1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
#![deny(missing_docs)]
//! A map that helps counting elements.

extern crate num_traits;

use num_traits::identities::{One, Zero};

use std::borrow::Borrow;
use std::collections::HashMap;
use std::collections::hash_map::{Drain, IntoIter, Iter, IterMut, Keys, RandomState, Values};
use std::hash::{BuildHasher, Hash};
use std::iter::FromIterator;
use std::ops::{Add, Index};

/// A count map is a hash map where the value field is a constantly incremented counter. If a key
/// is inserted for the first time, the counter is set to 1. Every subsequent insert will increment
/// the counter by 1. This implementation just acts as a decorator around a `HashMap` and exposes
/// almost the complete API of `HashMap` except things like `iter_mut()` or `get_mut()` since it
/// doesn't make sense in this use case.
#[derive(Clone, Debug)]
pub struct CountMap<K, C = u64, S = RandomState>
where
    K: Eq + Hash,
    // C: Unsigned,
    S: BuildHasher,
{
    map: HashMap<K, C, S>,
}

impl<K, C> CountMap<K, C, RandomState>
where
    K: Eq + Hash,
    // C: Unsigned,
{
    /// Creates an empty `CountMap`.
    ///
    /// # Examples
    /// ```
    /// use countmap::CountMap;
    ///
    /// let mut count_map: CountMap<&str> = CountMap::new();
    /// ```
    pub fn new() -> Self {
        Self::default()
    }

    /// Creates an empty `CountMap` with the specified capacity.
    ///
    /// The created map can hold at least `cap` elements before reallocating. If `cap` is `0` the
    /// map will not allocate.
    ///
    /// # Examples
    /// ```
    /// use countmap::CountMap;
    ///
    /// let mut count_map: CountMap<&str> = CountMap::with_capacity(10);
    /// ```
    pub fn with_capacity(cap: usize) -> Self {
        Self { map: HashMap::with_capacity(cap) }
    }
}

impl<K, C, S> CountMap<K, C, S>
where
    K: Eq + Hash,
    C: One + Zero + Copy + Clone + Add<Output = C>,
    S: BuildHasher,
{
    /// Creates an empty `CountMap` which will use the given hash builder to hash keys.
    ///
    /// The created map has the default initial capacity.
    ///
    /// Warning: `hash_builder` is normally randomly generated, and is designed to allow HashMaps
    /// to be resistant to attacks that cause many collisions and very poor performance. Setting it
    /// manually using this function can expose a DoS attack vector.
    ///
    /// # Examples
    /// ```
    /// use std::collections::hash_map::RandomState;
    /// use countmap::CountMap;
    ///
    /// let s = RandomState::new();
    /// let mut map: CountMap<_, u16> = CountMap::with_hasher(s);
    /// map.insert_or_increment("foo");
    /// ```
    pub fn with_hasher(hash_builder: S) -> Self {
        Self { map: HashMap::with_hasher(hash_builder) }
    }

    /// Creates an empty `CountMap` with the specified capacity, using hash_builder to hash the
    /// keys.
    ///
    /// The count map will be able to hold at least `capacity` elements without reallocating. If
    /// `capacity` is 0, the hash map will not allocate.
    ///
    /// Warning: `hash_builder` is normally randomly generated, and is designed to allow HashMaps
    /// to be resistant to attacks that cause many collisions and very poor performance. Setting it
    /// manually using this function can expose a DoS attack vector.
    ///
    /// # Examples
    /// ```
    /// use std::collections::hash_map::RandomState;
    /// use countmap::CountMap;
    ///
    /// let s = RandomState::new();
    /// let mut map: CountMap<_, u16> = CountMap::with_capacity_and_hasher(10, s);
    /// map.insert_or_increment("foo");
    /// ```
    pub fn with_capacity_and_hasher(capacity: usize, hash_builder: S) -> Self {
        Self { map: HashMap::with_capacity_and_hasher(capacity, hash_builder) }
    }

    /// Returns a reference to the map's `BuildHasher`.
    pub fn hasher(&self) -> &S {
        self.map.hasher()
    }

    /// Returns the number of elements the map can hold without reallocating.
    ///
    /// This number is a lower bound; the `CountMap<K>` might be able to hold more, but is
    /// guaranteed to be able to hold at least this many.
    ///
    /// # Examples
    /// ```
    /// use countmap::CountMap;
    ///
    /// let map: CountMap<&str> = CountMap::with_capacity(100);
    /// assert!(map.capacity() >= 100);
    /// ```
    pub fn capacity(&self) -> usize {
        self.map.capacity()
    }

