1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
//
// A rust binding for the GSL library by Guillaume Gomez (guillaume1.gomez@gmail.com)
//

/*!
#Matrices

Matrices are defined by a gsl_matrix structure which describes a generalized slice of a block. Like a vector it represents a set of 
elements in an area of memory, but uses two indices instead of one.

The gsl_matrix structure contains six components, the two dimensions of the matrix, a physical dimension, a pointer to the memory where 
the elements of the matrix are stored, data, a pointer to the block owned by the matrix block, if any, and an ownership flag, owner. The 
physical dimension determines the memory layout and can differ from the matrix dimension to allow the use of submatrices. The gsl_matrix 
structure is very simple and looks like this,

```C
typedef struct
{
  size_t size1;
  size_t size2;
  size_t tda;
  double * data;
  gsl_block * block;
  int owner;
} gsl_matrix;
```

Matrices are stored in row-major order, meaning that each row of elements forms a contiguous block in memory. This is the standard 
“C-language ordering” of two-dimensional arrays. Note that FORTRAN stores arrays in column-major order. The number of rows is size1. The 
range of valid row indices runs from 0 to size1-1. Similarly size2 is the number of columns. The range of valid column indices runs from 
0 to size2-1. The physical row dimension tda, or trailing dimension, specifies the size of a row of the matrix as laid out in memory.

For example, in the following matrix size1 is 3, size2 is 4, and tda is 8. The physical memory layout of the matrix begins in the top 
left hand-corner and proceeds from left to right along each row in turn.

00 01 02 03 XX XX XX XX
10 11 12 13 XX XX XX XX
20 21 22 23 XX XX XX XX

Each unused memory location is represented by “XX”. The pointer data gives the location of the first element of the matrix in memory. The 
pointer block stores the location of the memory block in which the elements of the matrix are located (if any). If the matrix owns this 
block then the owner field is set to one and the block will be deallocated when the matrix is freed. If the matrix is only a slice of a 
block owned by another object then the owner field is zero and any underlying block will not be freed.

##References and Further Reading

The block, vector and matrix objects in GSL follow the valarray model of C++. A description of this model can be found in the following 
reference,

B. Stroustrup, The C++ Programming Language (3rd Ed), Section 22.4 Vector Arithmetic. Addison-Wesley 1997, ISBN 0-201-88954-4.
!*/

use std::fmt;
use std::fmt::{Formatter, Debug};
use types::{VectorF64, VectorF32};
use ffi;
use enums;

pub struct MatrixView {
    mat: ffi::gsl_matrix
}

impl MatrixView {
    /// These functions return a matrix view of a submatrix of the matrix m. The upper-left element of the submatrix is the element (k1,k2)
    /// of the original matrix. The submatrix has n1 rows and n2 columns. The physical number of columns in memory given by tda is unchanged.
    /// Mathematically, the (i,j)-th element of the new matrix is given by,
    /// 
    /// m'(i,j) = m->data[(k1*m->tda + k2) + i*m->tda + j]
    /// 
    /// where the index i runs from 0 to n1-1 and the index j runs from 0 to n2-1.
    /// 
    /// The data pointer of the returned matrix struct is set to null if the combined parameters (i,j,n1,n2,tda) overrun the ends of the original
    /// matrix.
    /// 
    /// The new matrix view is only a view of the block underlying the existing matrix, m. The block containing the elements of m is not
    /// owned by the new matrix view. When the view goes out of scope the original matrix m and its block will continue to exist. The original
    /// memory can only be deallocated by freeing the original matrix. Of course, the original matrix should not be deallocated while the view
    /// is still in use.
    /// 
    /// The function gsl_matrix_const_submatrix is equivalent to gsl_matrix_submatrix but can be used for matrices which are declared const.
    pub fn from_matrix(m: &mut MatrixF64, k1: usize, k2: usize, n1: usize, n2: usize) -> MatrixView {
        unsafe {
            MatrixView {
                mat: ffi::gsl_matrix_submatrix(m.mat, k1, k2, n1, n2).mat
            }
        }
    }

    /// These functions return a matrix view of the array base. The matrix has n1 rows and n2 columns. The physical number of columns in memory
    /// is also given by n2. Mathematically, the (i,j)-th element of the new matrix is given by,
    /// 
    /// m'(i,j) = base[i*n2 + j]
    /// 
    /// where the index i runs from 0 to n1-1 and the index j runs from 0 to n2-1.
    /// 
    /// The new matrix is only a view of the array base. When the view goes out of scope the original array base will continue to exist. The
    /// original memory can only be deallocated by freeing the original array. Of course, the original array should not be deallocated while
    /// the view is still in use.
    /// 
    /// The function gsl_matrix_const_view_array is equivalent to gsl_matrix_view_array but can be used for matrices which are declared const.
    pub fn from_array(base: &mut [f64], n1: usize, n2: usize) -> MatrixView {
        assert!(n1 * n2 <= base.len(), "n1 * n2 cannot be longer than base");
        unsafe {
            MatrixView {
                mat: ffi::gsl_matrix_view_array(base.as_mut_ptr(), n1, n2).mat
            }
        }
    }

