe { ffi::gsl_vector_float_set(self.vec, i, x) };
        self
    }

    /// This function sets all the elements of the vector v to the value x.
    pub fn set_all(&mut self, x: f32) -> &mut VectorF32 {
        unsafe { ffi::gsl_vector_float_set_all(self.vec, x) };
        self
    }

    /// This function sets all the elements of the vector v to zero.
    pub fn set_zero(&mut self) -> &mut VectorF32 {
        unsafe { ffi::gsl_vector_float_set_zero(self.vec) };
        self
    }

    /// This function makes a basis vector by setting all the elements of the vector v to zero except for the i-th element which is set to one.
    pub fn set_basis(&mut self, i: usize) -> &mut VectorF32 {
        unsafe { ffi::gsl_vector_float_set_basis(self.vec, i) };
        self
    }

    /// This function copies the elements of the other vector into the self vector. The two vectors must have the same length.
    pub fn copy_from(&mut self, other: &VectorF32) -> enums::Value {
        unsafe { ffi::gsl_vector_float_memcpy(self.vec, other.vec) }
    }

    /// This function copies the elements of the self vector into the other vector. The two vectors must have the same length.
    pub fn copy_to(&self, other: &mut VectorF32) -> enums::Value {
        unsafe { ffi::gsl_vector_float_memcpy(other.vec, self.vec) }
    }

    /// This function exchanges the elements of the vectors by copying. The two vectors must have the same length.
    pub fn swap(&mut self, other: &mut VectorF32) -> enums::Value {
        unsafe { ffi::gsl_vector_float_swap(other.vec, self.vec) }
    }

    /// This function exchanges the i-th and j-th elements of the vector v in-place.
    pub fn swap_elements(&mut self, i: usize, j: usize) -> enums::Value {
        unsafe { ffi::gsl_vector_float_swap_elements(self.vec, i, j) }
    }

    /// This function reverses the order of the elements of the vector v.
    pub fn reverse(&mut self) -> enums::Value {
        unsafe { ffi::gsl_vector_float_reverse(self.vec) }
    }

    /// This function adds the elements of the other vector to the elements of the self vector.
    /// The result a_i <- a_i + b_i is stored in self and other remains unchanged. The two vectors must have the same length.
    pub fn add(&mut self, other: &VectorF32) -> enums::Value {
        unsafe { ffi::gsl_vector_float_add(self.vec, other.vec) }
    }

    /// This function subtracts the elements of the self vector from the elements of the other vector.
    /// The result a_i <- a_i - b_i is stored in self and other remains unchanged. The two vectors must have the same length.
    pub fn sub(&mut self, other: &VectorF32) -> enums::Value {
        unsafe { ffi::gsl_vector_float_sub(self.vec, other.vec) }
    }

    /// This function multiplies the elements of the self vector a by the elements of the other vector.
    /// The result a_i <- a_i * b_i is stored in self and other remains unchanged. The two vectors must have the same length.
    pub fn mul(&mut self, other: &VectorF32) -> enums::Value {
        unsafe { ffi::gsl_vector_float_mul(self.vec, other.vec) }
    }

    /// This function divides the elements of the self vector by the elements of the other vector.
    /// The result a_i <- a_i / b_i is stored in self and other remains unchanged. The two vectors must have the same length.
    pub fn div(&mut self, other: &VectorF32) -> enums::Value {
        unsafe { ffi::gsl_vector_float_div(self.vec, other.vec) }
    }

    /// This function multiplies the elements of the self vector by the constant factor x. The result a_i <- a_i is stored in self.
    pub fn scale(&mut self, x: f32) -> enums::Value {
        unsafe { ffi::gsl_vector_float_scale(self.vec, x) }
    }

    /// This function adds the constant value x to the elements of the self vector. The result a_i <- a_i + x is stored in self.
    pub fn add_constant(&mut self, x: f32) -> enums::Value {
        unsafe { ffi::gsl_vector_float_add_constant(self.vec, x) }
    }

    /// This function returns the maximum value in the self vector.
    pub fn max(&self) -> f32 {
        unsafe { ffi::gsl_vector_float_max(self.vec) }
    }

    /// This function returns the minimum value in the self vector.
    pub fn min(&self) -> f32 {
        unsafe { ffi::gsl_vector_float_min(self.vec) }
    }

    /// This function returns the minimum and maximum values in the self vector, storing them in min_out and max_out.
    pub fn minmax(&self) -> (f32, f32) {
        let mut min_out = 0.;
        let mut max_out = 0.;

        unsafe { ffi::gsl_vector_float_minmax(self.vec, &mut min_out, &mut max_out); }
        (min_out, max_out)
    }

    /// This function returns the index of the maximum value in the self vector.
    /// When there are several equal maximum elements then the lowest index is returned.
    pub fn max_index(&self) -> usize {
        unsafe { ffi::gsl_vector_float_max_index(self.vec) }
    }