    /// Reserves capacity for at least `additional` more elements to be inserted in the `CountMap`.
    /// The collection ma reserve more space to avoid frequent reallocations.
    ///
    /// # Panics
    /// Panics if the new allocation size overflows usize.
    ///
    /// # Examples
    /// ```
    /// use countmap::CountMap;
    ///
    /// let mut map: CountMap<&str> = CountMap::with_capacity(5);
    /// map.reserve(10);
    /// assert!(map.capacity() >= 15);
    /// ```
    pub fn reserve(&mut self, additional: usize) {
        self.map.reserve(additional)
    }

    /// Shrinks the capacity of the map as much as possible. It will drop down as much as possible
    /// while maintaining the internal rules and possibly leaving some space in accordance with the
    /// resize policy.
    ///
    /// # Examples
    /// ```
    /// use countmap::CountMap;
    ///
    /// let mut map: CountMap<_, u16> = CountMap::with_capacity(100);
    /// map.insert_or_increment("foo");
    /// map.insert_or_increment("bar");
    /// assert!(map.capacity() >= 100);
    /// map.shrink_to_fit();
    /// assert!(map.capacity() >= 2);
    /// ```
    pub fn shrink_to_fit(&mut self) {
        self.map.shrink_to_fit()
    }

    /// An iterator visiting all keys in arbitrary order. The iterator element type is `&'a K`.
    ///
    /// # Examples
    /// ```
    /// use countmap::CountMap;
    ///
    /// let mut map: CountMap<_, u16> = CountMap::new();
    /// map.insert_or_increment("foo");
    /// map.insert_or_increment("bar");
    /// map.insert_or_increment("foo");
    ///
    /// for key in map.keys() {
    ///     println!("{}", key);
    /// }
    /// ```
    pub fn keys(&self) -> Keys<K, C> {
        self.map.keys()
    }

    /// An iterator visiting all values in arbitrary order. The iterator element type is `&'a V`.
    ///
    /// # Examples
    /// ```
    /// use countmap::CountMap;
    ///
    /// let mut map: CountMap<_, u16> = CountMap::new();
    /// map.insert_or_increment("foo");
    /// map.insert_or_increment("bar");
    /// map.insert_or_increment("foo");
    ///
    /// for val in map.values() {
    ///     println!("{}", val);
    /// }
    /// ```
    pub fn values(&self) -> Values<K, C> {
        self.map.values()
    }

    /// Inserts or increments an element by 1 in the `CountMap`. The new value of the counter is
    /// returned.
    ///
    /// # Examples
    /// ```
    /// use countmap::CountMap;
    ///
    /// let mut count_map: CountMap<_, u16> = CountMap::new();
    ///
    /// assert_eq!(count_map.insert_or_increment("foo"), 1);
    /// assert_eq!(count_map.insert_or_increment("foo"), 2);
    /// assert_eq!(count_map.insert_or_increment("bar"), 1);
    /// ```
    pub fn insert_or_increment(&mut self, element: K) -> C {
        self.insert_or_increment_by(element, C::one())
    }

    /// Inserts or increments an element by the specified difference in the `CountMap`. The new
    /// value of the counter is returned.
    ///
    /// # Examples
    /// ```
    /// use countmap::CountMap;
    ///
    /// let mut count_map: CountMap<&str> = CountMap::new();
    ///
    /// assert_eq!(count_map.insert_or_increment_by("foo", 5), 5);
    /// assert_eq!(count_map.insert_or_increment_by("foo", 2), 7);
    /// assert_eq!(count_map.insert_or_increment_by("bar", 1), 1);
    /// ```
    pub fn insert_or_increment_by(&mut self, element: K, diff: C) -> C {
        let count = self.map.entry(element).or_insert(C::zero());
        // *count += diff;
        *count = *count + diff;
        // *count = count.add(diff);
        *count
    }

    /// Increments an existing element in the `CountMap` by 1. Returns an `Option` with the new
    /// value of the counter or `None` if the element doesn't exist.
    ///
    /// # Examples
    /// ```
    /// use countmap::CountMap;
    ///
    /// let mut count_map: CountMap<&str> = CountMap::new();
    ///
    /// assert_eq!(count_map.increment(&"foo"), None);
    ///
    /// count_map.insert_or_increment(&"foo");
    ///
    /// assert_eq!(count_map.increment(&"foo"), Some(2));
    /// ```
    pub fn increment(&mut self, element: &K) -> Option<C> {
        self.increment_by(element, C::one())
    }