    /// These functions return a matrix view of the array base with a physical number of columns tda which may differ from the corresponding
    /// dimension of the matrix. The matrix has n1 rows and n2 columns, and the physical number of columns in memory is given by tda.
    /// Mathematically, the (i,j)-th element of the new matrix is given by,
    /// 
    /// m'(i,j) = base[i*tda + j]
    ///
    /// where the index i runs from 0 to n1-1 and the index j runs from 0 to n2-1.
    /// 
    /// The new matrix is only a view of the array base. When the view goes out of scope the original array base will continue to exist. The
    /// original memory can only be deallocated by freeing the original array. Of course, the original array should not be deallocated while
    /// the view is still in use.
    /// 
    /// The function gsl_matrix_const_view_array_with_tda is equivalent to gsl_matrix_view_array_with_tda but can be used for matrices which
    /// are declared const.
    pub fn from_array_with_tda(base: &mut [f64], n1: usize, n2: usize, tda: usize) -> MatrixView {
        unsafe {
            MatrixView {
                mat: ffi::gsl_matrix_view_array_with_tda(base.as_mut_ptr(), n1, n2, tda).mat
            }
        }
    }

    /// These functions return a matrix view of the vector v. The matrix has n1 rows and n2 columns. The vector must have unit stride. The
    /// physical number of columns in memory is also given by n2. Mathematically, the (i,j)-th element of the new matrix is given by,
    /// 
    /// m'(i,j) = v->data[i*n2 + j]
    /// 
    /// where the index i runs from 0 to n1-1 and the index j runs from 0 to n2-1.
    /// 
    /// The new matrix is only a view of the vector v. When the view goes out of scope the original vector v will continue to exist. The original
    /// memory can only be deallocated by freeing the original vector. Of course, the original vector should not be deallocated while the view
    /// is still in use.
    /// 
    /// The function gsl_matrix_const_view_vector is equivalent to gsl_matrix_view_vector but can be used for matrices which are declared const.
    pub fn from_vector(v: &mut VectorF64, n1: usize, n2: usize) -> MatrixView {
        unsafe {
            MatrixView {
                mat: ffi::gsl_matrix_view_vector(ffi::FFI::unwrap_unique(v), n1, n2).mat
            }
        }
    }

    /// These functions return a matrix view of the vector v with a physical number of columns tda which may differ from the corresponding
    /// matrix dimension. The vector must have unit stride. The matrix has n1 rows and n2 columns, and the physical number of columns in
    /// memory is given by tda. Mathematically, the (i,j)-th element of the new matrix is given by,
    /// 
    /// m'(i,j) = v->data[i*tda + j]
    /// 
    /// where the index i runs from 0 to n1-1 and the index j runs from 0 to n2-1.
    /// 
    /// The new matrix is only a view of the vector v. When the view goes out of scope the original vector v will continue to exist. The original
    /// memory can only be deallocated by freeing the original vector. Of course, the original vector should not be deallocated while the view
    /// is still in use.
    /// 
    /// The function gsl_matrix_const_view_vector_with_tda is equivalent to gsl_matrix_view_vector_with_tda but can be used for matrices which
    /// are declared const.
    pub fn from_vector_with_tda(v: &mut VectorF64, n1: usize, n2: usize, tda: usize) -> MatrixView {
        unsafe {
            MatrixView {
                mat: ffi::gsl_matrix_view_vector_with_tda(ffi::FFI::unwrap_unique(v), n1, n2, tda).mat
            }
        }
    }

    pub fn matrix(&mut self) -> MatrixF64 {
        unsafe {
            MatrixF64 {
                mat: ::std::mem::transmute(&mut self.mat),
                can_free: false
            }
        }
    }
}

pub struct MatrixF64 {
    mat: *mut ffi::gsl_matrix,
    can_free: bool
}

impl MatrixF64 {
    /// Creates a new MatrixF64 with all elements set to zero
    /// 
    /// Example with n1 = 2 and n2 = 3 :
    /// 
    /// XX XX XX
    /// 
    /// XX XX XX
    pub fn new(n1: usize, n2: usize) -> Option<MatrixF64> {
        let tmp = unsafe { ffi::gsl_matrix_calloc(n1, n2) };

        if tmp.is_null() {
            None
        } else {
            Some(MatrixF64 {
                mat: tmp,
                can_free: true
            })
        }
    }