    /// This function returns the index of the minimum value in the self vector.
    /// When there are several equal minimum elements then the lowest index is returned.
    pub fn min_index(&self) -> usize {
        unsafe { ffi::gsl_vector_float_min_index(self.vec) }
    }

    /// This function returns the indices of the minimum and maximum values in the self vector, storing them in imin and imax.
    /// When there are several equal minimum or maximum elements then the lowest indices are returned.
    pub fn minmax_index(&self) -> (usize, usize) {
        let mut imin = 0usize;
        let mut imax = 0usize;

        unsafe { ffi::gsl_vector_float_minmax_index(self.vec, &mut imin, &mut imax) };
        (imin, imax)
    }

    /// This function returns true if all the elements of the self vector are equal to 0.
    pub fn is_null(&self) -> bool {
        match unsafe { ffi::gsl_vector_float_isnull(self.vec) } {
            1 => true,
            _ => false
        }
    }

    /// This function returns true if all the elements of the self vector are stricly positive.
    pub fn is_pos(&self) -> bool {
        match unsafe { ffi::gsl_vector_float_ispos(self.vec) } {
            1 => true,
            _ => false
        }
    }

    /// This function returns true if all the elements of the self vector are stricly negative.
    pub fn is_neg(&self) -> bool {
        match unsafe { ffi::gsl_vector_float_isneg(self.vec) } {
            1 => true,
            _ => false
        }
    }

    /// This function returns true if all the elements of the self vector are stricly non-negative.
    pub fn is_non_neg(&self) -> bool {
        match unsafe { ffi::gsl_vector_float_isnonneg(self.vec) } {
            1 => true,
            _ => false
        }
    }

    pub fn equal(&self, other: &VectorF32) -> bool {
        match unsafe { ffi::gsl_vector_float_equal(self.vec, other.vec) } {
            1 => true,
            _ => false
        }
    }

    // I'll find a way to do that later
    /*pub fn as_slice<'a>(&self) -> &'a [f32] {
        unsafe {
            if self.vec.is_null() {
                let tmp : Vec<f32> = Vec::new();

                tmp.as_ref()
            } else {
                let tmp : CSlice<f32> = CSlice::new((*self.vec).data, (*self.vec).size as usize);

                tmp.as_ref()
            }
        }
    }*/

    pub fn clone(&self) -> Option<VectorF32> {
        unsafe {
            if self.vec.is_null() {
                None
            } else {
                match VectorF32::new((*self.vec).size) {
                    Some(mut v) => {
                        v.copy_from(self);
                        Some(v)
                    }
                    None => None
                }
            }
        }
    }
}

impl Drop for VectorF32 {
    fn drop(&mut self) {
        if self.can_free {
            unsafe { ffi::gsl_vector_float_free(self.vec) };
            self.vec = ::std::ptr::null_mut();
        }
    }
}

impl Debug for VectorF32 {
    #[allow(unused_must_use)]
    fn fmt(&self, f: &mut Formatter) -> fmt::Result {
        unsafe {
            write!(f, "[");
            for x in 0usize..(*self.vec).size {
                if x < (*self.vec).size - 1 {
                    write!(f, "{}, ", self.get(x));
                } else {
                    write!(f, "{}", self.get(x));
                }
            }
        }
        write!(f, "]")
    }
}

impl ffi::FFI<ffi::gsl_vector_float> for VectorF32 {
    fn wrap(r: *mut ffi::gsl_vector_float) -> VectorF32 {
        VectorF32 {
            vec: r,
            can_free: true,
        }
    }

    fn soft_wrap(r: *mut ffi::gsl_vector_float) -> VectorF32 {
        VectorF32 {
            vec: r,
            can_free: false,
        }
    }

    fn unwrap_shared(v: &VectorF32) -> *const ffi::gsl_vector_float {
        v.vec as *const _
    }

    fn unwrap_unique(v: &mut VectorF32) -> *mut ffi::gsl_vector_float {
        v.vec
    }
}

pub struct VectorF64 {
    vec: *mut ffi::gsl_vector,
    can_free: bool
}

impl VectorF64 {
    /// create a new VectorF64 with all elements set to zero
    pub fn new(size: usize) -> Option<VectorF64> {
        let tmp = unsafe { ffi::gsl_vector_calloc(size) };

        if tmp.is_null() {
            None
        } else {
            Some(VectorF64 {
                vec: tmp,
                can_free: true
            })
        }
    }

    pub fn from_slice(slice: &[f64]) -> Option<VectorF64> {
        let tmp = unsafe { ffi::gsl_vector_alloc(slice.len() as usize) };

        if tmp.is_null() {
            None
        } else {
            let mut v = VectorF64 {
                vec: tmp,
                can_free: true
            };
            let mut pos = 0usize;

            for tmp in slice.iter() {
                v.set(pos, *tmp);
                pos += 1;
            }
            Some(v)
        }
    }

    pub fn len(&self) -> usize {
        if self.vec.is_null() {
            0usize
        } else {
            unsafe { (*self.vec).size }
        }
    }

