1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
//! Legalize instructions.
//!
//! A legal instruction is one that can be mapped directly to a machine code instruction for the
//! target ISA. The `legalize_function()` function takes as input any function and transforms it
//! into an equivalent function using only legal instructions.
//!
//! The characteristics of legal instructions depend on the target ISA, so any given instruction
//! can be legal for one ISA and illegal for another.
//!
//! Besides transforming instructions, the legalizer also fills out the `function.encodings` map
//! which provides a legal encoding recipe for every instruction.
//!
//! The legalizer does not deal with register allocation constraints. These constraints are derived
//! from the encoding recipes, and solved later by the register allocator.

use crate::bitset::BitSet;
use crate::cursor::{Cursor, FuncCursor};
use crate::flowgraph::ControlFlowGraph;
use crate::ir::types::I32;
use crate::ir::{self, InstBuilder, MemFlags};
use crate::isa::TargetIsa;
use crate::predicates;
use crate::timing;

mod boundary;
mod call;
mod globalvalue;
mod heap;
mod libcall;
mod split;
mod table;

use self::call::expand_call;
use self::globalvalue::expand_global_value;
use self::heap::expand_heap_addr;
use self::libcall::expand_as_libcall;
use self::table::expand_table_addr;

/// Legalize `inst` for `isa`. Return true if any changes to the code were
/// made; return false if the instruction was successfully encoded as is.
fn legalize_inst(
    inst: ir::Inst,
    pos: &mut FuncCursor,
    cfg: &mut ControlFlowGraph,
    isa: &dyn TargetIsa,
) -> bool {
    let opcode = pos.func.dfg[inst].opcode();

    // Check for ABI boundaries that need to be converted to the legalized signature.
    if opcode.is_call() {
        if boundary::handle_call_abi(inst, pos.func, cfg) {
            return true;
        }
    } else if opcode.is_return() {
        if boundary::handle_return_abi(inst, pos.func, cfg) {
            return true;
        }
    } else if opcode.is_branch() {
        split::simplify_branch_arguments(&mut pos.func.dfg, inst);
    }

    match pos.func.update_encoding(inst, isa) {
        Ok(()) => false,
        Err(action) => {
            // We should transform the instruction into legal equivalents.
            // If the current instruction was replaced, we need to double back and revisit
            // the expanded sequence. This is both to assign encodings and possible to
            // expand further.
            // There's a risk of infinite looping here if the legalization patterns are
            // unsound. Should we attempt to detect that?
            if action(inst, pos.func, cfg, isa) {
                return true;
            }

            // We don't have any pattern expansion for this instruction either.
            // Try converting it to a library call as a last resort.
            expand_as_libcall(inst, pos.func, isa)
        }
    }
}

/// Legalize `func` for `isa`.
///
/// - Transform any instructions that don't have a legal representation in `isa`.
/// - Fill out `func.encodings`.
///
pub fn legalize_function(func: &mut ir::Function, cfg: &mut ControlFlowGraph, isa: &dyn TargetIsa) {
    let _tt = timing::legalize();
    debug_assert!(cfg.is_valid());

    boundary::legalize_signatures(func, isa);

    func.encodings.resize(func.dfg.num_insts());

    let mut pos = FuncCursor::new(func);

    // Process EBBs in layout order. Some legalization actions may split the current EBB or append
    // new ones to the end. We need to make sure we visit those new EBBs too.
    while let Some(_ebb) = pos.next_ebb() {
        // Keep track of the cursor position before the instruction being processed, so we can
        // double back when replacing instructions.
        let mut prev_pos = pos.position();

        while let Some(inst) = pos.next_inst() {
            if legalize_inst(inst, &mut pos, cfg, isa) {
                // Go back and legalize the inserted return value conversion instructions.
                pos.set_position(prev_pos);
            } else {
                // Remember this position in case we need to double back.
                prev_pos = pos.position();
            }
        }
    }

    // Now that we've lowered all br_tables, we don't need the jump tables anymore.
    if !isa.flags().jump_tables_enabled() {
        pos.func.jump_tables.clear();
    }
}

// Include legalization patterns that were generated by `gen_legalizer.rs` from the
// `TransformGroup` in `cranelift-codegen/meta/shared/legalize.rs`.
//
// Concretely, this defines private functions `narrow()`, and `expand()`.
include!(concat!(env!("OUT_DIR"), "/legalizer.rs"));