    /// This function returns the (i,j)-th element of the matrix.
    /// If y or x lie outside the allowed range of 0 to n1-1 and 0 to n2-1 then the error handler is invoked and 0 is returned.
    pub fn get(&self, y: usize, x: usize) -> f64 {
        unsafe { ffi::gsl_matrix_get(self.mat, y, x) }
    }

    /// This function sets the value of the (i,j)-th element of the matrix to value.
    /// If y or x lies outside the allowed range of 0 to n1-1 and 0 to n2-1 then the error handler is invoked.
    pub fn set(&mut self, y: usize, x: usize, value: f64) -> &MatrixF64 {
        unsafe { ffi::gsl_matrix_set(self.mat, y, x, value) };
        self
    }

    /// This function sets all the elements of the matrix to the value x.
    pub fn set_all(&mut self, x: f64) -> &MatrixF64 {
        unsafe { ffi::gsl_matrix_set_all(self.mat, x) };
        self
    }

    /// This function sets all the elements of the matrix to zero.
    pub fn set_zero(&mut self) -> &MatrixF64 {
        unsafe { ffi::gsl_matrix_set_zero(self.mat) };
        self
    }

    /// This function sets the elements of the matrix to the corresponding elements of the identity matrix, m(i,j) = \delta(i,j), i.e. a unit diagonal with all off-diagonal elements zero.
    /// This applies to both square and rectangular matrices.
    pub fn set_identity(&mut self) -> &MatrixF64 {
        unsafe { ffi::gsl_matrix_set_identity(self.mat) };
        self
    }

    /// This function copies the elements of the other matrix into the self matrix. The two matrices must have the same size.
    pub fn copy_from(&mut self, other: &MatrixF64) -> enums::Value {
        unsafe { ffi::gsl_matrix_memcpy(self.mat, other.mat) }
    }

    /// This function copies the elements of the self matrix into the other matrix. The two matrices must have the same size.
    pub fn copy_to(&self, other: &mut MatrixF64) -> enums::Value {
        unsafe { ffi::gsl_matrix_memcpy(other.mat, self.mat) }
    }

    /// This function exchanges the elements of the matrices self and other by copying. The two matrices must have the same size.
    pub fn swap(&mut self, other: &mut MatrixF64) -> enums::Value {
        unsafe { ffi::gsl_matrix_swap(self.mat, other.mat) }
    }

    /// This function copies the elements of the y-th row of the matrix into the returned vector.
    pub fn get_row(&self, y: usize) -> Option<(VectorF64, enums::Value)> {
        let tmp = unsafe { ffi::gsl_vector_alloc((*self.mat).size2) };

        if tmp.is_null() {
            None
        } else {
            let ret = unsafe { ffi::gsl_matrix_get_row(tmp, self.mat, y) };

            Some((ffi::FFI::wrap(tmp), ret))
        }
    }

    /// This function copies the elements of the x-th column of the matrix into the returned vector.
    pub fn get_col(&self, x: usize) -> Option<(VectorF64, enums::Value)> {
        let tmp = unsafe { ffi::gsl_vector_alloc((*self.mat).size1) };

        if tmp.is_null() {
            None
        } else {
            let ret = unsafe { ffi::gsl_matrix_get_col(tmp, self.mat, x) };

            Some((ffi::FFI::wrap(tmp), ret))
        }
    }

    /// This function copies the elements of the vector v into the y-th row of the matrix.
    /// The length of the vector must be the same as the length of the row.
    pub fn set_row(&mut self, y: usize, v: &VectorF64) -> enums::Value {
        unsafe { ffi::gsl_matrix_set_row(self.mat, y, ffi::FFI::unwrap_shared(v)) }
    }

    /// This function copies the elements of the vector v into the x-th column of the matrix.
    /// The length of the vector must be the same as the length of the column.
    pub fn set_col(&mut self, x: usize, v: &VectorF64) -> enums::Value {
        unsafe { ffi::gsl_matrix_set_col(self.mat, x, ffi::FFI::unwrap_shared(v)) }
    }

    /// This function exchanges the y1-th and y2-th rows of the matrix in-place.
    pub fn swap_rows(&mut self, y1: usize, y2: usize) -> enums::Value {
        unsafe { ffi::gsl_matrix_swap_rows(self.mat, y1, y2) }
    }