    /// This function returns the i-th element of a vector v. If i lies outside the allowed range of 0 to n-1 then the error handler is invoked and 0 is returned.
    pub fn get(&self, i: usize) -> f64 {
        unsafe { ffi::gsl_vector_get(self.vec, i) }
    }

    /// This function sets the value of the i-th element of a vector v to x. If i lies outside the allowed range of 0 to n-1 then the error handler is invoked.
    pub fn set(&mut self, i: usize, x: f64) -> &mut VectorF64 {
        unsafe { ffi::gsl_vector_set(self.vec, i, x) };
        self
    }

    /// This function sets all the elements of the vector v to the value x.
    pub fn set_all(&mut self, x: f64) -> &mut VectorF64 {
        unsafe { ffi::gsl_vector_set_all(self.vec, x) };
        self
    }

    /// This function sets all the elements of the vector v to zero.
    pub fn set_zero(&mut self) -> &mut VectorF64 {
        unsafe { ffi::gsl_vector_set_zero(self.vec) };
        self
    }

    /// This function makes a basis vector by setting all the elements of the vector v to zero except for the i-th element which is set to one.
    pub fn set_basis(&mut self, i: usize) -> &mut VectorF64 {
        unsafe { ffi::gsl_vector_set_basis(self.vec, i) };
        self
    }

    /// This function copies the elements of the other vector into the self vector. The two vectors must have the same length.
    pub fn copy_from(&mut self, other: &VectorF64) -> enums::Value {
        unsafe { ffi::gsl_vector_memcpy(self.vec, other.vec) }
    }

    /// This function copies the elements of the self vector into the other vector. The two vectors must have the same length.
    pub fn copy_to(&self, other: &mut VectorF64) -> enums::Value {
        unsafe { ffi::gsl_vector_memcpy(other.vec, self.vec) }
    }

    /// This function exchanges the elements of the vectors by copying. The two vectors must have the same length.
    pub fn swap(&mut self, other: &mut VectorF64) -> enums::Value {
        unsafe { ffi::gsl_vector_swap(other.vec, self.vec) }
    }

    /// This function exchanges the i-th and j-th elements of the vector v in-place.
    pub fn swap_elements(&mut self, i: usize, j: usize) -> enums::Value {
        unsafe { ffi::gsl_vector_swap_elements(self.vec, i, j) }
    }

    /// This function reverses the order of the elements of the vector v.
    pub fn reverse(&mut self) -> enums::Value {
        unsafe { ffi::gsl_vector_reverse(self.vec) }
    }

    /// This function adds the elements of the other vector to the elements of the self vector.
    /// The result a_i <- a_i + b_i is stored in self and other remains unchanged. The two vectors must have the same length.
    pub fn add(&mut self, other: &VectorF64) -> enums::Value {
        unsafe { ffi::gsl_vector_add(self.vec, other.vec) }
    }

    /// This function subtracts the elements of the self vector from the elements of the other vector.
    /// The result a_i <- a_i - b_i is stored in self and other remains unchanged. The two vectors must have the same length.
    pub fn sub(&mut self, other: &VectorF64) -> enums::Value {
        unsafe { ffi::gsl_vector_sub(self.vec, other.vec) }
    }

    /// This function multiplies the elements of the self vector a by the elements of the other vector.
    /// The result a_i <- a_i * b_i is stored in self and other remains unchanged. The two vectors must have the same length.
    pub fn mul(&mut self, other: &VectorF64) -> enums::Value {
        unsafe { ffi::gsl_vector_mul(self.vec, other.vec) }
    }

    /// This function divides the elements of the self vector by the elements of the other vector.
    /// The result a_i <- a_i / b_i is stored in self and other remains unchanged. The two vectors must have the same length.
    pub fn div(&mut self, other: &VectorF64) -> enums::Value {
        unsafe { ffi::gsl_vector_div(self.vec, other.vec) }
    }

    /// This function multiplies the elements of the self vector by the constant factor x. The result a_i <- a_i is stored in self.
    pub fn scale(&mut self, x: f64) -> enums::Value {
        unsafe { ffi::gsl_vector_scale(self.vec, x) }
    }

    /// This function adds the constant value x to the elements of the self vector. The result a_i <- a_i + x is stored in self.
    pub fn add_constant(&mut self, x: f64) -> enums::Value {
        unsafe { ffi::gsl_vector_add_constant(self.vec, x) }
    }

