1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
//
// A rust binding for the GSL library by Guillaume Gomez (guillaume1.gomez@gmail.com)
//

/*!
##Introduction

Each algorithm computes an approximation to a definite integral of the form,

I = \int_a^b f(x) w(x) dx
where w(x) is a weight function (for general integrands w(x)=1). The user provides absolute and relative error bounds (epsabs, epsrel) which
specify the following accuracy requirement,

|RESULT - I|  <= max(epsabs, epsrel |I|)

where RESULT is the numerical approximation obtained by the algorithm. The algorithms attempt to estimate the absolute error ABSERR = |RESULT
- I| in such a way that the following inequality holds,

|RESULT - I| <= ABSERR <= max(epsabs, epsrel |I|)

In short, the routines return the first approximation which has an absolute error smaller than epsabs or a relative error smaller than epsrel.

Note that this is an either-or constraint, not simultaneous. To compute to a specified absolute error, set epsrel to zero. To compute to a
specified relative error, set epsabs to zero. The routines will fail to converge if the error bounds are too stringent, but always return the
best approximation obtained up to that stage.

The algorithms in QUADPACK use a naming convention based on the following letters,

Q - quadrature routine

N - non-adaptive integrator
A - adaptive integrator

G - general integrand (user-defined)
W - weight function with integrand

S - singularities can be more readily integrated
P - points of special difficulty can be supplied
I - infinite range of integration
O - oscillatory weight function, cos or sin
F - Fourier integral
C - Cauchy principal value
The algorithms are built on pairs of quadrature rules, a higher order rule and a lower order rule. The higher order rule is used to compute the
best approximation to an integral over a small range. The difference between the results of the higher order rule and the lower order rule gives
an estimate of the error in the approximation.

 * [Integrands without weight functions](http://www.gnu.org/software/gsl/manual/html_node/Integrands-without-weight-functions.html#Integrands-without-weight-functions)
 * [Integrands with weight functions](http://www.gnu.org/software/gsl/manual/html_node/Integrands-with-weight-functions.html#Integrands-with-weight-functions)
 * [Integrands with singular weight functions](http://www.gnu.org/software/gsl/manual/html_node/Integrands-with-singular-weight-functions.html#Integrands-with-singular-weight-functions)

##QNG non-adaptive Gauss-Kronrod integration

The QNG algorithm is a non-adaptive procedure which uses fixed Gauss-Kronrod-Patterson abscissae to sample the integrand at a maximum of 87
points. It is provided for fast integration of smooth functions.

##QAG adaptive integration

The QAG algorithm is a simple adaptive integration procedure. The integration region is divided into subintervals, and on each iteration the
subinterval with the largest estimated error is bisected. This reduces the overall error rapidly, as the subintervals become concentrated
around local difficulties in the integrand. These subintervals are managed by a gsl_integration_workspace struct, which handles the memory
for the subinterval ranges, results and error estimates.

##QAGS adaptive integration with singularities

The presence of an integrable singularity in the integration region causes an adaptive routine to concentrate new subintervals around the
singularity. As the subintervals decrease in size the successive approximations to the integral converge in a limiting fashion. This
approach to the limit can be accelerated using an extrapolation procedure. The QAGS algorithm combines adaptive bisection with the Wynn
epsilon-algorithm to speed up the integration of many types of integrable singularities.

##References and Further Reading

The following book is the definitive reference for QUADPACK, and was written by the original authors. It provides descriptions of the
algorithms, program listings, test programs and examples. It also includes useful advice on numerical integration and many references
to the numerical integration literature used in developing QUADPACK.

R. Piessens, E. de Doncker-Kapenga, C.W. Ueberhuber, D.K. Kahaner. QUADPACK A subroutine package for automatic integration Springer Verlag, 1983.
The CQUAD integration algorithm is described in the following paper:

P. Gonnet, “Increasing the Reliability of Adaptive Quadrature Using Explicit Interpolants”, ACM Transactions on Mathematical Software, Volume 37
(2010), Issue 3, Article 26.
!*/

use ffi;
use enums;
use std::ffi::CString;

fn rescale_error(err: f64, result_abs: f64, result_asc: f64) -> f64 {
    let mut t_err = unsafe { err.abs() };

    if result_asc != 0f64 && t_err != 0f64 {
        let scale = unsafe { (200f64 * t_err / result_asc).powf(1.5f64) };

        if scale < 1f64 {
            t_err = result_asc * scale;
        } else {
            t_err = result_asc;
        }
    }
    if result_abs > ::DBL_MIN / (50f64 * ::DBL_EPSILON) {
        let min_err = 50f64 * ::DBL_EPSILON * result_abs;

        if min_err > t_err {
            t_err = min_err;
        }
    }

    t_err
}

/// This function applies the Gauss-Kronrod 10-point, 21-point, 43-point and 87-point integration rules in succession until an estimate of the
/// integral of f over (a,b) is achieved within the desired absolute and relative error limits, eps_abs and eps_rel. The function returns the final
/// approximation, result, an estimate of the absolute error, abserr and the number of function evaluations used, neval. The Gauss-Kronrod rules
/// are designed in such a way that each rule uses all the results of its predecessors, in order to minimize the total number of function
/// evaluations.
pub fn qng<T>(f: ::function<T>, arg: &mut T, a: f64, b: f64, eps_abs: f64, eps_rel: f64, result: &mut f64, abs_err: &mut f64,
    n_eval: &mut usize) -> ::Value {
    let half_length = 0.5f64 * (b - a);
    let abs_half_length = unsafe { half_length.abs() };
    let center = 0.5f64 * (b + a);
    let f_center = f(center, arg);

    if eps_abs <= 0f64 && (eps_rel < 50f64 * ::DBL_EPSILON || eps_rel < 0.5e-28f64) {
        *result = 0f64;
        *abs_err = 0f64;
        *n_eval = 0usize;

