1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
#[cfg(feature = "iterator")]
use std::cmp::Ordering;
use std::collections::BTreeMap;
#[cfg(feature = "iterator")]
use std::iter;
#[cfg(feature = "iterator")]
use std::iter::Peekable;
#[cfg(feature = "iterator")]
use std::ops::{Bound, RangeBounds};

use cosmwasm_std::{Api, Extern, Querier, ReadonlyStorage, StdResult, Storage};
#[cfg(feature = "iterator")]
use cosmwasm_std::{Order, KV};

#[cfg(feature = "iterator")]
/// The BTreeMap specific key-value pair reference type, as returned by BTreeMap<Vec<u8>, T>::range.
/// This is internal as it can change any time if the map implementation is swapped out.
type BTreeMapPairRef<'a, T = Vec<u8>> = (&'a Vec<u8>, &'a T);

pub struct StorageTransaction<'a, S: ReadonlyStorage> {
    /// read-only access to backing storage
    storage: &'a S,
    /// these are local changes not flushed to backing storage
    local_state: BTreeMap<Vec<u8>, Delta>,
    /// a log of local changes not yet flushed to backing storage
    rep_log: RepLog,
}

impl<'a, S: ReadonlyStorage> StorageTransaction<'a, S> {
    pub fn new(storage: &'a S) -> Self {
        StorageTransaction {
            storage,
            local_state: BTreeMap::new(),
            rep_log: RepLog::new(),
        }
    }

    /// prepares this transaction to be committed to storage
    pub fn prepare(self) -> RepLog {
        self.rep_log
    }

    /// rollback will consume the checkpoint and drop all changes (no really needed, going out of scope does the same, but nice for clarity)
    pub fn rollback(self) {}
}

impl<'a, S: ReadonlyStorage> ReadonlyStorage for StorageTransaction<'a, S> {
    fn get(&self, key: &[u8]) -> StdResult<Option<Vec<u8>>> {
        match self.local_state.get(key) {
            Some(val) => Ok(match val {
                Delta::Set { value } => Some(value.clone()),
                Delta::Delete {} => None,
            }),
            None => self.storage.get(key),
        }
    }

    #[cfg(feature = "iterator")]
    /// range allows iteration over a set of keys, either forwards or backwards
    /// uses standard rust range notation, and eg db.range(b"foo"..b"bar") also works reverse
    fn range<'b>(
        &'b self,
        start: Option<&[u8]>,
        end: Option<&[u8]>,
        order: Order,
    ) -> StdResult<Box<dyn Iterator<Item = StdResult<KV>> + 'b>> {
        let bounds = range_bounds(start, end);

        // BTreeMap.range panics if range is start > end.
        // However, this cases represent just empty range and we treat it as such.
        let local: Box<dyn Iterator<Item = BTreeMapPairRef<Delta>>> =
            match (bounds.start_bound(), bounds.end_bound()) {
                (Bound::Included(start), Bound::Excluded(end)) if start > end => {
                    Box::new(iter::empty())
                }
                _ => {
                    let local_raw = self.local_state.range(bounds);
                    match order {
                        Order::Ascending => Box::new(local_raw),
                        Order::Descending => Box::new(local_raw.rev()),
                    }
                }
            };

        let base = self.storage.range(start, end, order)?;
        let merged = MergeOverlay::new(local, base, order);
        Ok(Box::new(merged))
    }
}

impl<'a, S: ReadonlyStorage> Storage for StorageTransaction<'a, S> {
    fn set(&mut self, key: &[u8], value: &[u8]) -> StdResult<()> {
        let op = Op::Set {
            key: key.to_vec(),
            value: value.to_vec(),
        };
        self.local_state.insert(key.to_vec(), op.to_delta());
        self.rep_log.append(op);
        Ok(())
    }

    fn remove(&mut self, key: &[u8]) -> StdResult<()> {
        let op = Op::Delete { key: key.to_vec() };
        self.local_state.insert(key.to_vec(), op.to_delta());
        self.rep_log.append(op);
        Ok(())
    }
}

pub struct RepLog {
    /// this is a list of changes to be written to backing storage upon commit
    ops_log: Vec<Op>,
}

impl RepLog {
    fn new() -> Self {
        RepLog { ops_log: vec![] }
    }

    /// appends an op to the list of changes to be applied upon commit
    fn append(&mut self, op: Op) {
        self.ops_log.push(op);
    }