/// Custom expansion for conditional trap instructions.
/// TODO: Add CFG support to the Rust DSL patterns so we won't have to do this.
fn expand_cond_trap(
    inst: ir::Inst,
    func: &mut ir::Function,
    cfg: &mut ControlFlowGraph,
    _isa: &dyn TargetIsa,
) {
    // Parse the instruction.
    let trapz;
    let (arg, code) = match func.dfg[inst] {
        ir::InstructionData::CondTrap { opcode, arg, code } => {
            // We want to branch *over* an unconditional trap.
            trapz = match opcode {
                ir::Opcode::Trapz => true,
                ir::Opcode::Trapnz => false,
                _ => panic!("Expected cond trap: {}", func.dfg.display_inst(inst, None)),
            };
            (arg, code)
        }
        _ => panic!("Expected cond trap: {}", func.dfg.display_inst(inst, None)),
    };

    // Split the EBB after `inst`:
    //
    //     trapnz arg
    //     ..
    //
    // Becomes:
    //
    //     brz arg, new_ebb_resume
    //     jump new_ebb_trap
    //
    //   new_ebb_trap:
    //     trap
    //
    //   new_ebb_resume:
    //     ..
    let old_ebb = func.layout.pp_ebb(inst);
    let new_ebb_trap = func.dfg.make_ebb();
    let new_ebb_resume = func.dfg.make_ebb();

    // Replace trap instruction by the inverted condition.
    if trapz {
        func.dfg.replace(inst).brnz(arg, new_ebb_resume, &[]);
    } else {
        func.dfg.replace(inst).brz(arg, new_ebb_resume, &[]);
    }

    // Add jump instruction after the inverted branch.
    let mut pos = FuncCursor::new(func).after_inst(inst);
    pos.use_srcloc(inst);
    pos.ins().jump(new_ebb_trap, &[]);

    // Insert the new label and the unconditional trap terminator.
    pos.insert_ebb(new_ebb_trap);
    pos.ins().trap(code);

    // Insert the new label and resume the execution when the trap fails.
    pos.insert_ebb(new_ebb_resume);

    // Finally update the CFG.
    cfg.recompute_ebb(pos.func, old_ebb);
    cfg.recompute_ebb(pos.func, new_ebb_resume);
    cfg.recompute_ebb(pos.func, new_ebb_trap);
}

/// Jump tables.
fn expand_br_table(
    inst: ir::Inst,
    func: &mut ir::Function,
    cfg: &mut ControlFlowGraph,
    isa: &dyn TargetIsa,
) {
    if isa.flags().jump_tables_enabled() {
        expand_br_table_jt(inst, func, cfg, isa);
    } else {
        expand_br_table_conds(inst, func, cfg, isa);
    }
}

/// Expand br_table to jump table.
fn expand_br_table_jt(
    inst: ir::Inst,
    func: &mut ir::Function,
    cfg: &mut ControlFlowGraph,
    isa: &dyn TargetIsa,
) {
    use crate::ir::condcodes::IntCC;

    let (arg, default_ebb, table) = match func.dfg[inst] {
        ir::InstructionData::BranchTable {
            opcode: ir::Opcode::BrTable,
            arg,
            destination,
            table,
        } => (arg, destination, table),
        _ => panic!("Expected br_table: {}", func.dfg.display_inst(inst, None)),
    };

    // Rewrite:
    //
    //     br_table $idx, default_ebb, $jt
    //
    // To:
    //
    //     $oob = ifcmp_imm $idx, len($jt)
    //     brif uge $oob, default_ebb
    //     jump fallthrough_ebb
    //
    //   fallthrough_ebb:
    //     $base = jump_table_base.i64 $jt
    //     $rel_addr = jump_table_entry.i64 $idx, $base, 4, $jt
    //     $addr = iadd $base, $rel_addr
    //     indirect_jump_table_br $addr, $jt

    let table_size = func.jump_tables[table].len();
    let addr_ty = isa.pointer_type();
    let entry_ty = I32;

    let ebb = func.layout.pp_ebb(inst);
    let jump_table_ebb = func.dfg.make_ebb();

    let mut pos = FuncCursor::new(func).at_inst(inst);
    pos.use_srcloc(inst);