        //to avoid the dead_code warning on gsl_error
        unsafe {
            let file = file!();
            let c_str = CString::new("tolerance cannot be achieved with given eps_abs and eps_rel".as_bytes()).unwrap();
            let c_file = CString::new(file.as_bytes()).unwrap();

            unsafe {
                ffi::gsl_error(c_str.as_ptr(), c_file.as_ptr(), line!() as i32, ::Value::BadTolerance as i32);
            }
        }
        return ::Value::BadTolerance;
    }

    // w21b, weights of the 21-point formula for abscissae x2
    let w21b : [f64; 6] = [
        0.011694638867371874278064396062192f64,
        0.054755896574351996031381300244580f64,
        0.093125454583697605535065465083366f64,
        0.123491976262065851077958109831074f64,
        0.142775938577060080797094273138717f64,
        0.149445554002916905664936468389821f64
    ];
    // w10, weights of the 10-point formula
    let w10 : [f64; 5] = [
        0.066671344308688137593568809893332f64,
        0.149451349150580593145776339657697f64,
        0.219086362515982043995534934228163f64,
        0.269266719309996355091226921569469f64,
        0.295524224714752870173892994651338f64
    ];
    // w21a, weights of the 21-point formula for abscissae x1 */
    let w21a : [f64; 5] = [
        0.032558162307964727478818972459390f64,
        0.075039674810919952767043140916190f64,
        0.109387158802297641899210590325805f64,
        0.134709217311473325928054001771707f64,
        0.147739104901338491374841515972068f64
    ];
    // x1, abscissae common to the 10-, 21-, 43- and 87-point rule */
    let x1 : [f64; 5] = [
        0.973906528517171720077964012084452f64,
        0.865063366688984510732096688423493f64,
        0.679409568299024406234327365114874f64,
        0.433395394129247190799265943165784f64,
        0.148874338981631210884826001129720f64
    ];
    // x2, abscissae common to the 21-, 43- and 87-point rule
    let x2 : [f64; 5] = [
        0.995657163025808080735527280689003f64,
        0.930157491355708226001207180059508f64,
        0.780817726586416897063717578345042f64,
        0.562757134668604683339000099272694f64,
        0.294392862701460198131126603103866f64
    ];
    // x3, abscissae common to the 43- and 87-point rule */
    let x3 : [f64; 11] = [
        0.999333360901932081394099323919911f64,
        0.987433402908088869795961478381209f64,
        0.954807934814266299257919200290473f64,
        0.900148695748328293625099494069092f64,
        0.825198314983114150847066732588520f64,
        0.732148388989304982612354848755461f64,
        0.622847970537725238641159120344323f64,
        0.499479574071056499952214885499755f64,
        0.364901661346580768043989548502644f64,
        0.222254919776601296498260928066212f64,
        0.074650617461383322043914435796506f64
    ];
    // x4, abscissae of the 87-point rule */
    let x4 : [f64; 22] = [
        0.999902977262729234490529830591582f64,
        0.997989895986678745427496322365960f64,
        0.992175497860687222808523352251425f64,
        0.981358163572712773571916941623894f64,
        0.965057623858384619128284110607926f64,
        0.943167613133670596816416634507426f64,
        0.915806414685507209591826430720050f64,
        0.883221657771316501372117548744163f64,
        0.845710748462415666605902011504855f64,
        0.803557658035230982788739474980964f64,
        0.757005730685495558328942793432020f64,
        0.706273209787321819824094274740840f64,
        0.651589466501177922534422205016736f64,
        0.593223374057961088875273770349144f64,
        0.531493605970831932285268948562671f64,
        0.466763623042022844871966781659270f64,
        0.399424847859218804732101665817923f64,
        0.329874877106188288265053371824597f64,
        0.258503559202161551802280975429025f64,
        0.185695396568346652015917141167606f64,
        0.111842213179907468172398359241362f64,
        0.037352123394619870814998165437704f64
    ];
    // w43a, weights of the 43-point formula for abscissae x1, x3 */
    let w43a : [f64; 10] = [
        0.016296734289666564924281974617663f64,
        0.037522876120869501461613795898115f64,
        0.054694902058255442147212685465005f64,
        0.067355414609478086075553166302174f64,
        0.073870199632393953432140695251367f64,
        0.005768556059769796184184327908655f64,
        0.027371890593248842081276069289151f64,
        0.046560826910428830743339154433824f64,
        0.061744995201442564496240336030883f64,
        0.071387267268693397768559114425516f64
    ];
    // w43b, weights of the 43-point formula for abscissae x3 */
    let w43b : [f64; 12] = [
        0.001844477640212414100389106552965f64,
        0.010798689585891651740465406741293f64,
        0.021895363867795428102523123075149f64,
        0.032597463975345689443882222526137f64,
        0.042163137935191811847627924327955f64,
        0.050741939600184577780189020092084f64,
        0.058379395542619248375475369330206f64,
        0.064746404951445885544689259517511f64,
        0.069566197912356484528633315038405f64,
        0.072824441471833208150939535192842f64,
        0.074507751014175118273571813842889f64,
        0.074722147517403005594425168280423f64
    ];
    // w87a, weights of the 87-point formula for abscissae x1, x2, x3
    let w87a : [f64; 21] = [
        0.008148377384149172900002878448190f64,
        0.018761438201562822243935059003794f64,
        0.027347451050052286161582829741283f64,
        0.033677707311637930046581056957588f64,
        0.036935099820427907614589586742499f64,
        0.002884872430211530501334156248695f64,
        0.013685946022712701888950035273128f64,
        0.023280413502888311123409291030404f64,
        0.030872497611713358675466394126442f64,
        0.035693633639418770719351355457044f64,
        0.000915283345202241360843392549948f64,
        0.005399280219300471367738743391053f64,
        0.010947679601118931134327826856808f64,
        0.016298731696787335262665703223280f64,
        0.021081568889203835112433060188190f64,
        0.025370969769253827243467999831710f64,
        0.029189697756475752501446154084920f64,
        0.032373202467202789685788194889595f64,
        0.034783098950365142750781997949596f64,
        0.036412220731351787562801163687577f64,
        0.037253875503047708539592001191226f64
    ];
    // w87b, weights of the 87-point formula for abscissae x4
    let w87b : [f64; 23] = [
        0.000274145563762072350016527092881f64,
        0.001807124155057942948341311753254f64,
        0.004096869282759164864458070683480f64,
        0.006758290051847378699816577897424f64,
        0.009549957672201646536053581325377f64,
        0.012329447652244853694626639963780f64,
        0.015010447346388952376697286041943f64,
        0.017548967986243191099665352925900f64,
        0.019938037786440888202278192730714f64,
        0.022194935961012286796332102959499f64,
        0.024339147126000805470360647041454f64,
        0.026374505414839207241503786552615f64,
        0.028286910788771200659968002987960f64,
        0.030052581128092695322521110347341f64,
        0.031646751371439929404586051078883f64,
        0.033050413419978503290785944862689f64,
        0.034255099704226061787082821046821f64,
        0.035262412660156681033782717998428f64,
        0.036076989622888701185500318003895f64,
        0.036698604498456094498018047441094f64,
        0.037120549269832576114119958413599f64,
        0.037334228751935040321235449094698f64,
        0.037361073762679023410321241766599f64
    ];