    /// applies the stored list of `Op`s to the provided `Storage`
    pub fn commit<S: Storage>(self, storage: &mut S) -> StdResult<()> {
        for op in self.ops_log {
            op.apply(storage)?;
        }
        Ok(())
    }
}

/// Op is the user operation, which can be stored in the RepLog.
/// Currently Set or Delete.
enum Op {
    /// represents the `Set` operation for setting a key-value pair in storage
    Set {
        key: Vec<u8>,
        value: Vec<u8>,
    },
    Delete {
        key: Vec<u8>,
    },
}

impl Op {
    /// applies this `Op` to the provided storage
    pub fn apply<S: Storage>(&self, storage: &mut S) -> StdResult<()> {
        match self {
            Op::Set { key, value } => storage.set(&key, &value),
            Op::Delete { key } => storage.remove(&key),
        }
    }

    /// converts the Op to a delta, which can be stored in a local cache
    pub fn to_delta(&self) -> Delta {
        match self {
            Op::Set { value, .. } => Delta::Set {
                value: value.clone(),
            },
            Op::Delete { .. } => Delta::Delete {},
        }
    }
}

/// Delta is the changes, stored in the local transaction cache.
/// This is either Set{value} or Delete{}. Note that this is the "value"
/// part of a BTree, so the Key (from the Op) is stored separately.
enum Delta {
    Set { value: Vec<u8> },
    Delete {},
}

#[cfg(feature = "iterator")]
struct MergeOverlay<'a, L, R>
where
    L: Iterator<Item = BTreeMapPairRef<'a, Delta>>,
    R: Iterator<Item = StdResult<KV>>,
{
    left: Peekable<L>,
    right: Peekable<R>,
    order: Order,
}

#[cfg(feature = "iterator")]
impl<'a, L, R> MergeOverlay<'a, L, R>
where
    L: Iterator<Item = BTreeMapPairRef<'a, Delta>>,
    R: Iterator<Item = StdResult<KV>>,
{
    fn new(left: L, right: R, order: Order) -> Self {
        MergeOverlay {
            left: left.peekable(),
            right: right.peekable(),
            order,
        }
    }

    fn pick_match(&mut self, lkey: Vec<u8>, rkey: Vec<u8>) -> Option<StdResult<KV>> {
        // compare keys - result is such that Ordering::Less => return left side
        let order = match self.order {
            Order::Ascending => lkey.cmp(&rkey),
            Order::Descending => rkey.cmp(&lkey),
        };

        // left must be translated and filtered before return, not so with right
        match order {
            Ordering::Less => self.take_left(),
            Ordering::Equal => {
                //
                let _ = self.right.next();
                self.take_left()
            }
            Ordering::Greater => self.right.next(),
        }
    }

    /// take_left must only be called when we know self.left.next() will return Some
    fn take_left(&mut self) -> Option<StdResult<KV>> {
        let (lkey, lval) = self.left.next().unwrap();
        match lval {
            Delta::Set { value } => Some(Ok((lkey.clone(), value.clone()))),
            Delta::Delete {} => self.next(),
        }
    }
}

#[cfg(feature = "iterator")]
impl<'a, L, R> Iterator for MergeOverlay<'a, L, R>
where
    L: Iterator<Item = BTreeMapPairRef<'a, Delta>>,
    R: Iterator<Item = StdResult<KV>>,
{
    type Item = StdResult<KV>;

    fn next(&mut self) -> Option<Self::Item> {
        let (left, right) = (self.left.peek(), self.right.peek());
        match (left, right) {
            (Some(litem), Some(ritem)) => {
                let (lkey, _) = litem;
                let (rkey, _) = ritem.as_ref().expect("error items not yet supported");

