1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
//! Cranelift compilation context and main entry point.
//!
//! When compiling many small functions, it is important to avoid repeatedly allocating and
//! deallocating the data structures needed for compilation. The `Context` struct is used to hold
//! on to memory allocations between function compilations.
//!
//! The context does not hold a `TargetIsa` instance which has to be provided as an argument
//! instead. This is because an ISA instance is immutable and can be used by multiple compilation
//! contexts concurrently. Typically, you would have one context per compilation thread and only a
//! single ISA instance.

use crate::binemit::{
    relax_branches, shrink_instructions, CodeInfo, FrameUnwindKind, FrameUnwindSink,
    MemoryCodeSink, RelocSink, StackmapSink, TrapSink,
};
use crate::dce::do_dce;
use crate::dominator_tree::DominatorTree;
use crate::flowgraph::ControlFlowGraph;
use crate::ir::Function;
use crate::isa::TargetIsa;
use crate::legalize_function;
use crate::licm::do_licm;
use crate::loop_analysis::LoopAnalysis;
use crate::nan_canonicalization::do_nan_canonicalization;
use crate::postopt::do_postopt;
use crate::redundant_reload_remover::RedundantReloadRemover;
use crate::regalloc;
use crate::result::CodegenResult;
use crate::settings::{FlagsOrIsa, OptLevel};
use crate::simple_gvn::do_simple_gvn;
use crate::simple_preopt::do_preopt;
use crate::timing;
use crate::unreachable_code::eliminate_unreachable_code;
use crate::value_label::{build_value_labels_ranges, ComparableSourceLoc, ValueLabelsRanges};
use crate::verifier::{verify_context, verify_locations, VerifierErrors, VerifierResult};
use alloc::vec::Vec;
use log::debug;

/// Persistent data structures and compilation pipeline.
pub struct Context {
    /// The function we're compiling.
    pub func: Function,

    /// The control flow graph of `func`.
    pub cfg: ControlFlowGraph,

    /// Dominator tree for `func`.
    pub domtree: DominatorTree,

    /// Register allocation context.
    pub regalloc: regalloc::Context,

    /// Loop analysis of `func`.
    pub loop_analysis: LoopAnalysis,

    /// Redundant-reload remover context.
    pub redundant_reload_remover: RedundantReloadRemover,
}

impl Context {
    /// Allocate a new compilation context.
    ///
    /// The returned instance should be reused for compiling multiple functions in order to avoid
    /// needless allocator thrashing.
    pub fn new() -> Self {
        Self::for_function(Function::new())
    }

    /// Allocate a new compilation context with an existing Function.
    ///
    /// The returned instance should be reused for compiling multiple functions in order to avoid
    /// needless allocator thrashing.
    pub fn for_function(func: Function) -> Self {
        Self {
            func,
            cfg: ControlFlowGraph::new(),
            domtree: DominatorTree::new(),
            regalloc: regalloc::Context::new(),
            loop_analysis: LoopAnalysis::new(),
            redundant_reload_remover: RedundantReloadRemover::new(),
        }
    }

    /// Clear all data structures in this context.
    pub fn clear(&mut self) {
        self.func.clear();
        self.cfg.clear();
        self.domtree.clear();
        self.regalloc.clear();
        self.loop_analysis.clear();
        self.redundant_reload_remover.clear();
    }

    /// Compile the function, and emit machine code into a `Vec<u8>`.
    ///
    /// Run the function through all the passes necessary to generate code for the target ISA
    /// represented by `isa`, as well as the final step of emitting machine code into a
    /// `Vec<u8>`. The machine code is not relocated. Instead, any relocations are emitted
    /// into `relocs`.
    ///
    /// This function calls `compile` and `emit_to_memory`, taking care to resize `mem` as
    /// needed, so it provides a safe interface.
    ///
    /// Returns information about the function's code and read-only data.
    pub fn compile_and_emit(
        &mut self,
        isa: &dyn TargetIsa,
        mem: &mut Vec<u8>,
        relocs: &mut dyn RelocSink,
        traps: &mut dyn TrapSink,
        stackmaps: &mut dyn StackmapSink,
    ) -> CodegenResult<CodeInfo> {
        let info = self.compile(isa)?;
        let old_len = mem.len();
        mem.resize(old_len + info.total_size as usize, 0);
        let new_info = unsafe {
            self.emit_to_memory(isa, mem.as_mut_ptr().add(old_len), relocs, traps, stackmaps)
        };
        debug_assert!(new_info == info);
        Ok(info)
    }