    // Compute the integral using the 10- and 21-point formula.
    let mut res10 = 0f64;
    let mut res21 = w21b[5] * f_center;
    let mut resabs = unsafe { w21b[5] * f_center.abs() };
    let mut savfun : [f64; 21] = [0f64; 21];
    let mut fv1 : [f64; 5] = [0f64; 5];
    let mut fv2 : [f64; 5] = [0f64; 5];
    let mut fv3 : [f64; 5] = [0f64; 5];
    let mut fv4 : [f64; 5] = [0f64; 5];

    for k in 0usize..5usize {
        let abscissa = half_length * x1[k];
        let fval1 = f(center + abscissa, arg);
        let fval2 = f(center - abscissa, arg);
        let fval = fval1 + fval2;

        res10 += w10[k] * fval;
        res21 += w21a[k] * fval;
        resabs += unsafe { w21a[k] * (fval1.abs() + fval2.abs()) };
        savfun[k] = fval;
        fv1[k] = fval1;
        fv2[k] = fval2;
    }

    for k in 0usize..5usize {
        let abscissa = half_length * x2[k];
        let fval1 = f(center + abscissa, arg);
        let fval2 = f(center - abscissa, arg);
        let fval = fval1 + fval2;

        res21 += w21b[k] * fval;
        resabs += unsafe { w21b[k] * (fval1.abs() + fval2.abs()) };
        savfun[k + 5] = fval;
        fv3[k] = fval1;
        fv4[k] = fval2;
    }
    resabs *= abs_half_length;

    let mean = 0.5f64 * res21;
    let mut resasc = unsafe { w21b[5] * (f_center - mean).abs() };

    for k in 0usize..5usize {
        resasc += unsafe { (w21a[k] * ((fv1[k] - mean).abs() + (fv2[k] - mean).abs()) + w21b[k] * ((fv3[k] - mean).abs() + (fv4[k] - mean).abs())) };
    }
    resasc *= abs_half_length;
    let mut result_kronrod = res21 * half_length;
    let mut err = rescale_error((res21 - res10) * half_length, resabs, resasc);

    // test for convergence.
    if err < eps_abs || err < eps_rel * unsafe { result_kronrod.abs() } {
        *result = result_kronrod;
        *abs_err = err;
        *n_eval = 21;
        return ::Value::Success;
    }

    // compute the integral using the 43-point formula.
    let mut res43 = w43b[11] * f_center;

    for k in 0usize..10usize {
        res43 += savfun[k] * w43a[k];
    }

    for k in 0usize..11usize {
        let abscissa = half_length * x3[k];
        let fval = f(center + abscissa, arg) + f(center - abscissa, arg);

        res43 += fval * w43b[k];
        savfun[k + 10] = fval;
    }

    // test for convergence
    result_kronrod = res43 * half_length;
    err = rescale_error((res43 - res21) * half_length, resabs, resasc);

    if err < eps_abs || err < eps_rel * unsafe { result_kronrod.abs() } {
        *result = result_kronrod;
        *abs_err = err;
        *n_eval = 43;
        return ::Value::Success;
    }

    // compute the integral using the 87-point formula.
    let mut res87 = w87b[22] * f_center;

    for k in 0..21 {
        res87 += savfun[k] * w87a[k];
    }
    for k in 0..22 {
        let abscissa = half_length * x4[k];

        res87 += w87b[k] * f(center + abscissa, arg) + f(center - abscissa, arg);
    }

    // test for convergence
    result_kronrod = res87 * half_length ;
    err = rescale_error((res87 - res43) * half_length, resabs, resasc);

    if err < eps_abs || err < eps_rel * unsafe { result_kronrod.abs() } {
        *result = result_kronrod;
        *abs_err = err;
        *n_eval = 87;
        return ::Value::Success;
    }