    /// This function exchanges the x1-th and x2-th columns of the matrix in-place.
    pub fn swap_columns(&mut self, x1: usize, x2: usize) -> enums::Value {
        unsafe { ffi::gsl_matrix_swap_columns(self.mat, x1, x2) }
    }

    /// This function exchanges the i-th row and j-th column of the matrix in-place.
    /// The matrix must be square for this operation to be possible.
    pub fn swap_row_col(&mut self, i: usize, j: usize) -> enums::Value {
        unsafe { ffi::gsl_matrix_swap_rowcol(self.mat, i, j) }
    }

    /// This function returns the transpose of the matrix by copying the elements into it.
    /// This function works for all matrices provided that the dimensions of the matrix dest match the transposed dimensions of the matrix.
    pub fn transpose_memcpy(&self) -> Option<(MatrixF64, enums::Value)> {
        let dest = unsafe { ffi::gsl_matrix_alloc((*self.mat).size1, (*self.mat).size2) };

        if dest.is_null() {
            None
        } else {
            let ret = unsafe { ffi::gsl_matrix_transpose_memcpy(dest, self.mat) };

            Some((MatrixF64 {mat: dest, can_free: true}, ret))
        }
    }

    /// This function replaces the matrix m by its transpose by copying the elements of the matrix in-place.
    /// The matrix must be square for this operation to be possible.
    pub fn transpose(&mut self) -> enums::Value {
        unsafe { ffi::gsl_matrix_transpose(self.mat) }
    }

    /// This function adds the elements of the other matrix to the elements of the self matrix.
    /// The result self(i,j) <- self(i,j) + other(i,j) is stored in self and other remains unchanged. The two matrices must have the same dimensions.
    pub fn add(&mut self, other: &MatrixF64) -> enums::Value {
        unsafe { ffi::gsl_matrix_add(self.mat, other.mat) }
    }

    /// This function subtracts the elements of the other matrix from the elements of the self matrix.
    /// The result self(i,j) <- self(i,j) - other(i,j) is stored in self and other remains unchanged. The two matrices must have the same dimensions.
    pub fn sub(&mut self, other: &MatrixF64) -> enums::Value {
        unsafe { ffi::gsl_matrix_sub(self.mat, other.mat) }
    }

    /// This function multiplies the elements of the self matrix by the elements of the other matrix.
    /// The result self(i,j) <- self(i,j) * other(i,j) is stored in self and other remains unchanged. The two matrices must have the same dimensions.
    pub fn mul_elements(&mut self, other: &MatrixF64) -> enums::Value {
        unsafe { ffi::gsl_matrix_mul_elements(self.mat, other.mat) }
    }

    /// This function divides the elements of the self matrix by the elements of the other matrix.
    /// The result self(i,j) <- self(i,j) / other(i,j) is stored in self and other remains unchanged. The two matrices must have the same dimensions.
    pub fn div_elements(&mut self, other: &MatrixF64) -> enums::Value {
        unsafe { ffi::gsl_matrix_div_elements(self.mat, other.mat) }
    }

    /// This function multiplies the elements of the self matrix by the constant factor x. The result self(i,j) <- x self(i,j) is stored in self.
    pub fn scale(&mut self, x: f64) -> enums::Value {
        unsafe { ffi::gsl_matrix_scale(self.mat, x) }
    }

    /// This function adds the constant value x to the elements of the self matrix. The result self(i,j) <- self(i,j) + x is stored in self.
    pub fn add_constant(&mut self, x: f64) -> enums::Value {
        unsafe { ffi::gsl_matrix_add_constant(self.mat, x) }
    }

    /// This function returns the maximum value in the self matrix.
    pub fn max(&self) -> f64 {
        unsafe { ffi::gsl_matrix_max(self.mat) }
    }

    /// This function returns the minimum value in the self matrix.
    pub fn min(&self) -> f64 {
        unsafe { ffi::gsl_matrix_min(self.mat) }
    }

    /// This function returns the minimum and maximum values in the self matrix, storing them in min_out and max_out.
    pub fn minmax(&self, min_out: &mut f64, max_out: &mut f64) {
        unsafe { ffi::gsl_matrix_minmax(self.mat, min_out, max_out) }
    }

    /// This function returns the indices of the maximum value in the self matrix, storing them in imax and jmax.
    /// When there are several equal maximum elements then the first element found is returned, searching in row-major order.
    pub fn max_index(&self) -> (usize, usize) {
        let mut imax = 0usize;
        let mut jmax = 0usize;

        unsafe { ffi::gsl_matrix_max_index(self.mat, &mut imax, &mut jmax) };
        (imax, jmax)
    }