    /// Compile the function.
    ///
    /// Run the function through all the passes necessary to generate code for the target ISA
    /// represented by `isa`. This does not include the final step of emitting machine code into a
    /// code sink.
    ///
    /// Returns information about the function's code and read-only data.
    pub fn compile(&mut self, isa: &dyn TargetIsa) -> CodegenResult<CodeInfo> {
        let _tt = timing::compile();
        self.verify_if(isa)?;
        debug!("Compiling:\n{}", self.func.display(isa));

        let opt_level = isa.flags().opt_level();

        self.compute_cfg();
        if opt_level != OptLevel::None {
            self.preopt(isa)?;
        }
        if isa.flags().enable_nan_canonicalization() {
            self.canonicalize_nans(isa)?;
        }
        self.legalize(isa)?;
        if opt_level != OptLevel::None {
            self.postopt(isa)?;
            self.compute_domtree();
            self.compute_loop_analysis();
            self.licm(isa)?;
            self.simple_gvn(isa)?;
        }
        self.compute_domtree();
        self.eliminate_unreachable_code(isa)?;
        if opt_level != OptLevel::None {
            self.dce(isa)?;
        }
        self.regalloc(isa)?;
        self.prologue_epilogue(isa)?;
        if opt_level == OptLevel::Speed || opt_level == OptLevel::SpeedAndSize {
            self.redundant_reload_remover(isa)?;
        }
        if opt_level == OptLevel::SpeedAndSize {
            self.shrink_instructions(isa)?;
        }
        let result = self.relax_branches(isa);

        debug!("Compiled:\n{}", self.func.display(isa));
        result
    }

    /// Emit machine code directly into raw memory.
    ///
    /// Write all of the function's machine code to the memory at `mem`. The size of the machine
    /// code is returned by `compile` above.
    ///
    /// The machine code is not relocated. Instead, any relocations are emitted into `relocs`.
    ///
    /// # Safety
    ///
    /// This function is unsafe since it does not perform bounds checking on the memory buffer,
    /// and it can't guarantee that the `mem` pointer is valid.
    ///
    /// Returns information about the emitted code and data.
    pub unsafe fn emit_to_memory(
        &self,
        isa: &dyn TargetIsa,
        mem: *mut u8,
        relocs: &mut dyn RelocSink,
        traps: &mut dyn TrapSink,
        stackmaps: &mut dyn StackmapSink,
    ) -> CodeInfo {
        let _tt = timing::binemit();
        let mut sink = MemoryCodeSink::new(mem, relocs, traps, stackmaps);
        isa.emit_function_to_memory(&self.func, &mut sink);
        sink.info
    }

    /// Emit unwind information.
    ///
    /// Requires that the function layout be calculated (see `relax_branches`).
    ///
    /// Only some calling conventions (e.g. Windows fastcall) will have unwind information.
    /// This is a no-op if the function has no unwind information.
    pub fn emit_unwind_info(
        &self,
        isa: &dyn TargetIsa,
        kind: FrameUnwindKind,
        sink: &mut dyn FrameUnwindSink,
    ) {
        isa.emit_unwind_info(&self.func, kind, sink);
    }

    /// Run the verifier on the function.
    ///
    /// Also check that the dominator tree and control flow graph are consistent with the function.
    pub fn verify<'a, FOI: Into<FlagsOrIsa<'a>>>(&self, fisa: FOI) -> VerifierResult<()> {
        let mut errors = VerifierErrors::default();
        let _ = verify_context(&self.func, &self.cfg, &self.domtree, fisa, &mut errors);

        if errors.is_empty() {
            Ok(())
        } else {
            Err(errors)
        }
    }

    /// Run the verifier only if the `enable_verifier` setting is true.
    pub fn verify_if<'a, FOI: Into<FlagsOrIsa<'a>>>(&self, fisa: FOI) -> CodegenResult<()> {
        let fisa = fisa.into();
        if fisa.flags.enable_verifier() {
            self.verify(fisa)?;
        }
        Ok(())
    }

    /// Run the locations verifier on the function.
    pub fn verify_locations(&self, isa: &dyn TargetIsa) -> VerifierResult<()> {
        let mut errors = VerifierErrors::default();
        let _ = verify_locations(isa, &self.func, &self.cfg, None, &mut errors);

        if errors.is_empty() {
            Ok(())
        } else {
            Err(errors)
        }
    }

    /// Run the locations verifier only if the `enable_verifier` setting is true.
    pub fn verify_locations_if(&self, isa: &dyn TargetIsa) -> CodegenResult<()> {
        if isa.flags().enable_verifier() {
            self.verify_locations(isa)?;
        }
        Ok(())
    }

    /// Perform dead-code elimination on the function.
    pub fn dce<'a, FOI: Into<FlagsOrIsa<'a>>>(&mut self, fisa: FOI) -> CodegenResult<()> {
        do_dce(&mut self.func, &mut self.domtree);
        self.verify_if(fisa)?;
        Ok(())
    }

    /// Perform pre-legalization rewrites on the function.
    pub fn preopt(&mut self, isa: &dyn TargetIsa) -> CodegenResult<()> {
        do_preopt(&mut self.func, &mut self.cfg, isa);
        self.verify_if(isa)?;
        Ok(())
    }