    // failed to converge
    *result = result_kronrod;
    *abs_err = err;
    *n_eval = 87;
    rgsl_error!("failed to reach tolerance with highest-order rule", ::Value::Tolerance);
    ::Value::Tolerance
}

/// Gauss quadrature weights and kronrod quadrature abscissae and weights as evaluated with 80 decimal digit arithmetic by L. W.
/// Fullerton, Bell Labs, Nov. 1981.
pub fn qk15<T>(f: ::function<T>, arg: &mut T, a: f64, b: f64, result: &mut f64, abserr: &mut f64, resabs: &mut f64, resasc: &mut f64) {
    // abscissae of the 15-point kronrod rule
    let xgk : [f64; 8] = [
        0.991455371120812639206854697526329f64,
        0.949107912342758524526189684047851f64,
        0.864864423359769072789712788640926f64,
        0.741531185599394439863864773280788f64,
        0.586087235467691130294144838258730f64,
        0.405845151377397166906606412076961f64,
        0.207784955007898467600689403773245f64,
        0.000000000000000000000000000000000f64
    ];

    // xgk[1], xgk[3], ... abscissae of the 7-point gauss rule.
    // xgk[0], xgk[2], ... abscissae to optimally extend the 7-point gauss rule

    // weights of the 7-point gauss rule
    let wg : [f64; 4] = [
        0.129484966168869693270611432679082f64,
        0.279705391489276667901467771423780f64,
        0.381830050505118944950369775488975f64,
        0.417959183673469387755102040816327f64
    ];

    // weights of the 15-point kronrod rule
    let wgk : [f64; 8] = [
        0.022935322010529224963732008058970f64,
        0.063092092629978553290700663189204f64,
        0.104790010322250183839876322541518f64,
        0.140653259715525918745189590510238f64,
        0.169004726639267902826583426598550f64,
        0.190350578064785409913256402421014f64,
        0.204432940075298892414161999234649f64,
        0.209482141084727828012999174891714f64
    ];

    let mut fv1 : [f64; 8] = [0f64; 8];
    let mut fv2 : [f64; 8] = [0f64; 8];

    qk(&xgk, &wg, &wgk, &mut fv1, &mut fv2, f, arg, a, b, result, abserr, resabs, resasc);
}

pub fn qk21<T>(f: ::function<T>, arg: &mut T, a: f64, b: f64, result: &mut f64, abserr: &mut f64, resabs: &mut f64, resasc: &mut f64) {
    // abscissae of the 21-point kronrod rule
    let xgk : [f64; 11] = [
        0.995657163025808080735527280689003f64,
        0.973906528517171720077964012084452f64,
        0.930157491355708226001207180059508f64,
        0.865063366688984510732096688423493f64,
        0.780817726586416897063717578345042f64,
        0.679409568299024406234327365114874f64,
        0.562757134668604683339000099272694f64,
        0.433395394129247190799265943165784f64,
        0.294392862701460198131126603103866f64,
        0.148874338981631210884826001129720f64,
        0.000000000000000000000000000000000f64
    ];

    // xgk[1], xgk[3], ... abscissae of the 10-point gauss rule.
    // xgk[0], xgk[2], ... abscissae to optimally extend the 10-point gauss rule

    // weights of the 10-point gauss rule
    let wg : [f64; 5] = [
        0.066671344308688137593568809893332f64,
        0.149451349150580593145776339657697f64,
        0.219086362515982043995534934228163f64,
        0.269266719309996355091226921569469f64,
        0.295524224714752870173892994651338f64
    ];

    // weights of the 21-point kronrod rule
    let wgk : [f64; 11] = [
        0.011694638867371874278064396062192f64,
        0.032558162307964727478818972459390f64,
        0.054755896574351996031381300244580f64,
        0.075039674810919952767043140916190f64,
        0.093125454583697605535065465083366f64,
        0.109387158802297641899210590325805f64,
        0.123491976262065851077958109831074f64,
        0.134709217311473325928054001771707f64,
        0.142775938577060080797094273138717f64,
        0.147739104901338491374841515972068f64,
        0.149445554002916905664936468389821f64
    ];

    let mut fv1 : [f64; 11] = [0f64; 11];
    let mut fv2 : [f64; 11] = [0f64; 11];

    qk(&xgk, &wg, &wgk, &mut fv1, &mut fv2, f, arg, a, b, result, abserr, resabs, resasc);
}

pub fn qk31<T>(f: ::function<T>, arg: &mut T, a: f64, b: f64, result: &mut f64, abserr: &mut f64, resabs: &mut f64, resasc: &mut f64) {
    // abscissae of the 31-point kronrod rule
    let xgk : [f64; 16] = [
        0.998002298693397060285172840152271f64,
        0.987992518020485428489565718586613f64,
        0.967739075679139134257347978784337f64,
        0.937273392400705904307758947710209f64,
        0.897264532344081900882509656454496f64,
        0.848206583410427216200648320774217f64,
        0.790418501442465932967649294817947f64,
        0.724417731360170047416186054613938f64,
        0.650996741297416970533735895313275f64,
        0.570972172608538847537226737253911f64,
        0.485081863640239680693655740232351f64,
        0.394151347077563369897207370981045f64,
        0.299180007153168812166780024266389f64,
        0.201194093997434522300628303394596f64,
        0.101142066918717499027074231447392f64,
        0.000000000000000000000000000000000f64
    ];

    // xgk[1], xgk[3], ... abscissae of the 15-point gauss rule.
    // xgk[0], xgk[2], ... abscissae to optimally extend the 15-point gauss rule