    /// Increments an existing element in the `CountMap` by the specified difference. Returns an
    /// `Option` with the new value of the counter or `None` if the element doesn't exist.
    ///
    /// # Examples
    /// ```
    /// use countmap::CountMap;
    ///
    /// let mut count_map: CountMap<&str> = CountMap::new();
    ///
    /// assert_eq!(count_map.increment_by(&"foo", 5), None);
    ///
    /// count_map.insert_or_increment(&"foo");
    ///
    /// assert_eq!(count_map.increment_by(&"foo", 2), Some(3));
    /// ```
    pub fn increment_by(&mut self, element: &K, diff: C) -> Option<C> {
        let entry = self.map.get_mut(element);
        match entry {
            Some(count) => {
                // *count += diff;
                *count = *count + diff;
                Some(*count)
            }
            None => None,
        }
    }

    /// Returns an `Option` containing the current counter value of the specified element or
    /// `None`.
    ///
    /// # Examples
    /// ```
    /// use countmap::CountMap;
    ///
    /// let mut count_map: CountMap<&str> = CountMap::new();
    ///
    /// count_map.insert_or_increment("foo");
    ///
    /// assert_eq!(count_map.get_count(&"foo"), Some(1));
    /// assert_eq!(count_map.get_count(&"bar"), None);
    /// ```
    pub fn get_count(&self, element: &K) -> Option<C> {
        self.map.get(element).cloned()
    }

    /// An iterator visiting all key-value pairs in arbitrary order. The iterator element type is
    /// (&'a K, &'a C).
    ///
    /// # Examples
    /// ```
    /// use countmap::CountMap;
    ///
    /// let mut map: CountMap<_, u16> = CountMap::new();
    ///
    /// map.insert_or_increment("foo");
    /// map.insert_or_increment("foo");
    /// map.insert_or_increment("bar");
    ///
    /// for (key, count) in map {
    ///     println!("key: {}, count: {}", key, count);
    /// }
    /// ```
    pub fn iter(&self) -> Iter<K, C> {
        self.map.iter()
    }

    /// An iterator visiting all key-value pairs in arbitrary order, with mutable references to the
    /// values. The iterator element type is (&'a K, &'a mut V).
    ///
    /// # Examples
    /// ```
    /// use countmap::CountMap;
    ///
    /// let mut map: CountMap<_, u16> = CountMap::new();
    ///
    /// map.insert_or_increment("foo");
    /// map.insert_or_increment("foo");
    /// map.insert_or_increment("bar");
    ///
    /// for (_, count) in map.iter_mut() {
    ///     *count += 3;
    /// }
    ///
    /// assert_eq!(map.get_count(&"foo"), Some(5));
    /// assert_eq!(map.get_count(&"bar"), Some(4));
    /// ```
    pub fn iter_mut(&mut self) -> IterMut<K, C> {
        self.map.iter_mut()
    }

    /// Returns the number of elements in the map.
    ///
    /// # Examples
    /// ```
    /// use countmap::CountMap;
    ///
    /// let mut map: CountMap<_, u16> = CountMap::new();
    /// assert_eq!(map.len(), 0);
    /// map.insert_or_increment("foo");
    /// assert_eq!(map.len(), 1);
    /// ```
    pub fn len(&self) -> usize {
        self.map.len()
    }

    /// Returns true if the map contains no elements.
    ///
    /// # Examples
    /// ```
    /// use countmap::CountMap;
    ///
    /// let mut map: CountMap<_, u16> = CountMap::new();
    /// assert_eq!(map.is_empty(), true);
    /// map.insert_or_increment("foo");
    /// assert_eq!(map.is_empty(), false);
    /// ```
    pub fn is_empty(&self) -> bool {
        self.map.is_empty()
    }

    /// Clears the map, returning all key-value pairs as an iterator. Keeps the allocated memory
    /// for reuse.
    ///
    /// # Examples
    /// ```
    /// use countmap::CountMap;
    ///
    /// let mut map: CountMap<_, u16> = CountMap::new();
    /// map.insert_or_increment("foo");
    /// map.insert_or_increment("bar");
    ///
    /// for (k, c) in map.drain().take(1) {
    ///     assert!(k == "foo" || k == "bar");
    ///     assert_eq!(c, 1);
    /// }
    ///
    /// assert!(map.is_empty());
    /// ```
    pub fn drain(&mut self) -> Drain<K, C> {
        self.map.drain()
    }