    /// Perform NaN canonicalizing rewrites on the function.
    pub fn canonicalize_nans(&mut self, isa: &dyn TargetIsa) -> CodegenResult<()> {
        do_nan_canonicalization(&mut self.func);
        self.verify_if(isa)
    }

    /// Run the legalizer for `isa` on the function.
    pub fn legalize(&mut self, isa: &dyn TargetIsa) -> CodegenResult<()> {
        // Legalization invalidates the domtree and loop_analysis by mutating the CFG.
        // TODO: Avoid doing this when legalization doesn't actually mutate the CFG.
        self.domtree.clear();
        self.loop_analysis.clear();
        legalize_function(&mut self.func, &mut self.cfg, isa);
        debug!("Legalized:\n{}", self.func.display(isa));
        self.verify_if(isa)
    }

    /// Perform post-legalization rewrites on the function.
    pub fn postopt(&mut self, isa: &dyn TargetIsa) -> CodegenResult<()> {
        do_postopt(&mut self.func, isa);
        self.verify_if(isa)?;
        Ok(())
    }

    /// Compute the control flow graph.
    pub fn compute_cfg(&mut self) {
        self.cfg.compute(&self.func)
    }

    /// Compute dominator tree.
    pub fn compute_domtree(&mut self) {
        self.domtree.compute(&self.func, &self.cfg)
    }

    /// Compute the loop analysis.
    pub fn compute_loop_analysis(&mut self) {
        self.loop_analysis
            .compute(&self.func, &self.cfg, &self.domtree)
    }

    /// Compute the control flow graph and dominator tree.
    pub fn flowgraph(&mut self) {
        self.compute_cfg();
        self.compute_domtree()
    }

    /// Perform simple GVN on the function.
    pub fn simple_gvn<'a, FOI: Into<FlagsOrIsa<'a>>>(&mut self, fisa: FOI) -> CodegenResult<()> {
        do_simple_gvn(&mut self.func, &mut self.domtree);
        self.verify_if(fisa)
    }

    /// Perform LICM on the function.
    pub fn licm(&mut self, isa: &dyn TargetIsa) -> CodegenResult<()> {
        do_licm(
            isa,
            &mut self.func,
            &mut self.cfg,
            &mut self.domtree,
            &mut self.loop_analysis,
        );
        self.verify_if(isa)
    }

    /// Perform unreachable code elimination.
    pub fn eliminate_unreachable_code<'a, FOI>(&mut self, fisa: FOI) -> CodegenResult<()>
    where
        FOI: Into<FlagsOrIsa<'a>>,
    {
        eliminate_unreachable_code(&mut self.func, &mut self.cfg, &self.domtree);
        self.verify_if(fisa)
    }

    /// Run the register allocator.
    pub fn regalloc(&mut self, isa: &dyn TargetIsa) -> CodegenResult<()> {
        self.regalloc
            .run(isa, &mut self.func, &mut self.cfg, &mut self.domtree)
    }

    /// Insert prologue and epilogues after computing the stack frame layout.
    pub fn prologue_epilogue(&mut self, isa: &dyn TargetIsa) -> CodegenResult<()> {
        isa.prologue_epilogue(&mut self.func)?;
        self.verify_if(isa)?;
        self.verify_locations_if(isa)?;
        Ok(())
    }

    /// Do redundant-reload removal after allocation of both registers and stack slots.
    pub fn redundant_reload_remover(&mut self, isa: &dyn TargetIsa) -> CodegenResult<()> {
        self.redundant_reload_remover
            .run(isa, &mut self.func, &self.cfg);
        self.verify_if(isa)?;
        Ok(())
    }

    /// Run the instruction shrinking pass.
    pub fn shrink_instructions(&mut self, isa: &dyn TargetIsa) -> CodegenResult<()> {
        shrink_instructions(&mut self.func, isa);
        self.verify_if(isa)?;
        self.verify_locations_if(isa)?;
        Ok(())
    }

    /// Run the branch relaxation pass and return information about the function's code and
    /// read-only data.
    pub fn relax_branches(&mut self, isa: &dyn TargetIsa) -> CodegenResult<CodeInfo> {
        let info = relax_branches(&mut self.func, &mut self.cfg, &mut self.domtree, isa)?;
        self.verify_if(isa)?;
        self.verify_locations_if(isa)?;
        Ok(info)
    }

    /// Builds ranges and location for specified value labels.
    pub fn build_value_labels_ranges(
        &self,
        isa: &dyn TargetIsa,
    ) -> CodegenResult<ValueLabelsRanges> {
        Ok(build_value_labels_ranges::<ComparableSourceLoc>(
            &self.func,
            &self.regalloc,
            isa,
        ))
    }
}