                // we just use cloned keys to avoid double mutable references
                // (we must release the return value from peek, before beginning to call next or other mut methods
                let (l, r) = (lkey.to_vec(), rkey.to_vec());
                self.pick_match(l, r)
            }
            (Some(_), None) => self.take_left(),
            (None, Some(_)) => self.right.next(),
            (None, None) => None,
        }
    }
}

pub fn transactional<S, C, T>(storage: &mut S, callback: C) -> StdResult<T>
where
    S: Storage,
    C: FnOnce(&mut StorageTransaction<S>) -> StdResult<T>,
{
    let mut stx = StorageTransaction::new(storage);
    let res = callback(&mut stx)?;
    stx.prepare().commit(storage)?;
    Ok(res)
}

pub fn transactional_deps<S, A, Q, C, T>(deps: &mut Extern<S, A, Q>, callback: C) -> StdResult<T>
where
    S: Storage,
    A: Api,
    Q: Querier,
    C: FnOnce(&mut Extern<StorageTransaction<S>, A, Q>) -> StdResult<T>,
{
    let c = StorageTransaction::new(&deps.storage);
    let mut stx_deps = Extern {
        storage: c,
        api: deps.api,
        querier: deps.querier.clone(),
    };
    let res = callback(&mut stx_deps);
    if res.is_ok() {
        stx_deps.storage.prepare().commit(&mut deps.storage)?;
    } else {
        stx_deps.storage.rollback();
    }
    res
}

#[cfg(feature = "iterator")]
fn range_bounds(start: Option<&[u8]>, end: Option<&[u8]>) -> impl RangeBounds<Vec<u8>> {
    (
        start.map_or(Bound::Unbounded, |x| Bound::Included(x.to_vec())),
        end.map_or(Bound::Unbounded, |x| Bound::Excluded(x.to_vec())),
    )
}

#[cfg(test)]
mod test {
    use super::*;
    use cosmwasm_std::{unauthorized, MemoryStorage};

    #[cfg(feature = "iterator")]
    // iterator_test_suite takes a storage, adds data and runs iterator tests
    // the storage must previously have exactly one key: "foo" = "bar"
    // (this allows us to test StorageTransaction and other wrapped storage better)
    fn iterator_test_suite<S: Storage>(store: &mut S) {
        // ensure we had previously set "foo" = "bar"
        assert_eq!(store.get(b"foo").unwrap(), Some(b"bar".to_vec()));
        assert_eq!(
            store.range(None, None, Order::Ascending).unwrap().count(),
            1
        );

        // setup - add some data, and delete part of it as well
        store.set(b"ant", b"hill").expect("error setting value");
        store.set(b"ze", b"bra").expect("error setting value");

        // noise that should be ignored
        store.set(b"bye", b"bye").expect("error setting value");
        store.remove(b"bye").expect("error removing key");

        // unbounded
        {
            let iter = store.range(None, None, Order::Ascending).unwrap();
            let elements: Vec<KV> = iter.filter_map(StdResult::ok).collect();
            assert_eq!(
                elements,
                vec![
                    (b"ant".to_vec(), b"hill".to_vec()),
                    (b"foo".to_vec(), b"bar".to_vec()),
                    (b"ze".to_vec(), b"bra".to_vec()),
                ]
            );
        }

        // unbounded (descending)
        {
            let iter = store.range(None, None, Order::Descending).unwrap();
            let elements: Vec<KV> = iter.filter_map(StdResult::ok).collect();
            assert_eq!(
                elements,
                vec![
                    (b"ze".to_vec(), b"bra".to_vec()),
                    (b"foo".to_vec(), b"bar".to_vec()),
                    (b"ant".to_vec(), b"hill".to_vec()),
                ]
            );
        }

        // bounded
        {
            let iter = store
                .range(Some(b"f"), Some(b"n"), Order::Ascending)
                .unwrap();
            let elements: Vec<KV> = iter.filter_map(StdResult::ok).collect();
            assert_eq!(elements, vec![(b"foo".to_vec(), b"bar".to_vec())]);
        }

        // bounded (descending)
        {
            let iter = store
                .range(Some(b"air"), Some(b"loop"), Order::Descending)
                .unwrap();
            let elements: Vec<KV> = iter.filter_map(StdResult::ok).collect();
            assert_eq!(
                elements,
                vec![
                    (b"foo".to_vec(), b"bar".to_vec()),
                    (b"ant".to_vec(), b"hill".to_vec()),
                ]
            );
        }