    // Bounds check
    let oob = pos
        .ins()
        .icmp_imm(IntCC::UnsignedGreaterThanOrEqual, arg, table_size as i64);

    pos.ins().brnz(oob, default_ebb, &[]);
    pos.ins().jump(jump_table_ebb, &[]);
    pos.insert_ebb(jump_table_ebb);

    let base_addr = pos.ins().jump_table_base(addr_ty, table);
    let entry = pos
        .ins()
        .jump_table_entry(addr_ty, arg, base_addr, entry_ty.bytes() as u8, table);

    let addr = pos.ins().iadd(base_addr, entry);
    pos.ins().indirect_jump_table_br(addr, table);

    pos.remove_inst();
    cfg.recompute_ebb(pos.func, ebb);
    cfg.recompute_ebb(pos.func, jump_table_ebb);
}

/// Expand br_table to series of conditionals.
fn expand_br_table_conds(
    inst: ir::Inst,
    func: &mut ir::Function,
    cfg: &mut ControlFlowGraph,
    _isa: &dyn TargetIsa,
) {
    use crate::ir::condcodes::IntCC;

    let (arg, default_ebb, table) = match func.dfg[inst] {
        ir::InstructionData::BranchTable {
            opcode: ir::Opcode::BrTable,
            arg,
            destination,
            table,
        } => (arg, destination, table),
        _ => panic!("Expected br_table: {}", func.dfg.display_inst(inst, None)),
    };

    let ebb = func.layout.pp_ebb(inst);

    // This is a poor man's jump table using just a sequence of conditional branches.
    let table_size = func.jump_tables[table].len();
    let mut cond_failed_ebb = std::vec::Vec::with_capacity(table_size - 1);
    for _ in 0..table_size - 1 {
        cond_failed_ebb.push(func.dfg.make_ebb());
    }

    let mut pos = FuncCursor::new(func).at_inst(inst);
    pos.use_srcloc(inst);

    for i in 0..table_size {
        let dest = pos.func.jump_tables[table].as_slice()[i];
        let t = pos.ins().icmp_imm(IntCC::Equal, arg, i as i64);
        pos.ins().brnz(t, dest, &[]);
        // Jump to the next case.
        if i < table_size - 1 {
            pos.ins().jump(cond_failed_ebb[i], &[]);
            pos.insert_ebb(cond_failed_ebb[i]);
        }
    }

    // `br_table` jumps to the default destination if nothing matches
    pos.ins().jump(default_ebb, &[]);

    pos.remove_inst();
    cfg.recompute_ebb(pos.func, ebb);
    for failed_ebb in cond_failed_ebb.into_iter() {
        cfg.recompute_ebb(pos.func, failed_ebb);
    }
}

/// Expand the select instruction.
///
/// Conditional moves are available in some ISAs for some register classes. The remaining selects
/// are handled by a branch.
fn expand_select(
    inst: ir::Inst,
    func: &mut ir::Function,
    cfg: &mut ControlFlowGraph,
    _isa: &dyn TargetIsa,
) {
    let (ctrl, tval, fval) = match func.dfg[inst] {
        ir::InstructionData::Ternary {
            opcode: ir::Opcode::Select,
            args,
        } => (args[0], args[1], args[2]),
        _ => panic!("Expected select: {}", func.dfg.display_inst(inst, None)),
    };

    // Replace `result = select ctrl, tval, fval` with:
    //
    //   brnz ctrl, new_ebb(tval)
    //   jump new_ebb(fval)
    // new_ebb(result):
    let old_ebb = func.layout.pp_ebb(inst);
    let result = func.dfg.first_result(inst);
    func.dfg.clear_results(inst);
    let new_ebb = func.dfg.make_ebb();
    func.dfg.attach_ebb_param(new_ebb, result);

    func.dfg.replace(inst).brnz(ctrl, new_ebb, &[tval]);
    let mut pos = FuncCursor::new(func).after_inst(inst);
    pos.use_srcloc(inst);
    pos.ins().jump(new_ebb, &[fval]);
    pos.insert_ebb(new_ebb);

    cfg.recompute_ebb(pos.func, new_ebb);
    cfg.recompute_ebb(pos.func, old_ebb);
}

