1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
//! Legalize instructions.
//!
//! A legal instruction is one that can be mapped directly to a machine code instruction for the
//! target ISA. The `legalize_function()` function takes as input any function and transforms it
//! into an equivalent function using only legal instructions.
//!
//! The characteristics of legal instructions depend on the target ISA, so any given instruction
//! can be legal for one ISA and illegal for another.
//!
//! Besides transforming instructions, the legalizer also fills out the `function.encodings` map
//! which provides a legal encoding recipe for every instruction.
//!
//! The legalizer does not deal with register allocation constraints. These constraints are derived
//! from the encoding recipes, and solved later by the register allocator.

use bitset::BitSet;
use cursor::{Cursor, FuncCursor};
use flowgraph::ControlFlowGraph;
use ir::{self, InstBuilder, MemFlags};
use isa::TargetIsa;
use timing;

mod boundary;
mod call;
mod globalvalue;
mod heap;
mod libcall;
mod split;
mod table;

use self::call::expand_call;
use self::globalvalue::expand_global_value;
use self::heap::expand_heap_addr;
use self::libcall::expand_as_libcall;
use self::table::expand_table_addr;

/// Legalize `inst` for `isa`. Return true if any changes to the code were
/// made; return false if the instruction was successfully encoded as is.
fn legalize_inst(
    inst: ir::Inst,
    pos: &mut FuncCursor,
    cfg: &mut ControlFlowGraph,
    isa: &TargetIsa,
) -> bool {
    let opcode = pos.func.dfg[inst].opcode();

    // Check for ABI boundaries that need to be converted to the legalized signature.
    if opcode.is_call() {
        if boundary::handle_call_abi(inst, pos.func, cfg) {
            return true;
        }
    } else if opcode.is_return() {
        if boundary::handle_return_abi(inst, pos.func, cfg) {
            return true;
        }
    } else if opcode.is_branch() {
        split::simplify_branch_arguments(&mut pos.func.dfg, inst);
    }

    match pos.func.update_encoding(inst, isa) {
        Ok(()) => false,
        Err(action) => {
            // We should transform the instruction into legal equivalents.
            // If the current instruction was replaced, we need to double back and revisit
            // the expanded sequence. This is both to assign encodings and possible to
            // expand further.
            // There's a risk of infinite looping here if the legalization patterns are
            // unsound. Should we attempt to detect that?
            if action(inst, pos.func, cfg, isa) {
                return true;
            }

            // We don't have any pattern expansion for this instruction either.
            // Try converting it to a library call as a last resort.
            expand_as_libcall(inst, pos.func, isa)
        }
    }
}

/// Legalize `func` for `isa`.
///
/// - Transform any instructions that don't have a legal representation in `isa`.
/// - Fill out `func.encodings`.
///
pub fn legalize_function(func: &mut ir::Function, cfg: &mut ControlFlowGraph, isa: &TargetIsa) {
    let _tt = timing::legalize();
    debug_assert!(cfg.is_valid());

    boundary::legalize_signatures(func, isa);

    func.encodings.resize(func.dfg.num_insts());

    let mut pos = FuncCursor::new(func);

    // Process EBBs in layout order. Some legalization actions may split the current EBB or append
    // new ones to the end. We need to make sure we visit those new EBBs too.
    while let Some(_ebb) = pos.next_ebb() {
        // Keep track of the cursor position before the instruction being processed, so we can
        // double back when replacing instructions.
        let mut prev_pos = pos.position();

        while let Some(inst) = pos.next_inst() {
            if legalize_inst(inst, &mut pos, cfg, isa) {
                // Go back and legalize the inserted return value conversion instructions.
                pos.set_position(prev_pos);
            } else {
                // Remember this position in case we need to double back.
                prev_pos = pos.position();
            }
        }
    }
}

// Include legalization patterns that were generated by `gen_legalizer.py` from the `XForms` in
// `lib/codegen/meta-python/base/legalize.py`.
//
// Concretely, this defines private functions `narrow()`, and `expand()`.
include!(concat!(env!("OUT_DIR"), "/legalizer.rs"));