    /// Clears the map, removing all key-counter pairs. Keeps the allocated memory for reuse.
    ///
    /// # Examples
    /// ```
    /// use countmap::CountMap;
    ///
    /// let mut map: CountMap<&str, u16> = CountMap::new();
    /// map.insert_or_increment("foo");
    /// map.clear();
    /// assert!(map.is_empty())
    /// ```
    pub fn clear(&mut self) {
        self.map.clear()
    }

    /// Returns true if the map contains a value for the specified key.
    ///
    /// # Examples
    /// ```
    /// use countmap::CountMap;
    ///
    /// let mut map: CountMap<&str, u16> = CountMap::new();
    /// map.insert_or_increment("foo");
    /// assert!(map.contains_key(&"foo"));
    /// assert!(!map.contains_key(&"bar"));
    /// ```
    pub fn contains_key(&self, k: &K) -> bool {
        self.map.contains_key(k)
    }

    /// Removes a key from the map, returning the value at the key if the key was previously in the
    /// map.
    ///
    /// # Examples
    /// ```
    /// use countmap::CountMap;
    ///
    /// let mut map = CountMap::new();
    /// map.insert_or_increment("foo");
    /// assert_eq!(map.remove(&"foo"), Some(1));
    /// assert_eq!(map.remove(&"bar"), None);
    /// ```
    pub fn remove(&mut self, k: &K) -> Option<C> {
        self.map.remove(k)
    }

    /// Retains only the elements specified by the predicate.
    ///
    /// In other words, remove all pairs `(k, v)` such that `f(&k,&mut v)` returns `false`.
    ///
    /// # Examples
    /// ```
    /// use countmap::CountMap;
    ///
    /// let mut map: CountMap<_, u16> = CountMap::new();
    /// map.insert_or_increment("foo");
    /// map.insert_or_increment("foo");
    /// map.insert_or_increment("foo");
    /// map.insert_or_increment("bar");
    ///
    /// map.retain(|_, c| *c == 3);
    /// assert_eq!(map.len(), 1);
    /// ```
    pub fn retain<F>(&mut self, f: F)
    where
        F: FnMut(&K, &mut C) -> bool,
    {
        self.map.retain(f)
    }
}

impl<K, C> Default for CountMap<K, C>
where
    K: Eq + Hash,
    // C: Unsigned,
{
    fn default() -> Self {
        Self { map: HashMap::new() }
    }
}

impl<K> PartialEq for CountMap<K>
where
    K: Eq + Hash,
{
    fn eq(&self, other: &CountMap<K>) -> bool {
        self.map == other.map
    }
}

impl<K> Eq for CountMap<K>
where
    K: Eq + Hash,
{
}

impl<'a, K, C> IntoIterator for &'a CountMap<K, C>
where
    K: Eq + Hash,
    // C: Unsigned,
{
    type Item = (&'a K, &'a C);
    type IntoIter = Iter<'a, K, C>;

    fn into_iter(self) -> Self::IntoIter {
        self.map.iter()
    }
}

impl<'a, K, C> IntoIterator for &'a mut CountMap<K, C>
where
    K: Eq + Hash,
    // C: Unsigned,
{
    type Item = (&'a K, &'a mut C);
    type IntoIter = IterMut<'a, K, C>;

    fn into_iter(self) -> Self::IntoIter {
        self.map.iter_mut()
    }
}

impl<'a, K, C> IntoIterator for CountMap<K, C>
where
    K: Eq + Hash,
    // C: Unsigned,
{
    type Item = (K, C);
    type IntoIter = IntoIter<K, C>;

    fn into_iter(self) -> Self::IntoIter {
        self.map.into_iter()
    }
}

impl<'a, K, C, Q> Index<&'a Q> for CountMap<K, C>
where
    K: Eq + Hash + Borrow<Q>,
    // C: Unsigned,
    Q: ?Sized + Eq + Hash,
{
    type Output = C;