    /// This function returns the maximum value in the self vector.
    pub fn max(&self) -> f64 {
        unsafe { ffi::gsl_vector_max(self.vec) }
    }

    /// This function returns the minimum value in the self vector.
    pub fn min(&self) -> f64 {
        unsafe { ffi::gsl_vector_min(self.vec) }
    }

    /// This function returns the minimum and maximum values in the self vector, storing them in min_out and max_out.
    pub fn minmax(&self) -> (f64, f64) {
        let mut min_out = 0.;
        let mut max_out = 0.;

        unsafe { ffi::gsl_vector_minmax(self.vec, &mut min_out, &mut max_out); }
        (min_out, max_out)
    }

    /// This function returns the index of the maximum value in the self vector.
    /// When there are several equal maximum elements then the lowest index is returned.
    pub fn max_index(&self) -> usize {
        unsafe { ffi::gsl_vector_max_index(self.vec) }
    }

    /// This function returns the index of the minimum value in the self vector.
    /// When there are several equal minimum elements then the lowest index is returned.
    pub fn min_index(&self) -> usize {
        unsafe { ffi::gsl_vector_min_index(self.vec) }
    }

    /// This function returns the indices of the minimum and maximum values in the self vector, storing them in imin and imax.
    /// When there are several equal minimum or maximum elements then the lowest indices are returned.
    pub fn minmax_index(&self) -> (usize, usize) {
        let mut imin = 0usize;
        let mut imax = 0usize;

        unsafe { ffi::gsl_vector_minmax_index(self.vec, &mut imin, &mut imax) };
        (imin, imax)
    }

    /// This function returns true if all the elements of the self vector are equal to 0.
    pub fn is_null(&self) -> bool {
        match unsafe { ffi::gsl_vector_isnull(self.vec) } {
            1 => true,
            _ => false
        }
    }

    /// This function returns true if all the elements of the self vector are stricly positive.
    pub fn is_pos(&self) -> bool {
        match unsafe { ffi::gsl_vector_ispos(self.vec) } {
            1 => true,
            _ => false
        }
    }

    /// This function returns true if all the elements of the self vector are stricly negative.
    pub fn is_neg(&self) -> bool {
        match unsafe { ffi::gsl_vector_isneg(self.vec) } {
            1 => true,
            _ => false
        }
    }

    /// This function returns true if all the elements of the self vector are stricly non-negative.
    pub fn is_non_neg(&self) -> bool {
        match unsafe { ffi::gsl_vector_isnonneg(self.vec) } {
            1 => true,
            _ => false
        }
    }

    pub fn equal(&self, other: &VectorF64) -> bool {
        match unsafe { ffi::gsl_vector_equal(self.vec, other.vec) } {
            1 => true,
            _ => false
        }
    }

    // I'll find a way to do that later
    /*pub fn as_slice<'a>(&self) -> &'a [f64] {
        unsafe {
            if self.vec.is_null() {
                let tmp : Vec<f64> = Vec::new();

                tmp.as_ref()
            } else {
                let tmp : CSlice<f64> = CSlice::new((*self.vec).data, (*self.vec).size as usize);

                tmp.as_ref()
            }
        }
    }*/

    pub fn clone(&self) -> Option<VectorF64> {
        unsafe {
            if self.vec.is_null() {
                None
            } else {
                match VectorF64::new((*self.vec).size) {
                    Some(mut v) => {
                        v.copy_from(self);
                        Some(v)
                    }
                    None => None
                }
            }
        }
    }
}

impl Drop for VectorF64 {
    fn drop(&mut self) {
        if self.can_free {
            unsafe { ffi::gsl_vector_free(self.vec) };
            self.vec = ::std::ptr::null_mut();
        }
    }
}

impl Debug for VectorF64 {
    #[allow(unused_must_use)]
    fn fmt(&self, f: &mut Formatter) -> fmt::Result {
        unsafe {
            write!(f, "[");
            for x in 0usize..(*self.vec).size {
                if x < (*self.vec).size - 1 {
                    write!(f, "{}, ", self.get(x));
                } else {
                    write!(f, "{}", self.get(x));
                }
            }
        }
        write!(f, "]")
    }
}

impl ffi::FFI<ffi::gsl_vector> for VectorF64 {
    fn wrap(r: *mut ffi::gsl_vector) -> VectorF64 {
        VectorF64 {
            vec: r,
            can_free: true,
        }
    }

    fn soft_wrap(r: *mut ffi::gsl_vector) -> VectorF64 {
        VectorF64 {
            vec: r,
            can_free: false,
        }
    }

    fn unwrap_shared(v: &VectorF64) -> *const ffi::gsl_vector {
        v.vec as *const _
    }

    fn unwrap_unique(v: &mut VectorF64) -> *mut ffi::gsl_vector {
        v.vec
    }
}