    // weights of the 15-point gauss rule
    let wg : [f64; 8] = [
        0.030753241996117268354628393577204f64,
        0.070366047488108124709267416450667f64,
        0.107159220467171935011869546685869f64,
        0.139570677926154314447804794511028f64,
        0.166269205816993933553200860481209f64,
        0.186161000015562211026800561866423f64,
        0.198431485327111576456118326443839f64,
        0.202578241925561272880620199967519f64
    ];

    // weights of the 31-point kronrod rule
    let wgk : [f64; 16] = [
        0.005377479872923348987792051430128f64,
        0.015007947329316122538374763075807f64,
        0.025460847326715320186874001019653f64,
        0.035346360791375846222037948478360f64,
        0.044589751324764876608227299373280f64,
        0.053481524690928087265343147239430f64,
        0.062009567800670640285139230960803f64,
        0.069854121318728258709520077099147f64,
        0.076849680757720378894432777482659f64,
        0.083080502823133021038289247286104f64,
        0.088564443056211770647275443693774f64,
        0.093126598170825321225486872747346f64,
        0.096642726983623678505179907627589f64,
        0.099173598721791959332393173484603f64,
        0.100769845523875595044946662617570f64,
        0.101330007014791549017374792767493f64
    ];

    let mut fv1 : [f64; 16] = [0f64; 16];
    let mut fv2 : [f64; 16] = [0f64; 16];

    qk(&xgk, &wg, &wgk, &mut fv1, &mut fv2, f, arg, a, b, result, abserr, resabs, resasc);
}

pub fn qk41<T>(f: ::function<T>, arg: &mut T, a: f64, b: f64, result: &mut f64, abserr: &mut f64, resabs: &mut f64, resasc: &mut f64) {
    // abscissae of the 41-point kronrod rule
    let xgk : [f64; 21] = [
        0.998859031588277663838315576545863f64,
        0.993128599185094924786122388471320f64,
        0.981507877450250259193342994720217f64,
        0.963971927277913791267666131197277f64,
        0.940822633831754753519982722212443f64,
        0.912234428251325905867752441203298f64,
        0.878276811252281976077442995113078f64,
        0.839116971822218823394529061701521f64,
        0.795041428837551198350638833272788f64,
        0.746331906460150792614305070355642f64,
        0.693237656334751384805490711845932f64,
        0.636053680726515025452836696226286f64,
        0.575140446819710315342946036586425f64,
        0.510867001950827098004364050955251f64,
        0.443593175238725103199992213492640f64,
        0.373706088715419560672548177024927f64,
        0.301627868114913004320555356858592f64,
        0.227785851141645078080496195368575f64,
        0.152605465240922675505220241022678f64,
        0.076526521133497333754640409398838f64,
        0.000000000000000000000000000000000f64
    ];

    // xgk[1], xgk[3], ... abscissae of the 20-point gauss rule.
    // xgk[0], xgk[2], ... abscissae to optimally extend the 20-point gauss rule

    // weights of the 20-point gauss rule
    let wg : [f64; 11] = [
        0.017614007139152118311861962351853f64,
        0.040601429800386941331039952274932f64,
        0.062672048334109063569506535187042f64,
        0.083276741576704748724758143222046f64,
        0.101930119817240435036750135480350f64,
        0.118194531961518417312377377711382f64,
        0.131688638449176626898494499748163f64,
        0.142096109318382051329298325067165f64,
        0.149172986472603746787828737001969f64,
        0.152753387130725850698084331955098f64,
        0.000000000000000000000000000000000f64
    ];

    // weights of the 41-point kronrod rule
    let wgk : [f64; 21] = [
        0.003073583718520531501218293246031f64,
        0.008600269855642942198661787950102f64,
        0.014626169256971252983787960308868f64,
        0.020388373461266523598010231432755f64,
        0.025882133604951158834505067096153f64,
        0.031287306777032798958543119323801f64,
        0.036600169758200798030557240707211f64,
        0.041668873327973686263788305936895f64,
        0.046434821867497674720231880926108f64,
        0.050944573923728691932707670050345f64,
        0.055195105348285994744832372419777f64,
        0.059111400880639572374967220648594f64,
        0.062653237554781168025870122174255f64,
        0.065834597133618422111563556969398f64,
        0.068648672928521619345623411885368f64,
        0.071054423553444068305790361723210f64,
        0.073030690332786667495189417658913f64,
        0.074582875400499188986581418362488f64,
        0.075704497684556674659542775376617f64,
        0.076377867672080736705502835038061f64,
        0.076600711917999656445049901530102f64
    ];

    let mut fv1 : [f64; 21] = [0f64; 21];
    let mut fv2 : [f64; 21] = [0f64; 21];

    qk(&xgk, &wg, &wgk, &mut fv1, &mut fv2, f, arg, a, b, result, abserr, resabs, resasc);
}

pub fn qk51<T>(f: ::function<T>, arg: &mut T, a: f64, b: f64, result: &mut f64, abserr: &mut f64, resabs: &mut f64, resasc: &mut f64) {
    // abscissae of the 51-point kronrod rule
    let xgk : [f64; 26] = [
        0.999262104992609834193457486540341f64,
        0.995556969790498097908784946893902f64,
        0.988035794534077247637331014577406f64,
        0.976663921459517511498315386479594f64,
        0.961614986425842512418130033660167f64,
        0.942974571228974339414011169658471f64,
        0.920747115281701561746346084546331f64,
        0.894991997878275368851042006782805f64,
        0.865847065293275595448996969588340f64,
        0.833442628760834001421021108693570f64,
        0.797873797998500059410410904994307f64,
        0.759259263037357630577282865204361f64,
        0.717766406813084388186654079773298f64,
        0.673566368473468364485120633247622f64,
        0.626810099010317412788122681624518f64,
        0.577662930241222967723689841612654f64,
        0.526325284334719182599623778158010f64,
        0.473002731445714960522182115009192f64,
        0.417885382193037748851814394594572f64,
        0.361172305809387837735821730127641f64,
        0.303089538931107830167478909980339f64,
        0.243866883720988432045190362797452f64,
        0.183718939421048892015969888759528f64,
        0.122864692610710396387359818808037f64,
        0.061544483005685078886546392366797f64,
        0.000000000000000000000000000000000f64
    ];