    /// This function returns the indices of the minimum value in the self matrix, storing them in imin and jmin.
    /// When there are several equal minimum elements then the first element found is returned, searching in row-major order.
    pub fn min_index(&self) -> (usize, usize) {
        let mut imax = 0usize;
        let mut jmax = 0usize;

        unsafe { ffi::gsl_matrix_min_index(self.mat, &mut imax, &mut jmax) };
        (imax, jmax)
    }

    /// This function returns the indices of the minimum and maximum values in the self matrix, storing them in (imin,jmin) and (imax,jmax).
    /// When there are several equal minimum or maximum elements then the first elements found are returned, searching in row-major order.
    pub fn minmax_index(&self) -> (usize, usize, usize, usize) {
        let mut imin = 0usize;
        let mut jmin = 0usize;
        let mut imax = 0usize;
        let mut jmax = 0usize;

        unsafe { ffi::gsl_matrix_minmax_index(self.mat, &mut imin, &mut jmin, &mut imax, &mut jmax) };
        (imin, jmin, imax, jmax)
    }

    /// This function returns true if all the elements of the self matrix are stricly zero.
    pub fn is_null(&self) -> bool {
        match unsafe { ffi::gsl_matrix_isnull(self.mat) } {
            1 => true,
            _ => false
        }
    }

    /// This function returns true if all the elements of the self matrix are stricly positive.
    pub fn is_pos(&self) -> bool {
        match unsafe { ffi::gsl_matrix_ispos(self.mat) } {
            1 => true,
            _ => false
        }
    }

    /// This function returns true if all the elements of the self matrix are stricly negative.
    pub fn is_neg(&self) -> bool {
        match unsafe { ffi::gsl_matrix_isneg(self.mat) } {
            1 => true,
            _ => false
        }
    }

    /// This function returns true if all the elements of the self matrix are stricly non-negative.
    pub fn is_non_neg(&self) -> bool {
        match unsafe { ffi::gsl_matrix_isnonneg(self.mat) } {
            1 => true,
            _ => false
        }
    }

    /// This function returns true if all elements of the two matrix are equal.
    pub fn equal(&self, other: &MatrixF64) -> bool {
        match unsafe { ffi::gsl_matrix_equal(self.mat, other.mat) } {
            1 => true,
            _ => false
        }
    }

    pub fn size1(&self) -> usize {
        if self.mat.is_null() {
            0usize
        } else {
            unsafe { (*self.mat).size1 }
        }
    }

    pub fn size2(&self) -> usize {
        if self.mat.is_null() {
            0usize
        } else {
            unsafe { (*self.mat).size2 }
        }
    }

    pub fn clone(&self) -> Option<MatrixF64> {
        unsafe {
            if self.mat.is_null() {
                None
            } else {
                match MatrixF64::new((*self.mat).size1, (*self.mat).size2) {
                    Some(mut m) => {
                        m.copy_from(self);
                        Some(m)
                    }
                    None => None
                }
            }
        }
    }
}

impl Drop for MatrixF64 {
    fn drop(&mut self) {
        if self.can_free {
            unsafe { ffi::gsl_matrix_free(self.mat) };
            self.mat = ::std::ptr::null_mut();
        }
    }
}

impl Debug for MatrixF64 {
    #[allow(unused_must_use)]
    fn fmt(&self, f: &mut Formatter) -> fmt::Result {
        unsafe {
            for y in 0usize..(*self.mat).size1 {
                write!(f, "[");
                for x in 0usize..(*self.mat).size2 {
                    if x < (*self.mat).size2 - 1 {
                        write!(f, "{}, ", self.get(y, x));
                    } else {
                        write!(f, "{}", self.get(y, x));
                    }
                }
                if y < (*self.mat).size1 - 1 {
                    write!(f, "]\n");
                }
            }
        }
        write!(f, "]")
    }
}

impl ffi::FFI<ffi::gsl_matrix> for MatrixF64 {
    fn wrap(r: *mut ffi::gsl_matrix) -> MatrixF64 {
        MatrixF64 {
            mat: r,
            can_free: true,
        }
    }

    fn soft_wrap(r: *mut ffi::gsl_matrix) -> MatrixF64 {
        MatrixF64 {
            mat: r,
            can_free: false,
        }
    }

    fn unwrap_shared(m: &MatrixF64) -> *const ffi::gsl_matrix {
        m.mat as *const _
    }

    fn unwrap_unique(m: &mut MatrixF64) -> *mut ffi::gsl_matrix {
        m.mat
    }
}

pub struct MatrixF32 {
    mat: *mut ffi::gsl_matrix_float,
    can_free: bool
}

impl MatrixF32 {
    /// Creates a new MatrixF64 with all elements set to zero
    /// 
    /// Example with n1 = 2 and n2 = 3 :
    /// 
    /// XX XX XX
    /// 
    /// XX XX XX
    pub fn new(n1: usize, n2: usize) -> Option<MatrixF32> {
        let tmp = unsafe { ffi::gsl_matrix_float_calloc(n1, n2) };

        if tmp.is_null() {
            None
        } else {
            Some(MatrixF32 {
                mat: tmp,
                can_free: true
            })
        }
    }

