1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
// Copyright (c) 2015 Daniel Grunwald
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this
// software and associated documentation files (the "Software"), to deal in the Software
// without restriction, including without limitation the rights to use, copy, modify, merge,
// publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
// to whom the Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or
// substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
// PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE
// FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.

use python::{Python, PythonObject, ToPythonPointer, PyDrop};
use err::{self, PyErr, PyResult};
use super::object::PyObject;
use super::exc;
use ffi::{self, Py_ssize_t};
use conversion::{FromPyObject, ToPyObject};
use std::slice;

/// Represents a Python tuple object.
pub struct PyTuple(PyObject);

pyobject_newtype!(PyTuple, PyTuple_Check, PyTuple_Type);

impl PyTuple {
    /// Construct a new tuple with the given elements.
    pub fn new(py: Python, elements: &[PyObject]) -> PyTuple {
        unsafe {
            let len = elements.len();
            let ptr = ffi::PyTuple_New(len as Py_ssize_t);
            let t = err::result_cast_from_owned_ptr::<PyTuple>(py, ptr).unwrap();
            for (i, e) in elements.iter().enumerate() {
                ffi::PyTuple_SetItem(ptr, i as Py_ssize_t, e.steal_ptr(py));
            }
            t
        }
    }

    /// Retrieves the empty tuple.
    pub fn empty(py: Python) -> PyTuple {
        unsafe {
            err::result_cast_from_owned_ptr::<PyTuple>(py, ffi::PyTuple_New(0)).unwrap()
        }
    }

    /// Gets the length of the tuple.
    #[inline]
    pub fn len(&self, _py: Python) -> usize {
        unsafe {
            // non-negative Py_ssize_t should always fit into Rust uint
            ffi::PyTuple_GET_SIZE(self.0.as_ptr()) as usize
        }
    }

    /// Gets the item at the specified index.
    ///
    /// Panics if the index is out of range.
    pub fn get_item(&self, py: Python, index: usize) -> PyObject {
        // TODO: reconsider whether we should panic
        // It's quite inconsistent that this method takes `Python` when `len()` does not.
        assert!(index < self.len(py));
        unsafe {
            PyObject::from_borrowed_ptr(py, ffi::PyTuple_GET_ITEM(self.0.as_ptr(), index as Py_ssize_t))
        }
    }

    #[inline]
    pub fn as_slice<'a>(&'a self, py: Python) -> &'a [PyObject] {
        // This is safe because PyObject has the same memory layout as *mut ffi::PyObject,
        // and because tuples are immutable.
        // (We don't even need a Python token, thanks to immutability)
        unsafe {
            let ptr = self.0.as_ptr() as *mut ffi::PyTupleObject;
            PyObject::borrow_from_owned_ptr_slice(
                slice::from_raw_parts(
                    (*ptr).ob_item.as_ptr(),
                    self.len(py)
                ))
        }
    }

    #[inline]
    pub fn iter(&self, py: Python) -> slice::Iter<PyObject> {
        self.as_slice(py).iter()
    }
}

fn wrong_tuple_length(py: Python, t: &PyTuple, expected_length: usize) -> PyErr {
    let msg = format!("Expected tuple of length {}, but got tuple of length {}.", expected_length, t.len(py));
    PyErr::new_lazy_init(py.get_type::<exc::ValueError>(), Some(msg.to_py_object(py).into_object()))
}

macro_rules! tuple_conversion ({$length:expr,$(($refN:ident, $n:tt, $T:ident)),+} => {
    impl <$($T: ToPyObject),+> ToPyObject for ($($T,)+) {
        type ObjectType = PyTuple;

        fn to_py_object(&self, py: Python) -> PyTuple {
            PyTuple::new(py, &[
                $(py_coerce_expr!(self.$n.to_py_object(py)).into_object(),)+
            ])
        }

        fn into_py_object(self, py: Python) -> PyTuple {
            PyTuple::new(py, &[
                $(py_coerce_expr!(self.$n.into_py_object(py)).into_object(),)+
            ])
        }
    }

    impl <'s, $($T: FromPyObject<'s>),+> FromPyObject<'s> for ($($T,)+) {
        fn extract(py: Python, obj: &'s PyObject) -> PyResult<Self> {
            let t = try!(obj.cast_as::<PyTuple>(py));
            let slice = t.as_slice(py);
            if slice.len() == $length {
                Ok((
                    $( try!(slice[$n].extract::<$T>(py)), )+
                ))
            } else {
                Err(wrong_tuple_length(py, t, $length))
            }
        }
    }
});

tuple_conversion!(1, (ref0, 0, A));
tuple_conversion!(2, (ref0, 0, A), (ref1, 1, B));
tuple_conversion!(3, (ref0, 0, A), (ref1, 1, B), (ref2, 2, C));
tuple_conversion!(4, (ref0, 0, A), (ref1, 1, B), (ref2, 2, C), (ref3, 3, D));
tuple_conversion!(5, (ref0, 0, A), (ref1, 1, B), (ref2, 2, C), (ref3, 3, D),
  (ref4, 4, E));
tuple_conversion!(6, (ref0, 0, A), (ref1, 1, B), (ref2, 2, C), (ref3, 3, D),
  (ref4, 4, E), (ref5, 5, F));
tuple_conversion!(7, (ref0, 0, A), (ref1, 1, B), (ref2, 2, C), (ref3, 3, D),
  (ref4, 4, E), (ref5, 5, F), (ref6, 6, G));
tuple_conversion!(8, (ref0, 0, A), (ref1, 1, B), (ref2, 2, C), (ref3, 3, D),
  (ref4, 4, E), (ref5, 5, F), (ref6, 6, G), (ref7, 7, H));
tuple_conversion!(9, (ref0, 0, A), (ref1, 1, B), (ref2, 2, C), (ref3, 3, D),
  (ref4, 4, E), (ref5, 5, F), (ref6, 6, G), (ref7, 7, H), (ref8, 8, I));

// Empty tuple:

/// An empty struct that represents the empty argument list.
/// Corresponds to the empty tuple `()` in Python.
///
/// # Example
/// ```
/// let gil_guard = cpython::Python::acquire_gil();
/// let py = gil_guard.python();
/// let os = py.import("os").unwrap();
/// let pid = os.call(py, "getpid", cpython::NoArgs, None).unwrap();
/// ```
#[derive(Copy, Clone, Debug)]
pub struct NoArgs;

/// Converts `NoArgs` to an empty Python tuple.
impl ToPyObject for NoArgs {
    type ObjectType = PyTuple;

    fn to_py_object(&self, py: Python) -> PyTuple {
        PyTuple::empty(py)
    }
}

/// Returns `Ok(NoArgs)` if the input is an empty Python tuple.
/// Otherwise, returns an error.
extract!(obj to NoArgs; py => {
    let t = try!(obj.cast_as::<PyTuple>(py));
    if t.len(py) == 0 {
        Ok(NoArgs)
    } else {
        Err(wrong_tuple_length(py, t, 0))
    }
});



#[cfg(test)]
mod test {
    use python::{Python, PythonObject};
    use conversion::ToPyObject;

    #[test]
    fn test_len() {
        let gil = Python::acquire_gil();
        let py = gil.python();
        let tuple = (1, 2, 3).to_py_object(py);
        assert_eq!(3, tuple.len(py));
        assert_eq!((1, 2, 3), tuple.into_object().extract(py).unwrap());
    }
}