/// Custom expansion for conditional trap instructions.
/// TODO: Add CFG support to the Python patterns so we won't have to do this.
fn expand_cond_trap(
    inst: ir::Inst,
    func: &mut ir::Function,
    cfg: &mut ControlFlowGraph,
    _isa: &TargetIsa,
) {
    // Parse the instruction.
    let trapz;
    let (arg, code) = match func.dfg[inst] {
        ir::InstructionData::CondTrap { opcode, arg, code } => {
            // We want to branch *over* an unconditional trap.
            trapz = match opcode {
                ir::Opcode::Trapz => true,
                ir::Opcode::Trapnz => false,
                _ => panic!("Expected cond trap: {}", func.dfg.display_inst(inst, None)),
            };
            (arg, code)
        }
        _ => panic!("Expected cond trap: {}", func.dfg.display_inst(inst, None)),
    };

    // Split the EBB after `inst`:
    //
    //     trapnz arg
    //
    // Becomes:
    //
    //     brz arg, new_ebb
    //     trap
    //   new_ebb:
    //
    let old_ebb = func.layout.pp_ebb(inst);
    let new_ebb = func.dfg.make_ebb();
    if trapz {
        func.dfg.replace(inst).brnz(arg, new_ebb, &[]);
    } else {
        func.dfg.replace(inst).brz(arg, new_ebb, &[]);
    }

    let mut pos = FuncCursor::new(func).after_inst(inst);
    pos.use_srcloc(inst);
    pos.ins().trap(code);
    pos.insert_ebb(new_ebb);

    // Finally update the CFG.
    cfg.recompute_ebb(pos.func, old_ebb);
    cfg.recompute_ebb(pos.func, new_ebb);
}

/// Jump tables.
fn expand_br_table(
    inst: ir::Inst,
    func: &mut ir::Function,
    cfg: &mut ControlFlowGraph,
    _isa: &TargetIsa,
) {
    use ir::condcodes::IntCC;

    let (arg, table) = match func.dfg[inst] {
        ir::InstructionData::BranchTable {
            opcode: ir::Opcode::BrTable,
            arg,
            table,
        } => (arg, table),
        _ => panic!("Expected br_table: {}", func.dfg.display_inst(inst, None)),
    };

    // This is a poor man's jump table using just a sequence of conditional branches.
    // TODO: Lower into a jump table load and indirect branch.
    let table_size = func.jump_tables[table].len();
    let mut pos = FuncCursor::new(func).at_inst(inst);
    pos.use_srcloc(inst);

    for i in 0..table_size {
        if let Some(dest) = pos.func.jump_tables[table].get_entry(i) {
            let t = pos.ins().icmp_imm(IntCC::Equal, arg, i as i64);
            pos.ins().brnz(t, dest, &[]);
        }
    }

    // `br_table` falls through when nothing matches.
    let ebb = pos.current_ebb().unwrap();
    pos.remove_inst();
    cfg.recompute_ebb(pos.func, ebb);
}

/// Expand the select instruction.
///
/// Conditional moves are available in some ISAs for some register classes. The remaining selects
/// are handled by a branch.
fn expand_select(
    inst: ir::Inst,
    func: &mut ir::Function,
    cfg: &mut ControlFlowGraph,
    _isa: &TargetIsa,
) {
    let (ctrl, tval, fval) = match func.dfg[inst] {
        ir::InstructionData::Ternary {
            opcode: ir::Opcode::Select,
            args,
        } => (args[0], args[1], args[2]),
        _ => panic!("Expected select: {}", func.dfg.display_inst(inst, None)),
    };

    // Replace `result = select ctrl, tval, fval` with:
    //
    //   brnz ctrl, new_ebb(tval)
    //   jump new_ebb(fval)
    // new_ebb(result):
    let old_ebb = func.layout.pp_ebb(inst);
    let result = func.dfg.first_result(inst);
    func.dfg.clear_results(inst);
    let new_ebb = func.dfg.make_ebb();
    func.dfg.attach_ebb_param(new_ebb, result);

    func.dfg.replace(inst).brnz(ctrl, new_ebb, &[tval]);
    let mut pos = FuncCursor::new(func).after_inst(inst);
    pos.use_srcloc(inst);
    pos.ins().jump(new_ebb, &[fval]);
    pos.insert_ebb(new_ebb);

    cfg.recompute_ebb(pos.func, new_ebb);
    cfg.recompute_ebb(pos.func, old_ebb);
}