    /// This function returns the (i,j)-th element of the matrix.
    /// If y or x lie outside the allowed range of 0 to n1-1 and 0 to n2-1 then the error handler is invoked and 0 is returned.
    pub fn get(&self, y: usize, x: usize) -> f32 {
        unsafe { ffi::gsl_matrix_float_get(self.mat, y, x) }
    }

    /// This function sets the value of the (i,j)-th element of the matrix to value.
    /// If y or x lies outside the allowed range of 0 to n1-1 and 0 to n2-1 then the error handler is invoked.
    pub fn set(&mut self, y: usize, x: usize, value: f32) -> &MatrixF32 {
        unsafe { ffi::gsl_matrix_float_set(self.mat, y, x, value) };
        self
    }

    /// This function sets all the elements of the matrix to the value x.
    pub fn set_all(&mut self, x: f32) -> &MatrixF32 {
        unsafe { ffi::gsl_matrix_float_set_all(self.mat, x) };
        self
    }

    /// This function sets all the elements of the matrix to zero.
    pub fn set_zero(&mut self) -> &MatrixF32 {
        unsafe { ffi::gsl_matrix_float_set_zero(self.mat) };
        self
    }

    /// This function sets the elements of the matrix to the corresponding elements of the identity matrix, m(i,j) = \delta(i,j), i.e. a unit diagonal with all off-diagonal elements zero.
    /// This applies to both square and rectangular matrices.
    pub fn set_identity(&mut self) -> &MatrixF32 {
        unsafe { ffi::gsl_matrix_float_set_identity(self.mat) };
        self
    }

    /// This function copies the elements of the other matrix into the self matrix. The two matrices must have the same size.
    pub fn copy_from(&mut self, other: &MatrixF32) -> enums::Value {
        unsafe { ffi::gsl_matrix_float_memcpy(self.mat, other.mat) }
    }

    /// This function copies the elements of the self matrix into the other matrix. The two matrices must have the same size.
    pub fn copy_to(&self, other: &mut MatrixF32) -> enums::Value {
        unsafe { ffi::gsl_matrix_float_memcpy(other.mat, self.mat) }
    }

    /// This function exchanges the elements of the matrices self and other by copying. The two matrices must have the same size.
    pub fn swap(&mut self, other: &mut MatrixF32) -> enums::Value {
        unsafe { ffi::gsl_matrix_float_swap(self.mat, other.mat) }
    }

    /// This function copies the elements of the y-th row of the matrix into the returned vector.
    pub fn get_row(&self, y: usize) -> Option<(VectorF32, enums::Value)> {
        let tmp = unsafe { ffi::gsl_vector_float_alloc((*self.mat).size2) };

        if tmp.is_null() {
            None
        } else {
            let ret = unsafe { ffi::gsl_matrix_float_get_row(tmp, self.mat, y) };

            Some((ffi::FFI::wrap(tmp), ret))
        }
    }

    /// This function copies the elements of the x-th column of the matrix into the returned vector.
    pub fn get_col(&self, x: usize) -> Option<(VectorF32, enums::Value)> {
        let tmp = unsafe { ffi::gsl_vector_float_alloc((*self.mat).size1) };

        if tmp.is_null() {
            None
        } else {
            let ret = unsafe { ffi::gsl_matrix_float_get_col(tmp, self.mat, x) };

            Some((ffi::FFI::wrap(tmp), ret))
        }
    }

    /// This function copies the elements of the vector v into the y-th row of the matrix.
    /// The length of the vector must be the same as the length of the row.
    pub fn set_row(&mut self, y: usize, v: &VectorF32) -> enums::Value {
        unsafe { ffi::gsl_matrix_float_set_row(self.mat, y, ffi::FFI::unwrap_shared(v)) }
    }

    /// This function copies the elements of the vector v into the x-th column of the matrix.
    /// The length of the vector must be the same as the length of the column.
    pub fn set_col(&mut self, x: usize, v: &VectorF32) -> enums::Value {
        unsafe { ffi::gsl_matrix_float_set_col(self.mat, x, ffi::FFI::unwrap_shared(v)) }
    }