    // xgk[1], xgk[3], ... abscissae of the 25-point gauss rule.
    // xgk[0], xgk[2], ... abscissae to optimally extend the 25-point gauss rule

    // weights of the 25-point gauss rule
    let wg : [f64; 13] = [
        0.011393798501026287947902964113235f64,
        0.026354986615032137261901815295299f64,
        0.040939156701306312655623487711646f64,
        0.054904695975835191925936891540473f64,
        0.068038333812356917207187185656708f64,
        0.080140700335001018013234959669111f64,
        0.091028261982963649811497220702892f64,
        0.100535949067050644202206890392686f64,
        0.108519624474263653116093957050117f64,
        0.114858259145711648339325545869556f64,
        0.119455763535784772228178126512901f64,
        0.122242442990310041688959518945852f64,
        0.123176053726715451203902873079050f64
    ];

    // weights of the 51-point kronrod rule
    let wgk : [f64; 26] = [
        0.001987383892330315926507851882843f64,
        0.005561932135356713758040236901066f64,
        0.009473973386174151607207710523655f64,
        0.013236229195571674813656405846976f64,
        0.016847817709128298231516667536336f64,
        0.020435371145882835456568292235939f64,
        0.024009945606953216220092489164881f64,
        0.027475317587851737802948455517811f64,
        0.030792300167387488891109020215229f64,
        0.034002130274329337836748795229551f64,
        0.037116271483415543560330625367620f64,
        0.040083825504032382074839284467076f64,
        0.042872845020170049476895792439495f64,
        0.045502913049921788909870584752660f64,
        0.047982537138836713906392255756915f64,
        0.050277679080715671963325259433440f64,
        0.052362885806407475864366712137873f64,
        0.054251129888545490144543370459876f64,
        0.055950811220412317308240686382747f64,
        0.057437116361567832853582693939506f64,
        0.058689680022394207961974175856788f64,
        0.059720340324174059979099291932562f64,
        0.060539455376045862945360267517565f64,
        0.061128509717053048305859030416293f64,
        0.061471189871425316661544131965264f64,
        0.061580818067832935078759824240066f64
    ];

    let mut fv1 : [f64; 26] = [0f64; 26];
    let mut fv2 : [f64; 26] = [0f64; 26];

    qk(&xgk, &wg, &wgk, &mut fv1, &mut fv2, f, arg, a, b, result, abserr, resabs, resasc);
}


pub fn qk61<T>(f: ::function<T>, arg: &mut T, a: f64, b: f64, result: &mut f64, abserr: &mut f64, resabs: &mut f64, resasc: &mut f64) {
    // abscissae of the 61-point kronrod rule
    let xgk : [f64; 31] = [
        0.999484410050490637571325895705811f64,
        0.996893484074649540271630050918695f64,
        0.991630996870404594858628366109486f64,
        0.983668123279747209970032581605663f64,
        0.973116322501126268374693868423707f64,
        0.960021864968307512216871025581798f64,
        0.944374444748559979415831324037439f64,
        0.926200047429274325879324277080474f64,
        0.905573307699907798546522558925958f64,
        0.882560535792052681543116462530226f64,
        0.857205233546061098958658510658944f64,
        0.829565762382768397442898119732502f64,
        0.799727835821839083013668942322683f64,
        0.767777432104826194917977340974503f64,
        0.733790062453226804726171131369528f64,
        0.697850494793315796932292388026640f64,
        0.660061064126626961370053668149271f64,
        0.620526182989242861140477556431189f64,
        0.579345235826361691756024932172540f64,
        0.536624148142019899264169793311073f64,
        0.492480467861778574993693061207709f64,
        0.447033769538089176780609900322854f64,
        0.400401254830394392535476211542661f64,
        0.352704725530878113471037207089374f64,
        0.304073202273625077372677107199257f64,
        0.254636926167889846439805129817805f64,
        0.204525116682309891438957671002025f64,
        0.153869913608583546963794672743256f64,
        0.102806937966737030147096751318001f64,
        0.051471842555317695833025213166723f64,
        0.000000000000000000000000000000000f64
    ];

    // xgk[1], xgk[3], ... abscissae of the 30-point gauss rule.
    // xgk[0], xgk[2], ... abscissae to optimally extend the 30-point gauss rule

    // weights of the 30-point gauss rule
    let wg : [f64; 15] = [
        0.007968192496166605615465883474674f64,
        0.018466468311090959142302131912047f64,
        0.028784707883323369349719179611292f64,
        0.038799192569627049596801936446348f64,
        0.048402672830594052902938140422808f64,
        0.057493156217619066481721689402056f64,
        0.065974229882180495128128515115962f64,
        0.073755974737705206268243850022191f64,
        0.080755895229420215354694938460530f64,
        0.086899787201082979802387530715126f64,
        0.092122522237786128717632707087619f64,
        0.096368737174644259639468626351810f64,
        0.099593420586795267062780282103569f64,
        0.101762389748405504596428952168554f64,
        0.102852652893558840341285636705415f64
    ];

