1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
//
// A rust binding for the GSL library by Guillaume Gomez (guillaume1.gomez@gmail.com)
//

use std::mem::zeroed;
use enums;

pub trait Trigonometric {
    /// This routine computes the sine function \sin(x).
    fn sin(&self) -> Self;
    /// This routine computes the sine function \sin(x).
    fn sin_e(&self) -> (enums::Value, ::types::Result);
    /// This routine computes the cosine function \sin(x).
    fn cos(&self) -> Self;
    /// This routine computes the cosine function \sin(x).
    fn cos_e(&self) -> (enums::Value, ::types::Result);
    /// This routine computes the hypotenuse function \sqrt{x^2 + y^2} avoiding overflow and underflow.
    fn sf_hypot(&self) -> Self;
    /// This routine computes the hypotenuse function \sqrt{x^2 + y^2} avoiding overflow and underflow.
    fn sf_hypot_e(&self) -> (enums::Value, ::types::Result);
    /// This routine computes \sinc(x) = \sin(\pi x) / (\pi x) for any value of x.
    fn sinc(&self) -> Self;
    /// This routine computes \sinc(x) = \sin(\pi x) / (\pi x) for any value of x.
    fn sinc_e(&self) -> (enums::Value, ::types::Result);
    /// This function computes the complex sine, \sin(z_r + i z_i) storing the real and imaginary parts in szr, szi.
    fn complex_sin_e(&self, zi: f64) -> (enums::Value, ::types::Result, ::types::Result);
    /// This function computes the complex cosine, \cos(z_r + i z_i) storing the real and imaginary parts in czr, czi.
    fn complex_cos_e(&self, zi: f64) -> (enums::Value, ::types::Result, ::types::Result);
    /// This function computes the logarithm of the complex sine, \log(\sin(z_r + i z_i)) storing the real and imaginary parts in lszr, lszi.
    fn complex_logsin_e(&self, zi: f64) -> (enums::Value, ::types::Result, ::types::Result);
    /// This routine computes \log(\sinh(x)) for x > 0.
    fn lnsinh(&self) -> Self;
    /// This routine computes \log(\sinh(x)) for x > 0.
    fn lnsinh_e(&self) -> (enums::Value, ::types::Result);
    /// This routine computes \log(\cosh(x)) for x > 0.
    fn lncosh(&self) -> Self;
    /// This routine computes \log(\cosh(x)) for x > 0.
    fn lncosh_e(&self) -> (enums::Value, ::types::Result);
    /// This function converts the polar coordinates (r,theta) to rectilinear coordinates (x,y), x = r\cos(\theta), y = r\sin(\theta).
    fn polar_to_rect(&self, theta: f64) -> (enums::Value, ::types::Result, ::types::Result);
    /// This function converts the rectilinear coordinates (x,y) to polar coordinates (r,theta), such that x = r\cos(\theta), y = r\sin(\theta).
    /// The argument theta lies in the range [-\pi, \pi].
    fn rect_to_polar(&self, y: f64) -> (enums::Value, ::types::Result, ::types::Result);
    /// This routine forces the angle theta to lie in the range (-\pi,\pi].
    /// 
    /// Note that the mathematical value of \pi is slightly greater than M_PI, so the machine numbers M_PI and -M_PI are included in the range.
    fn angle_restrict_symm(&self) -> Self;
    /// This routine forces the angle theta to lie in the range (-\pi,\pi].
    /// 
    /// Note that the mathematical value of \pi is slightly greater than M_PI, so the machine numbers M_PI and -M_PI are included in the range.
    fn angle_restrict_symm_e(&mut self) -> enums::Value;
    /// This routine forces the angle theta to lie in the range [0, 2\pi).
    /// 
    /// Note that the mathematical value of 2\pi is slightly greater than 2*M_PI, so the machine number 2*M_PI is included in the range.
    fn angle_restrict_pos(&self) -> Self;
    /// This routine forces the angle theta to lie in the range [0, 2\pi).
    /// 
    /// Note that the mathematical value of 2\pi is slightly greater than 2*M_PI, so the machine number 2*M_PI is included in the range.
    fn angle_restrict_pos_e(&mut self) -> enums::Value;
    /// This routine computes the sine of an angle x with an associated absolute error dx, \sin(x \pm dx).
    /// 
    /// Note that this function is provided in the error-handling form only since its purpose is to compute the propagated error.
    fn sin_err_e(&self, dx: f64) -> (enums::Value, ::types::Result);
    /// This routine computes the cosine of an angle x with an associated absolute error dx, \cos(x \pm dx).
    /// 
    /// Note that this function is provided in the error-handling form only since its purpose is to compute the propagated error.
    fn cos_err_e(&self, dx: f64) -> (enums::Value, ::types::Result);
}

impl Trigonometric for f64 {
    fn sin(&self) -> f64 {
        unsafe { ::ffi::gsl_sf_sin(*self) }
    }

    fn sin_e(&self) -> (enums::Value, ::types::Result) {
        let mut result = unsafe { zeroed::<::ffi::gsl_sf_result>() };
        let ret = unsafe { ::ffi::gsl_sf_sin_e(*self, &mut result) };

        (ret, ::types::Result{val: result.val, err: result.err})
    }

    fn cos(&self) -> f64 {
        unsafe { ::ffi::gsl_sf_cos(*self) }
    }

    fn cos_e(&self) -> (enums::Value, ::types::Result) {
        let mut result = unsafe { zeroed::<::ffi::gsl_sf_result>() };
        let ret = unsafe { ::ffi::gsl_sf_cos_e(*self, &mut result) };