    /// This function exchanges the y1-th and y2-th rows of the matrix in-place.
    pub fn swap_rows(&mut self, y1: usize, y2: usize) -> enums::Value {
        unsafe { ffi::gsl_matrix_float_swap_rows(self.mat, y1, y2) }
    }

    /// This function exchanges the x1-th and x2-th columns of the matrix in-place.
    pub fn swap_columns(&mut self, x1: usize, x2: usize) -> enums::Value {
        unsafe { ffi::gsl_matrix_float_swap_columns(self.mat, x1, x2) }
    }

    /// This function exchanges the i-th row and j-th column of the matrix in-place. The matrix must be square for this operation to be possible.
    pub fn swap_row_col(&mut self, i: usize, j: usize) -> enums::Value {
        unsafe { ffi::gsl_matrix_float_swap_rowcol(self.mat, i, j) }
    }

    /// This function returns the transpose of the matrix by copying the elements into it.
    /// This function works for all matrices provided that the dimensions of the matrix dest match the transposed dimensions of the matrix.
    pub fn transpose_memcpy(&self) -> Option<(MatrixF32, enums::Value)> {
        let dest = unsafe { ffi::gsl_matrix_float_alloc((*self.mat).size1, (*self.mat).size2) };

        if dest.is_null() {
            None
        } else {
            let ret = unsafe { ffi::gsl_matrix_float_transpose_memcpy(dest, self.mat) };

            Some((MatrixF32{
                    mat: dest,
                    can_free: true
                }, ret))
        }
    }

    /// This function replaces the matrix m by its transpose by copying the elements of the matrix in-place.
    /// The matrix must be square for this operation to be possible.
    pub fn transpose(&self) -> enums::Value {
        unsafe { ffi::gsl_matrix_float_transpose(self.mat) }
    }

    /// This function adds the elements of the other matrix to the elements of the self matrix.
    /// The result self(i,j) <- self(i,j) + other(i,j) is stored in self and other remains unchanged. The two matrices must have the same dimensions.
    pub fn add(&mut self, other: &MatrixF32) -> enums::Value {
        unsafe { ffi::gsl_matrix_float_add(self.mat, other.mat) }
    }

    /// This function subtracts the elements of the other matrix from the elements of the self matrix.
    /// The result self(i,j) <- self(i,j) - other(i,j) is stored in self and other remains unchanged. The two matrices must have the same dimensions.
    pub fn sub(&mut self, other: &MatrixF32) -> enums::Value {
        unsafe { ffi::gsl_matrix_float_sub(self.mat, other.mat) }
    }

    /// This function multiplies the elements of the self matrix by the elements of the other matrix.
    /// The result self(i,j) <- self(i,j) * other(i,j) is stored in self and other remains unchanged. The two matrices must have the same dimensions.
    pub fn mul_elements(&mut self, other: &MatrixF32) -> enums::Value {
        unsafe { ffi::gsl_matrix_float_mul_elements(self.mat, other.mat) }
    }

    /// This function divides the elements of the self matrix by the elements of the other matrix.
    /// The result self(i,j) <- self(i,j) / other(i,j) is stored in self and other remains unchanged. The two matrices must have the same dimensions.
    pub fn div_elements(&mut self, other: &MatrixF32) -> enums::Value {
        unsafe { ffi::gsl_matrix_float_div_elements(self.mat, other.mat) }
    }

    /// This function multiplies the elements of the self matrix by the constant factor x. The result self(i,j) <- x self(i,j) is stored in self.
    pub fn scale(&mut self, x: f32) -> enums::Value {
        unsafe { ffi::gsl_matrix_float_scale(self.mat, x) }
    }

    /// This function adds the constant value x to the elements of the self matrix. The result self(i,j) <- self(i,j) + x is stored in self.
    pub fn add_constant(&mut self, x: f32) -> enums::Value {
        unsafe { ffi::gsl_matrix_float_add_constant(self.mat, x) }
    }

    /// This function returns the maximum value in the self matrix.
    pub fn max(&self) -> f32 {
        unsafe { ffi::gsl_matrix_float_max(self.mat) }
    }

    /// This function returns the minimum value in the self matrix.
    pub fn min(&self) -> f32 {
        unsafe { ffi::gsl_matrix_float_min(self.mat) }
    }

    /// This function returns the minimum and maximum values in the self matrix, storing them in min_out and max_out.
    pub fn minmax(&self, min_out: &mut f32, max_out: &mut f32) {
        unsafe { ffi::gsl_matrix_float_minmax(self.mat, min_out, max_out) }
    }