        // bounded empty [a, a)
        {
            let iter = store
                .range(Some(b"foo"), Some(b"foo"), Order::Ascending)
                .unwrap();
            let elements: Vec<KV> = iter.filter_map(StdResult::ok).collect();
            assert_eq!(elements, vec![]);
        }

        // bounded empty [a, a) (descending)
        {
            let iter = store
                .range(Some(b"foo"), Some(b"foo"), Order::Descending)
                .unwrap();
            let elements: Vec<KV> = iter.filter_map(StdResult::ok).collect();
            assert_eq!(elements, vec![]);
        }

        // bounded empty [a, b) with b < a
        {
            let iter = store
                .range(Some(b"z"), Some(b"a"), Order::Ascending)
                .unwrap();
            let elements: Vec<KV> = iter.filter_map(StdResult::ok).collect();
            assert_eq!(elements, vec![]);
        }

        // bounded empty [a, b) with b < a (descending)
        {
            let iter = store
                .range(Some(b"z"), Some(b"a"), Order::Descending)
                .unwrap();
            let elements: Vec<KV> = iter.filter_map(StdResult::ok).collect();
            assert_eq!(elements, vec![]);
        }

        // right unbounded
        {
            let iter = store.range(Some(b"f"), None, Order::Ascending).unwrap();
            let elements: Vec<KV> = iter.filter_map(StdResult::ok).collect();
            assert_eq!(
                elements,
                vec![
                    (b"foo".to_vec(), b"bar".to_vec()),
                    (b"ze".to_vec(), b"bra".to_vec()),
                ]
            );
        }

        // right unbounded (descending)
        {
            let iter = store.range(Some(b"f"), None, Order::Descending).unwrap();
            let elements: Vec<KV> = iter.filter_map(StdResult::ok).collect();
            assert_eq!(
                elements,
                vec![
                    (b"ze".to_vec(), b"bra".to_vec()),
                    (b"foo".to_vec(), b"bar".to_vec()),
                ]
            );
        }

        // left unbounded
        {
            let iter = store.range(None, Some(b"f"), Order::Ascending).unwrap();
            let elements: Vec<KV> = iter.filter_map(StdResult::ok).collect();
            assert_eq!(elements, vec![(b"ant".to_vec(), b"hill".to_vec()),]);
        }

        // left unbounded (descending)
        {
            let iter = store.range(None, Some(b"no"), Order::Descending).unwrap();
            let elements: Vec<KV> = iter.filter_map(StdResult::ok).collect();
            assert_eq!(
                elements,
                vec![
                    (b"foo".to_vec(), b"bar".to_vec()),
                    (b"ant".to_vec(), b"hill".to_vec()),
                ]
            );
        }
    }

    #[test]
    fn delete_local() {
        let mut base = MemoryStorage::new();
        let mut check = StorageTransaction::new(&base);
        check.set(b"foo", b"bar").unwrap();
        check.set(b"food", b"bank").unwrap();
        check.remove(b"foo").unwrap();

        assert_eq!(None, check.get(b"foo").unwrap());
        assert_eq!(Some(b"bank".to_vec()), check.get(b"food").unwrap());

        // now commit to base and query there
        check.prepare().commit(&mut base).unwrap();
        assert_eq!(None, base.get(b"foo").unwrap());
        assert_eq!(Some(b"bank".to_vec()), base.get(b"food").unwrap());
    }

    #[test]
    fn delete_from_base() {
        let mut base = MemoryStorage::new();
        base.set(b"foo", b"bar").unwrap();
        let mut check = StorageTransaction::new(&base);
        check.set(b"food", b"bank").unwrap();
        check.remove(b"foo").unwrap();

        assert_eq!(None, check.get(b"foo").unwrap());
        assert_eq!(Some(b"bank".to_vec()), check.get(b"food").unwrap());

        // now commit to base and query there
        check.prepare().commit(&mut base).unwrap();
        assert_eq!(None, base.get(b"foo").unwrap());
        assert_eq!(Some(b"bank".to_vec()), base.get(b"food").unwrap());
    }