    // weights of the 61-point kronrod rule
    let wgk : [f64; 31] = [
        0.001389013698677007624551591226760f64,
        0.003890461127099884051267201844516f64,
        0.006630703915931292173319826369750f64,
        0.009273279659517763428441146892024f64,
        0.011823015253496341742232898853251f64,
        0.014369729507045804812451432443580f64,
        0.016920889189053272627572289420322f64,
        0.019414141193942381173408951050128f64,
        0.021828035821609192297167485738339f64,
        0.024191162078080601365686370725232f64,
        0.026509954882333101610601709335075f64,
        0.028754048765041292843978785354334f64,
        0.030907257562387762472884252943092f64,
        0.032981447057483726031814191016854f64,
        0.034979338028060024137499670731468f64,
        0.036882364651821229223911065617136f64,
        0.038678945624727592950348651532281f64,
        0.040374538951535959111995279752468f64,
        0.041969810215164246147147541285970f64,
        0.043452539701356069316831728117073f64,
        0.044814800133162663192355551616723f64,
        0.046059238271006988116271735559374f64,
        0.047185546569299153945261478181099f64,
        0.048185861757087129140779492298305f64,
        0.049055434555029778887528165367238f64,
        0.049795683427074206357811569379942f64,
        0.050405921402782346840893085653585f64,
        0.050881795898749606492297473049805f64,
        0.051221547849258772170656282604944f64,
        0.051426128537459025933862879215781f64,
        0.051494729429451567558340433647099f64
    ];

    let mut fv1 : [f64; 31] = [0f64; 31];
    let mut fv2 : [f64; 31] = [0f64; 31];

    qk(&xgk, &wg, &wgk, &mut fv1, &mut fv2, f, arg, a, b, result, abserr, resabs, resasc);
}

pub fn qk<T>(xgk: &[f64], wg: &[f64], wgk: &[f64], fv1: &mut [f64], fv2: &mut [f64], f: ::function<T>, arg: &mut T, a: f64, b: f64,
    result: &mut f64, abserr: &mut f64, resabs: &mut f64, resasc: &mut f64) {
    let n = fv1.len();

    let center = 0.5f64 * (a + b);
    let half_length = 0.5f64 * (b - a);
    let abs_half_length = unsafe { half_length.abs() };
    let f_center = f(center, arg);

    let mut result_gauss = 0f64;
    let mut result_kronrod = f_center * wgk[n - 1];

    let mut result_abs = unsafe { result_kronrod.abs() };

    if n % 2 == 0 {
        result_gauss = f_center * wg[n / 2 - 1];
    }

    for j in 0usize..((n - 1) / 2) {
        // in original fortran j=1,2,3 jtw=2,4,6
        let jtw = j * 2 + 1;
        let abscissa = half_length * xgk[jtw];
        let fval1 = f(center - abscissa, arg);
        let fval2 = f(center + abscissa, arg);
        let fsum = fval1 + fval2;

        fv1[jtw] = fval1;
        fv2[jtw] = fval2;
        result_gauss += wg[j] * fsum;
        result_kronrod += wgk[jtw] * fsum;
        result_abs += unsafe { wgk[jtw] * (fval1.abs() + fval2.abs()) };
    }

    for j in 0usize..(n / 2) {
        let jtwm1 = j * 2;
        let abscissa = half_length * xgk[jtwm1];
        let fval1 = f(center - abscissa, arg);
        let fval2 = f(center + abscissa, arg);

        fv1[jtwm1] = fval1;
        fv2[jtwm1] = fval2;
        result_kronrod += wgk[jtwm1] * (fval1 + fval2);
        result_abs += unsafe { wgk[jtwm1] * (fval1.abs() + fval2.abs()) };
    }

    let mean = result_kronrod * 0.5;

    let mut result_asc = unsafe { wgk[n - 1] * (f_center - mean).abs() };

    for j in 0usize..(n - 1) {
        result_asc += unsafe { wgk[j] * ((fv1[j] - mean).abs() + (fv2[j] - mean).abs()) };
    }

    // scale by the width of the integration region
    let err = (result_kronrod - result_gauss) * half_length;

    result_kronrod *= half_length;
    result_abs *= abs_half_length;
    result_asc *= abs_half_length;

    *result = result_kronrod;
    *resabs = result_abs;
    *resasc = result_asc;
    *abserr = rescale_error(err, result_abs, result_asc);
}

/// This function attempts to compute a Fourier integral of the function f over the semi-infinite interval [a,+\infty).
///
/// I = \int_a^{+\infty} dx f(x) sin(omega x)
/// I = \int_a^{+\infty} dx f(x) cos(omega x)
///
/// The parameter \omega and choice of \sin or \cos is taken from the table wf (the length L can take any value, since it is overridden by
/// this function to a value appropriate for the Fourier integration). The integral is computed using the QAWO algorithm over each of the
/// subintervals,
///
/// C_1 = [a, a + c]
/// C_2 = [a + c, a + 2 c]
/// ... = ...
/// C_k = [a + (k-1) c, a + k c]
///
/// where c = (2 floor(|\omega|) + 1) \pi/|\omega|. The width c is chosen to cover an odd number of periods so that the contributions from
/// the intervals alternate in sign and are monotonically decreasing when f is positive and monotonically decreasing. The sum of this sequence
/// of contributions is accelerated using the epsilon-algorithm.
///
/// This function works to an overall absolute tolerance of abserr. The following strategy is used: on each interval C_k the algorithm tries
/// to achieve the tolerance
///
/// TOL_k = u_k abserr
///
/// where u_k = (1 - p)p^{k-1} and p = 9/10. The sum of the geometric series of contributions from each interval gives an overall tolerance
/// of abserr.
///
/// If the integration of a subinterval leads to difficulties then the accuracy requirement for subsequent intervals is relaxed,
///
/// TOL_k = u_k max(abserr, max_{i<k}{E_i})
///
/// where E_k is the estimated error on the interval C_k.
///
/// The subintervals and their results are stored in the memory provided by workspace. The maximum number of subintervals is given by limit,
/// which may not exceed the allocated size of the workspace. The integration over each subinterval uses the memory provided by cycle_workspace
/// as workspace for the QAWO algorithm.
pub fn qawf<T>(f: ::function<T>, arg: &mut T, a: f64, epsabs: f64, limit: usize, workspace: &mut ::IntegrationWorkspace,
    cycle_workspace: &mut ::IntegrationWorkspace, wf: &mut ::IntegrationQawoTable, result: &mut f64, abserr: &mut f64) -> enums::Value {
    let mut total_error = 0f64;