    /// This function returns the indices of the maximum value in the self matrix, storing them in imax and jmax.
    /// When there are several equal maximum elements then the first element found is returned, searching in row-major order.
    pub fn max_index(&self) -> (usize, usize) {
        let mut imax = 0usize;
        let mut jmax = 0usize;

        unsafe { ffi::gsl_matrix_float_max_index(self.mat, &mut imax, &mut jmax) };
        (imax, jmax)
    }

    /// This function returns the indices of the minimum value in the self matrix, storing them in imin and jmin.
    /// When there are several equal minimum elements then the first element found is returned, searching in row-major order.
    pub fn min_index(&self) -> (usize, usize) {
        let mut imax = 0usize;
        let mut jmax = 0usize;

        unsafe { ffi::gsl_matrix_float_min_index(self.mat, &mut imax, &mut jmax) };
        (imax, jmax)
    }

    /// This function returns the indices of the minimum and maximum values in the self matrix, storing them in (imin,jmin) and (imax,jmax).
    /// When there are several equal minimum or maximum elements then the first elements found are returned, searching in row-major order.
    pub fn minmax_index(&self) -> (usize, usize, usize, usize) {
        let mut imin = 0usize;
        let mut jmin = 0usize;
        let mut imax = 0usize;
        let mut jmax = 0usize;

        unsafe { ffi::gsl_matrix_float_minmax_index(self.mat, &mut imin, &mut jmin, &mut imax, &mut jmax) };
        (imin, jmin, imax, jmax)
    }

    /// This function returns true if all the elements of the self matrix are stricly zero.
    pub fn is_null(&self) -> bool {
        match unsafe { ffi::gsl_matrix_float_isnull(self.mat) } {
            1 => true,
            _ => false
        }
    }

    /// This function returns true if all the elements of the self matrix are stricly positive.
    pub fn is_pos(&self) -> bool {
        match unsafe { ffi::gsl_matrix_float_ispos(self.mat) } {
            1 => true,
            _ => false
        }
    }

    /// This function returns true if all the elements of the self matrix are stricly negative.
    pub fn is_neg(&self) -> bool {
        match unsafe { ffi::gsl_matrix_float_isneg(self.mat) } {
            1 => true,
            _ => false
        }
    }

    /// This function returns true if all the elements of the self matrix are stricly non-negative.
    pub fn is_non_neg(&self) -> bool {
        match unsafe { ffi::gsl_matrix_float_isnonneg(self.mat) } {
            1 => true,
            _ => false
        }
    }

    /// This function returns true if all elements of the two matrix are equal.
    pub fn equal(&self, other: &MatrixF32) -> bool {
        match unsafe { ffi::gsl_matrix_float_equal(self.mat, other.mat) } {
            1 => true,
            _ => false
        }
    }

    pub fn clone(&self) -> Option<MatrixF32> {
        unsafe {
            if self.mat.is_null() {
                None
            } else {
                match MatrixF32::new((*self.mat).size1, (*self.mat).size2) {
                    Some(mut m) => {
                        m.copy_from(self);
                        Some(m)
                    }
                    None => None
                }
            }
        }
    }
}

impl Drop for MatrixF32 {
    fn drop(&mut self) {
        if self.can_free {
            unsafe { ffi::gsl_matrix_float_free(self.mat) };
            self.mat = ::std::ptr::null_mut();
        }
    }
}

impl Debug for MatrixF32 {
    #[allow(unused_must_use)]
    fn fmt(&self, f: &mut Formatter) -> fmt::Result {
        unsafe {
            for y in 0usize..(*self.mat).size1 {
                write!(f, "[");
                for x in 0usize..(*self.mat).size2 {
                    if x < (*self.mat).size2 - 1 {
                        write!(f, "{}, ", self.get(y, x));
                    } else {
                        write!(f, "{}", self.get(y, x));
                    }
                }
                if y < (*self.mat).size1 - 1 {
                    write!(f, "]\n");
                }
            }
        }
        write!(f, "]")
    }
}

impl ffi::FFI<ffi::gsl_matrix_float> for MatrixF32 {
    fn wrap(r: *mut ffi::gsl_matrix_float) -> MatrixF32 {
        MatrixF32 {
            mat: r,
            can_free: true,
        }
    }

    fn soft_wrap(r: *mut ffi::gsl_matrix_float) -> MatrixF32 {
        MatrixF32 {
            mat: r,
            can_free: false,
        }
    }

    fn unwrap_shared(m: &MatrixF32) -> *const ffi::gsl_matrix_float {
        m.mat as *const _
    }

    fn unwrap_unique(m: &mut MatrixF32) -> *mut ffi::gsl_matrix_float {
        m.mat
    }
}