    #[test]
    #[cfg(feature = "iterator")]
    fn storage_transaction_iterator_empty_base() {
        let base = MemoryStorage::new();
        let mut check = StorageTransaction::new(&base);
        check.set(b"foo", b"bar").expect("error setting value");
        iterator_test_suite(&mut check);
    }

    #[test]
    #[cfg(feature = "iterator")]
    fn storage_transaction_iterator_with_base_data() {
        let mut base = MemoryStorage::new();
        base.set(b"foo", b"bar").expect("error setting value");
        let mut check = StorageTransaction::new(&base);
        iterator_test_suite(&mut check);
    }

    #[test]
    #[cfg(feature = "iterator")]
    fn storage_transaction_iterator_removed_items_from_base() {
        let mut base = MemoryStorage::new();
        base.set(b"foo", b"bar").expect("error setting value");
        base.set(b"food", b"bank").expect("error setting value");
        let mut check = StorageTransaction::new(&base);
        check.remove(b"food").expect("error removing key");
        iterator_test_suite(&mut check);
    }

    #[test]
    fn commit_writes_through() {
        let mut base = MemoryStorage::new();
        base.set(b"foo", b"bar").unwrap();

        let mut check = StorageTransaction::new(&base);
        assert_eq!(check.get(b"foo").unwrap(), Some(b"bar".to_vec()));
        check.set(b"subtx", b"works").unwrap();
        check.prepare().commit(&mut base).unwrap();

        assert_eq!(base.get(b"subtx").unwrap(), Some(b"works".to_vec()));
    }

    #[test]
    fn storage_remains_readable() {
        let mut base = MemoryStorage::new();
        base.set(b"foo", b"bar").unwrap();

        let mut stxn1 = StorageTransaction::new(&base);

        assert_eq!(stxn1.get(b"foo").unwrap(), Some(b"bar".to_vec()));

        stxn1.set(b"subtx", b"works").unwrap();
        assert_eq!(stxn1.get(b"subtx").unwrap(), Some(b"works".to_vec()));

        // Can still read from base, txn is not yet committed
        assert_eq!(base.get(b"subtx").unwrap(), None);

        stxn1.prepare().commit(&mut base).unwrap();
        assert_eq!(base.get(b"subtx").unwrap(), Some(b"works".to_vec()));
    }

    #[test]
    fn rollback_has_no_effect() {
        let mut base = MemoryStorage::new();
        base.set(b"foo", b"bar").unwrap();

        let mut check = StorageTransaction::new(&base);
        assert_eq!(check.get(b"foo").unwrap(), Some(b"bar".to_vec()));
        check.set(b"subtx", b"works").unwrap();
        check.rollback();

        assert_eq!(base.get(b"subtx").unwrap(), None);
    }

    #[test]
    fn ignore_same_as_rollback() {
        let mut base = MemoryStorage::new();
        base.set(b"foo", b"bar").unwrap();

        let mut check = StorageTransaction::new(&base);
        assert_eq!(check.get(b"foo").unwrap(), Some(b"bar".to_vec()));
        check.set(b"subtx", b"works").unwrap();

        assert_eq!(base.get(b"subtx").unwrap(), None);
    }

    #[test]
    fn transactional_works() {
        let mut base = MemoryStorage::new();
        base.set(b"foo", b"bar").unwrap();

        // writes on success
        let res: StdResult<i32> = transactional(&mut base, |store| {
            // ensure we can read from the backing store
            assert_eq!(store.get(b"foo").unwrap(), Some(b"bar".to_vec()));
            // we write in the Ok case
            store.set(b"good", b"one").unwrap();
            Ok(5)
        });
        assert_eq!(5, res.unwrap());
        assert_eq!(base.get(b"good").unwrap(), Some(b"one".to_vec()));

        // rejects on error
        let res: StdResult<i32> = transactional(&mut base, |store| {
            // ensure we can read from the backing store
            assert_eq!(store.get(b"foo").unwrap(), Some(b"bar".to_vec()));
            assert_eq!(store.get(b"good").unwrap(), Some(b"one".to_vec()));
            // we write in the Error case
            store.set(b"bad", b"value").unwrap();
            Err(unauthorized())
        });
        assert!(res.is_err());
        assert_eq!(base.get(b"bad").unwrap(), None);
    }
}