    /// # Examples
    /// ```
    /// use countmap::CountMap;
    ///
    /// let mut map: CountMap<_, u16> = CountMap::new();
    ///
    /// map.insert_or_increment("foo");
    /// assert_eq!(map["foo"], 1);
    /// ```
    fn index(&self, index: &Q) -> &Self::Output {
        &self.map[index]
    }
}

impl<K, C> FromIterator<(K, C)> for CountMap<K, C>
where
    K: Eq + Hash,
    C: Clone + Copy + One + Zero,
{
    /// Creates a `CountMap<K>` from an `Iterator<(K, C)>`.
    ///
    /// # Examples
    /// ```
    /// use countmap::CountMap;
    /// use std::iter::FromIterator;
    ///
    /// let data = vec![("foo", 3), ("bar", 3), ("foo", 1)];
    /// let map = CountMap::from_iter(data);
    /// assert_eq!(map.get_count(&"foo"), Some(4));
    /// assert_eq!(map.get_count(&"bar"), Some(3));
    /// ```
    fn from_iter<T>(iter: T) -> Self
    where
        T: IntoIterator<Item = (K, C)>,
    {
        let iter = iter.into_iter();
        let mut map = CountMap::with_capacity(iter.size_hint().0);
        for (k, v) in iter {
            map.insert_or_increment_by(k, v);
        }
        map
    }
}

impl<K> FromIterator<K> for CountMap<K>
where
    K: Eq + Hash,
{
    /// Creates a `CountMap<K>` from an `Iterator<K>`.
    ///
    /// # Examples
    /// ```
    /// use countmap::CountMap;
    /// use std::iter::FromIterator;
    ///
    /// let data = vec!["foo", "bar", "foo"];
    /// let map = CountMap::from_iter(data);
    /// assert_eq!(map.get_count(&"foo"), Some(2));
    /// assert_eq!(map.get_count(&"bar"), Some(1));
    /// ```
    fn from_iter<T>(iter: T) -> Self
    where
        T: IntoIterator<Item = K>,
    {
        let iter = iter.into_iter();
        let mut map = CountMap::with_capacity(iter.size_hint().0);
        for item in iter {
            map.insert_or_increment(item);
        }
        map
    }
}

impl<K, C> Extend<(K, C)> for CountMap<K, C>
where
    K: Eq + Hash,
    C: Clone + Copy + One + Zero,
{
    /// Extends a `CountMap<K>` with an `Iterator<(K, C)>`.
    ///
    /// # Examples
    /// ```
    /// use countmap::CountMap;
    ///
    /// let data = vec![("foo", 3), ("bar", 3), ("foo", 1)];
    /// let mut map = CountMap::new();
    /// map.extend(data);
    ///
    /// assert_eq!(map.get_count(&"foo"), Some(4));
    /// assert_eq!(map.get_count(&"bar"), Some(3));
    /// ```
    fn extend<T>(&mut self, iter: T)
    where
        T: IntoIterator<Item = (K, C)>,
    {
        let iter = iter.into_iter();
        let reserve = if self.is_empty() {
            iter.size_hint().0
        } else {
            (iter.size_hint().0 + 1) / 2
        };
        self.reserve(reserve);
        for (k, v) in iter {
            self.insert_or_increment_by(k, v);
        }
    }
}

impl<'a, K, C> Extend<(&'a K, &'a C)> for CountMap<K, C>
where
    K: 'a + Eq + Hash + Copy,
    C: 'a + Clone + Copy + One + Zero,
{
    fn extend<T>(&mut self, iter: T)
    where
        T: IntoIterator<Item = (&'a K, &'a C)>,
    {
        self.extend(iter.into_iter().map(|(&key, &value)| (key, value)));
    }
}

impl<K> Extend<K> for CountMap<K>
where
    K: Eq + Hash,
{
    /// Extends a `CountMap<K>` with an `Iterator<K>`.
    ///
    /// # Examples
    /// ```
    /// use countmap::CountMap;
    ///
    /// let data = vec!["foo", "bar", "foo"];
    /// let mut map = CountMap::new();
    /// map.extend(data);
    ///
    /// assert_eq!(map.get_count(&"foo"), Some(2));
    /// assert_eq!(map.get_count(&"bar"), Some(1));
    /// ```
    fn extend<T>(&mut self, iter: T)
    where
        T: IntoIterator<Item = K>,
    {
        let iter = iter.into_iter();
        let reserve = if self.is_empty() {
            iter.size_hint().0
        } else {
            (iter.size_hint().0 + 1) / 2
        };
        self.reserve(reserve);
        for k in iter {
            self.insert_or_increment(k);
        }
    }
}

impl<'a, K> Extend<&'a K> for CountMap<K>
where
    K: 'a + Eq + Hash + Copy,
{
    fn extend<T>(&mut self, iter: T)
    where
        T: IntoIterator<Item = &'a K>,
    {
        self.extend(iter.into_iter().cloned());
    }
}