fn expand_br_icmp(
    inst: ir::Inst,
    func: &mut ir::Function,
    cfg: &mut ControlFlowGraph,
    _isa: &TargetIsa,
) {
    let (cond, a, b, destination, ebb_args) = match func.dfg[inst] {
        ir::InstructionData::BranchIcmp {
            cond,
            destination,
            ref args,
            ..
        } => (
            cond,
            args.get(0, &func.dfg.value_lists).unwrap(),
            args.get(1, &func.dfg.value_lists).unwrap(),
            destination,
            args.as_slice(&func.dfg.value_lists)[2..].to_vec(),
        ),
        _ => panic!("Expected br_icmp {}", func.dfg.display_inst(inst, None)),
    };

    let old_ebb = func.layout.pp_ebb(inst);
    func.dfg.clear_results(inst);

    let icmp_res = func.dfg.replace(inst).icmp(cond, a, b);
    let mut pos = FuncCursor::new(func).after_inst(inst);
    pos.use_srcloc(inst);
    pos.ins().brnz(icmp_res, destination, &ebb_args);

    cfg.recompute_ebb(pos.func, destination);
    cfg.recompute_ebb(pos.func, old_ebb);
}

/// Expand illegal `f32const` and `f64const` instructions.
fn expand_fconst(
    inst: ir::Inst,
    func: &mut ir::Function,
    _cfg: &mut ControlFlowGraph,
    _isa: &TargetIsa,
) {
    let ty = func.dfg.value_type(func.dfg.first_result(inst));
    debug_assert!(!ty.is_vector(), "Only scalar fconst supported: {}", ty);

    // In the future, we may want to generate constant pool entries for these constants, but for
    // now use an `iconst` and a bit cast.
    let mut pos = FuncCursor::new(func).at_inst(inst);
    pos.use_srcloc(inst);
    let ival = match pos.func.dfg[inst] {
        ir::InstructionData::UnaryIeee32 {
            opcode: ir::Opcode::F32const,
            imm,
        } => pos.ins().iconst(ir::types::I32, i64::from(imm.bits())),
        ir::InstructionData::UnaryIeee64 {
            opcode: ir::Opcode::F64const,
            imm,
        } => pos.ins().iconst(ir::types::I64, imm.bits() as i64),
        _ => panic!("Expected fconst: {}", pos.func.dfg.display_inst(inst, None)),
    };
    pos.func.dfg.replace(inst).bitcast(ty, ival);
}

/// Expand illegal `stack_load` instructions.
fn expand_stack_load(
    inst: ir::Inst,
    func: &mut ir::Function,
    _cfg: &mut ControlFlowGraph,
    isa: &TargetIsa,
) {
    let ty = func.dfg.value_type(func.dfg.first_result(inst));
    let addr_ty = isa.pointer_type();

    let mut pos = FuncCursor::new(func).at_inst(inst);
    pos.use_srcloc(inst);

    let (stack_slot, offset) = match pos.func.dfg[inst] {
        ir::InstructionData::StackLoad {
            opcode: _opcode,
            stack_slot,
            offset,
        } => (stack_slot, offset),
        _ => panic!(
            "Expected stack_load: {}",
            pos.func.dfg.display_inst(inst, None)
        ),
    };

    let addr = pos.ins().stack_addr(addr_ty, stack_slot, offset);

    let mut mflags = MemFlags::new();
    // Stack slots are required to be accessible and aligned.
    mflags.set_notrap();
    mflags.set_aligned();
    pos.func.dfg.replace(inst).load(ty, mflags, addr, 0);
}

/// Expand illegal `stack_store` instructions.
fn expand_stack_store(
    inst: ir::Inst,
    func: &mut ir::Function,
    _cfg: &mut ControlFlowGraph,
    isa: &TargetIsa,
) {
    let addr_ty = isa.pointer_type();

    let mut pos = FuncCursor::new(func).at_inst(inst);
    pos.use_srcloc(inst);

    let (val, stack_slot, offset) = match pos.func.dfg[inst] {
        ir::InstructionData::StackStore {
            opcode: _opcode,
            arg,
            stack_slot,
            offset,
        } => (arg, stack_slot, offset),
        _ => panic!(
            "Expected stack_store: {}",
            pos.func.dfg.display_inst(inst, None)
        ),
    };

    let addr = pos.ins().stack_addr(addr_ty, stack_slot, offset);

    let mut mflags = MemFlags::new();
    // Stack slots are required to be accessible and aligned.
    mflags.set_notrap();
    mflags.set_aligned();
    pos.func.dfg.replace(inst).store(mflags, val, addr, 0);
}