    let mut ktmin = 0usize;
    let mut iteration = 0usize;

    unsafe {
        let mut table : ffi::extrapolation_table = ::std::mem::zeroed();

        let omega = (*ffi::FFI::unwrap_shared(wf)).omega;

        let p = 0.9f64;
        let mut factor = 1f64;
        let mut error_type = 0i32;

        /* Initialize results */
        workspace.initialise(a, a);

        *result = 0f64;
        *abserr = 0f64;

        if limit > (*ffi::FFI::unwrap_shared(workspace)).limit {
            rgsl_error!("iteration limit exceeds available workspace", ::Value::Invalid);
        }

        /* Test on accuracy */
        if epsabs <= 0f64 {
            rgsl_error!("absolute tolerance epsabs must be positive", ::Value::BadTolerance);
        }

        if omega == 0f64 {
            if (*ffi::FFI::unwrap_shared(wf)).sine == ::IntegrationQawo::Sine {
                /* The function sin(w x) f(x) is always zero for w = 0 */
                *result = 0f64;
                *abserr = 0f64;

                return ::Value::Success;
            }  else {
                /* The function cos(w x) f(x) is always f(x) for w = 0 */
                let limit = (*ffi::FFI::unwrap_shared(cycle_workspace)).limit as usize;
                return cycle_workspace.qagiu(f, arg, a, epsabs, 0f64, limit, result, abserr);
            }
        }

        let mut eps = if epsabs > ::DBL_MIN / (1f64 - p) {
            epsabs * (1f64 - p)
        } else {
            epsabs
        };

        let initial_eps = eps;

        let mut area = 0f64;
        let mut errsum = 0f64;

        let mut res_ext = 0f64;
        let mut err_ext = ::DBL_MAX;
        let mut correc = 0f64;

        let cycle = (2f64 * omega.abs().floor() + 1f64) * ::std::f64::consts::PI / omega.abs();

        wf.set_length(cycle);

        ::types::integration::initialise_table(&mut table);

        while iteration < limit {
            let mut area1 = 0f64;
            let mut error1 = 0f64;
            let mut reseps = 0f64;
            let mut erreps = 0f64;

            let a1 = a + iteration as f64 * cycle;
            let b1 = a1 + cycle;

            let epsabs1 = eps * factor;

            let status = wf.qawo(f, arg, a1, epsabs1, 0f64, limit as usize, cycle_workspace, &mut area1, &mut error1);

            ::types::integration::append_interval(workspace, a1, b1, area1, error1);

            factor *= p;

            area = area + area1;
            errsum = errsum + error1;

            /* estimate the truncation error as 50 times the final term */
            let truncation_error = 50f64 * area1.abs();

            total_error = errsum + truncation_error;

            if total_error < epsabs && iteration > 4 {
                *result = area;
                *abserr = total_error;
                return ::types::integration::return_error(error_type);
            }

            if error1 > correc {
                correc = error1;
            }

            if status != ::Value::Success {
                eps = initial_eps.max(correc * (1f64 - p));
            }

            if status != ::Value::Success && total_error < 10f64 * correc && iteration > 3 {
                *result = area;
                *abserr = total_error;
                return ::types::integration::return_error(error_type);
            }

            ::types::integration::append_table(&mut table, area);

            if table.n < 2 {
                continue;
            }

            ::types::integration::intern_qelg(&mut table, &mut reseps, &mut erreps);

            ktmin += 1;

            if ktmin >= 15 && err_ext < 0.001f64 * total_error {
                error_type = 4;
            }

            if erreps < err_ext {
                ktmin = 0;
                err_ext = erreps;
                res_ext = reseps;

                if err_ext + 10f64 * correc <= epsabs {
                    break;
                }
                if err_ext <= epsabs && 10f64 * correc >= epsabs {
                    break;
                }
            }
            iteration += 1;
        }

        if iteration == limit {
            error_type = 1;
        }

        if err_ext == ::DBL_MAX {
            *result = area;
            *abserr = total_error;
            return ::types::integration::return_error(error_type);
        }

        err_ext = err_ext + 10f64 * correc;

        *result = res_ext;
        *abserr = err_ext;

        if error_type == 0 {
            return ::Value::Success;
        }

        if res_ext != 0f64 && area != 0f64 {
            if err_ext / res_ext.abs() > errsum / area.abs() {
                *result = area;
                *abserr = total_error;
                return ::types::integration::return_error(error_type);
            }
        } else if err_ext > errsum {
            *result = area;
            *abserr = total_error;
            return ::types::integration::return_error(error_type);
        } else if area == 0f64 {
            return ::types::integration::return_error(error_type);
        }

        /*if error_type == 4 {
            err_ext = err_ext + truncation_error;
        }*/

        ::types::integration::return_error(error_type)
    }
}