1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
//! Naming well-known routines in the runtime library.

use crate::ir::{
    types, AbiParam, ArgumentPurpose, ExtFuncData, ExternalName, FuncRef, Function, Inst, Opcode,
    Signature, Type,
};
use crate::isa::{CallConv, RegUnit, TargetIsa};
use core::fmt;
use core::str::FromStr;
#[cfg(feature = "enable-serde")]
use serde::{Deserialize, Serialize};

/// The name of a runtime library routine.
///
/// Runtime library calls are generated for Cranelift IR instructions that don't have an equivalent
/// ISA instruction or an easy macro expansion. A `LibCall` is used as a well-known name to refer to
/// the runtime library routine. This way, Cranelift doesn't have to know about the naming
/// convention in the embedding VM's runtime library.
///
/// This list is likely to grow over time.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub enum LibCall {
    /// probe for stack overflow. These are emitted for functions which need
    /// when the `enable_probestack` setting is true.
    Probestack,
    /// ceil.f32
    CeilF32,
    /// ceil.f64
    CeilF64,
    /// floor.f32
    FloorF32,
    /// floor.f64
    FloorF64,
    /// trunc.f32
    TruncF32,
    /// frunc.f64
    TruncF64,
    /// nearest.f32
    NearestF32,
    /// nearest.f64
    NearestF64,
    /// libc.memcpy
    Memcpy,
    /// libc.memset
    Memset,
    /// libc.memmove
    Memmove,
}

impl fmt::Display for LibCall {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        fmt::Debug::fmt(self, f)
    }
}

impl FromStr for LibCall {
    type Err = ();

    fn from_str(s: &str) -> Result<Self, Self::Err> {
        match s {
            "Probestack" => Ok(Self::Probestack),
            "CeilF32" => Ok(Self::CeilF32),
            "CeilF64" => Ok(Self::CeilF64),
            "FloorF32" => Ok(Self::FloorF32),
            "FloorF64" => Ok(Self::FloorF64),
            "TruncF32" => Ok(Self::TruncF32),
            "TruncF64" => Ok(Self::TruncF64),
            "NearestF32" => Ok(Self::NearestF32),
            "NearestF64" => Ok(Self::NearestF64),
            "Memcpy" => Ok(Self::Memcpy),
            "Memset" => Ok(Self::Memset),
            "Memmove" => Ok(Self::Memmove),
            _ => Err(()),
        }
    }
}

impl LibCall {
    /// Get the well-known library call name to use as a replacement for an instruction with the
    /// given opcode and controlling type variable.
    ///
    /// Returns `None` if no well-known library routine name exists for that instruction.
    pub fn for_inst(opcode: Opcode, ctrl_type: Type) -> Option<Self> {
        Some(match ctrl_type {
            types::F32 => match opcode {
                Opcode::Ceil => Self::CeilF32,
                Opcode::Floor => Self::FloorF32,
                Opcode::Trunc => Self::TruncF32,
                Opcode::Nearest => Self::NearestF32,
                _ => return None,
            },
            types::F64 => match opcode {
                Opcode::Ceil => Self::CeilF64,
                Opcode::Floor => Self::FloorF64,
                Opcode::Trunc => Self::TruncF64,
                Opcode::Nearest => Self::NearestF64,
                _ => return None,
            },
            _ => return None,
        })
    }
}

/// Get a function reference for `libcall` in `func`, following the signature
/// for `inst`.
///
/// If there is an existing reference, use it, otherwise make a new one.
pub(crate) fn get_libcall_funcref(
    libcall: LibCall,
    call_conv: CallConv,
    func: &mut Function,
    inst: Inst,
    isa: &dyn TargetIsa,
) -> FuncRef {
    find_funcref(libcall, func)
        .unwrap_or_else(|| make_funcref_for_inst(libcall, call_conv, func, inst, isa))
}

/// Get a function reference for the probestack function in `func`.
///
/// If there is an existing reference, use it, otherwise make a new one.
pub fn get_probestack_funcref(
    func: &mut Function,
    reg_type: Type,
    arg_reg: RegUnit,
    isa: &dyn TargetIsa,
) -> FuncRef {
    find_funcref(LibCall::Probestack, func)
        .unwrap_or_else(|| make_funcref_for_probestack(func, reg_type, arg_reg, isa))
}

/// Get the existing function reference for `libcall` in `func` if it exists.
fn find_funcref(libcall: LibCall, func: &Function) -> Option<FuncRef> {
    // We're assuming that all libcall function decls are at the end.
    // If we get this wrong, worst case we'll have duplicate libcall decls which is harmless.
    for (fref, func_data) in func.dfg.ext_funcs.iter().rev() {
        match func_data.name {
            ExternalName::LibCall(lc) => {
                if lc == libcall {
                    return Some(fref);
                }
            }
            _ => break,
        }
    }
    None
}

/// Create a funcref for `LibCall::Probestack`.
fn make_funcref_for_probestack(
    func: &mut Function,
    reg_type: Type,
    arg_reg: RegUnit,
    isa: &dyn TargetIsa,
) -> FuncRef {
    let mut sig = Signature::new(CallConv::Probestack);
    let rax = AbiParam::special_reg(reg_type, ArgumentPurpose::Normal, arg_reg);
    sig.params.push(rax);
    if !isa.flags().probestack_func_adjusts_sp() {
        sig.returns.push(rax);
    }
    make_funcref(LibCall::Probestack, func, sig, isa)
}

/// Create a funcref for `libcall` with a signature matching `inst`.
fn make_funcref_for_inst(
    libcall: LibCall,
    call_conv: CallConv,
    func: &mut Function,
    inst: Inst,
    isa: &dyn TargetIsa,
) -> FuncRef {
    let mut sig = Signature::new(call_conv);
    for &v in func.dfg.inst_args(inst) {
        sig.params.push(AbiParam::new(func.dfg.value_type(v)));
    }
    for &v in func.dfg.inst_results(inst) {
        sig.returns.push(AbiParam::new(func.dfg.value_type(v)));
    }

    if call_conv.extends_baldrdash() {
        // Adds the special VMContext parameter to the signature.
        sig.params.push(AbiParam::special(
            isa.pointer_type(),
            ArgumentPurpose::VMContext,
        ));
    }

    make_funcref(libcall, func, sig, isa)
}

/// Create a funcref for `libcall`.
fn make_funcref(
    libcall: LibCall,
    func: &mut Function,
    sig: Signature,
    isa: &dyn TargetIsa,
) -> FuncRef {
    let sigref = func.import_signature(sig);

    func.import_function(ExtFuncData {
        name: ExternalName::LibCall(libcall),
        signature: sigref,
        colocated: isa.flags().use_colocated_libcalls(),
    })
}

#[cfg(test)]
mod tests {
    use super::*;
    use alloc::string::ToString;

    #[test]
    fn display() {
        assert_eq!(LibCall::CeilF32.to_string(), "CeilF32");
        assert_eq!(LibCall::NearestF64.to_string(), "NearestF64");
    }

    #[test]
    fn parsing() {
        assert_eq!("FloorF32".parse(), Ok(LibCall::FloorF32));
    }
}