        (ret, ::types::Result{val: result.val, err: result.err})
    }

    fn sf_hypot(&self) -> f64 {
        unsafe { ::ffi::gsl_sf_hypot(*self) }
    }

    fn sf_hypot_e(&self) -> (enums::Value, ::types::Result) {
        let mut result = unsafe { zeroed::<::ffi::gsl_sf_result>() };
        let ret = unsafe { ::ffi::gsl_sf_hypot_e(*self, &mut result) };

        (ret, ::types::Result{val: result.val, err: result.err})
    }

    fn sinc(&self) -> f64 {
        unsafe { ::ffi::gsl_sf_sinc(*self) }
    }

    fn sinc_e(&self) -> (enums::Value, ::types::Result) {
        let mut result = unsafe { zeroed::<::ffi::gsl_sf_result>() };
        let ret = unsafe { ::ffi::gsl_sf_sinc_e(*self, &mut result) };

        (ret, ::types::Result{val: result.val, err: result.err})
    }

    fn complex_sin_e(&self, zi: f64) -> (enums::Value, ::types::Result, ::types::Result) {
        let mut result = unsafe { zeroed::<::ffi::gsl_sf_result>() };
        let mut result2 = unsafe { zeroed::<::ffi::gsl_sf_result>() };
        let ret = unsafe { ::ffi::gsl_sf_complex_sin_e(*self, zi, &mut result, &mut result2) };

        (ret, ::types::Result{val: result.val, err: result.err}, ::types::Result{val: result2.val, err: result2.err})
    }

    fn complex_cos_e(&self, zi: f64) -> (enums::Value, ::types::Result, ::types::Result) {
        let mut result = unsafe { zeroed::<::ffi::gsl_sf_result>() };
        let mut result2 = unsafe { zeroed::<::ffi::gsl_sf_result>() };
        let ret = unsafe { ::ffi::gsl_sf_complex_cos_e(*self, zi, &mut result, &mut result2) };

        (ret, ::types::Result{val: result.val, err: result.err}, ::types::Result{val: result2.val, err: result2.err})
    }

    fn complex_logsin_e(&self, zi: f64) -> (enums::Value, ::types::Result, ::types::Result) {
        let mut result = unsafe { zeroed::<::ffi::gsl_sf_result>() };
        let mut result2 = unsafe { zeroed::<::ffi::gsl_sf_result>() };
        let ret = unsafe { ::ffi::gsl_sf_complex_logsin_e(*self, zi, &mut result, &mut result2) };

        (ret, ::types::Result{val: result.val, err: result.err}, ::types::Result{val: result2.val, err: result2.err})
    }

    fn lnsinh(&self) -> f64 {
        unsafe { ::ffi::gsl_sf_lnsinh(*self) }
    }

    fn lnsinh_e(&self) -> (enums::Value, ::types::Result) {
        let mut result = unsafe { zeroed::<::ffi::gsl_sf_result>() };
        let ret = unsafe { ::ffi::gsl_sf_lnsinh_e(*self, &mut result) };

        (ret, ::types::Result{val: result.val, err: result.err})
    }

    fn lncosh(&self) -> f64 {
        unsafe { ::ffi::gsl_sf_lncosh(*self) }
    }

    fn lncosh_e(&self) -> (enums::Value, ::types::Result) {
        let mut result = unsafe { zeroed::<::ffi::gsl_sf_result>() };
        let ret = unsafe { ::ffi::gsl_sf_lncosh_e(*self, &mut result) };

        (ret, ::types::Result{val: result.val, err: result.err})
    }

    fn polar_to_rect(&self, theta: f64) -> (enums::Value, ::types::Result, ::types::Result) {
        let mut result = unsafe { zeroed::<::ffi::gsl_sf_result>() };
        let mut result2 = unsafe { zeroed::<::ffi::gsl_sf_result>() };
        let ret = unsafe { ::ffi::gsl_sf_polar_to_rect(*self, theta, &mut result, &mut result2) };

        (ret, ::types::Result{val: result.val, err: result.err}, ::types::Result{val: result2.val, err: result2.err})
    }

    fn rect_to_polar(&self, y: f64) -> (enums::Value, ::types::Result, ::types::Result) {
        let mut result = unsafe { zeroed::<::ffi::gsl_sf_result>() };
        let mut result2 = unsafe { zeroed::<::ffi::gsl_sf_result>() };
        let ret = unsafe { ::ffi::gsl_sf_rect_to_polar(*self, y, &mut result, &mut result2) };

        (ret, ::types::Result{val: result.val, err: result.err}, ::types::Result{val: result2.val, err: result2.err})
    }

    fn angle_restrict_symm(&self) -> f64 {
        unsafe { ::ffi::gsl_sf_angle_restrict_symm(*self) }
    }

    fn angle_restrict_symm_e(&mut self) -> enums::Value {
        unsafe { ::ffi::gsl_sf_angle_restrict_symm_e(self) }
    }

    fn angle_restrict_pos(&self) -> f64 {
        unsafe { ::ffi::gsl_sf_angle_restrict_pos(*self) }
    }

    fn angle_restrict_pos_e(&mut self) -> enums::Value {
        unsafe { ::ffi::gsl_sf_angle_restrict_pos_e(self) }
    }

    fn sin_err_e(&self, dx: f64) -> (enums::Value, ::types::Result) {
        let mut result = unsafe { zeroed::<::ffi::gsl_sf_result>() };
        let ret = unsafe { ::ffi::gsl_sf_sin_err_e(*self, dx, &mut result) };

        (ret, ::types::Result{val: result.val, err: result.err})
    }

    fn cos_err_e(&self, dx: f64) -> (enums::Value, ::types::Result) {
        let mut result = unsafe { zeroed::<::ffi::gsl_sf_result>() };
        let ret = unsafe { ::ffi::gsl_sf_cos_err_e(*self, dx, &mut result) };

        (ret, ::types::Result{val: result.val, err: result.err})
    }
}