fn expand_br_icmp(
    inst: ir::Inst,
    func: &mut ir::Function,
    cfg: &mut ControlFlowGraph,
    _isa: &dyn TargetIsa,
) {
    let (cond, a, b, destination, ebb_args) = match func.dfg[inst] {
        ir::InstructionData::BranchIcmp {
            cond,
            destination,
            ref args,
            ..
        } => (
            cond,
            args.get(0, &func.dfg.value_lists).unwrap(),
            args.get(1, &func.dfg.value_lists).unwrap(),
            destination,
            args.as_slice(&func.dfg.value_lists)[2..].to_vec(),
        ),
        _ => panic!("Expected br_icmp {}", func.dfg.display_inst(inst, None)),
    };

    let old_ebb = func.layout.pp_ebb(inst);
    func.dfg.clear_results(inst);

    let icmp_res = func.dfg.replace(inst).icmp(cond, a, b);
    let mut pos = FuncCursor::new(func).after_inst(inst);
    pos.use_srcloc(inst);
    pos.ins().brnz(icmp_res, destination, &ebb_args);

    cfg.recompute_ebb(pos.func, destination);
    cfg.recompute_ebb(pos.func, old_ebb);
}

/// Expand illegal `f32const` and `f64const` instructions.
fn expand_fconst(
    inst: ir::Inst,
    func: &mut ir::Function,
    _cfg: &mut ControlFlowGraph,
    _isa: &dyn TargetIsa,
) {
    let ty = func.dfg.value_type(func.dfg.first_result(inst));
    debug_assert!(!ty.is_vector(), "Only scalar fconst supported: {}", ty);

    // In the future, we may want to generate constant pool entries for these constants, but for
    // now use an `iconst` and a bit cast.
    let mut pos = FuncCursor::new(func).at_inst(inst);
    pos.use_srcloc(inst);
    let ival = match pos.func.dfg[inst] {
        ir::InstructionData::UnaryIeee32 {
            opcode: ir::Opcode::F32const,
            imm,
        } => pos.ins().iconst(ir::types::I32, i64::from(imm.bits())),
        ir::InstructionData::UnaryIeee64 {
            opcode: ir::Opcode::F64const,
            imm,
        } => pos.ins().iconst(ir::types::I64, imm.bits() as i64),
        _ => panic!("Expected fconst: {}", pos.func.dfg.display_inst(inst, None)),
    };
    pos.func.dfg.replace(inst).bitcast(ty, ival);
}

/// Expand illegal `stack_load` instructions.
fn expand_stack_load(
    inst: ir::Inst,
    func: &mut ir::Function,
    _cfg: &mut ControlFlowGraph,
    isa: &dyn TargetIsa,
) {
    let ty = func.dfg.value_type(func.dfg.first_result(inst));
    let addr_ty = isa.pointer_type();

    let mut pos = FuncCursor::new(func).at_inst(inst);
    pos.use_srcloc(inst);

    let (stack_slot, offset) = match pos.func.dfg[inst] {
        ir::InstructionData::StackLoad {
            opcode: _opcode,
            stack_slot,
            offset,
        } => (stack_slot, offset),
        _ => panic!(
            "Expected stack_load: {}",
            pos.func.dfg.display_inst(inst, None)
        ),
    };

    let addr = pos.ins().stack_addr(addr_ty, stack_slot, offset);

    // Stack slots are required to be accessible and aligned.
    let mflags = MemFlags::trusted();
    pos.func.dfg.replace(inst).load(ty, mflags, addr, 0);
}

/// Expand illegal `stack_store` instructions.
fn expand_stack_store(
    inst: ir::Inst,
    func: &mut ir::Function,
    _cfg: &mut ControlFlowGraph,
    isa: &dyn TargetIsa,
) {
    let addr_ty = isa.pointer_type();

    let mut pos = FuncCursor::new(func).at_inst(inst);
    pos.use_srcloc(inst);

    let (val, stack_slot, offset) = match pos.func.dfg[inst] {
        ir::InstructionData::StackStore {
            opcode: _opcode,
            arg,
            stack_slot,
            offset,
        } => (arg, stack_slot, offset),
        _ => panic!(
            "Expected stack_store: {}",
            pos.func.dfg.display_inst(inst, None)
        ),
    };

    let addr = pos.ins().stack_addr(addr_ty, stack_slot, offset);

    let mut mflags = MemFlags::new();
    // Stack slots are required to be accessible and aligned.
    mflags.set_notrap();
    mflags.set_aligned();
    pos.func.dfg.replace(inst).store(mflags, val, addr, 0);
}