1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
use alloc::collections::BTreeMap;
use core::fmt;
use core::str::FromStr;

use crate::prelude::*;
use crate::{
    errors::CoinsError, Coin, OverflowError, OverflowOperation, StdError, StdResult, Uint128,
};

/// A collection of coins, similar to Cosmos SDK's `sdk.Coins` struct.
///
/// Differently from `sdk.Coins`, which is a vector of `sdk.Coin`, here we
/// implement Coins as a BTreeMap that maps from coin denoms to `Coin`.
/// This has a number of advantages:
///
/// - coins are naturally sorted alphabetically by denom
/// - duplicate denoms are automatically removed
/// - cheaper for searching/inserting/deleting: O(log(n)) compared to O(n)
#[derive(Clone, Default, Debug, PartialEq, Eq)]
pub struct Coins(BTreeMap<String, Coin>);

/// Casting a Vec<Coin> to Coins.
/// The Vec can be out of order, but must not contain duplicate denoms.
/// If you want to sum up duplicates, create an empty instance using `Coins::default` and
/// use `Coins::add` to add your coins.
impl TryFrom<Vec<Coin>> for Coins {
    type Error = CoinsError;

    fn try_from(vec: Vec<Coin>) -> Result<Self, CoinsError> {
        let mut map = BTreeMap::new();
        for coin in vec {
            if coin.amount.is_zero() {
                continue;
            }

            // if the insertion returns a previous value, we have a duplicate denom
            if map.insert(coin.denom.clone(), coin).is_some() {
                return Err(CoinsError::DuplicateDenom);
            }
        }

        Ok(Self(map))
    }
}

impl TryFrom<&[Coin]> for Coins {
    type Error = CoinsError;

    fn try_from(slice: &[Coin]) -> Result<Self, CoinsError> {
        slice.to_vec().try_into()
    }
}

impl From<Coin> for Coins {
    fn from(value: Coin) -> Self {
        let mut coins = Coins::default();
        // this can never overflow (because there are no coins in there yet), so we can unwrap
        coins.add(value).unwrap();
        coins
    }
}

impl<const N: usize> TryFrom<[Coin; N]> for Coins {
    type Error = CoinsError;

    fn try_from(slice: [Coin; N]) -> Result<Self, CoinsError> {
        slice.to_vec().try_into()
    }
}

impl From<Coins> for Vec<Coin> {
    fn from(value: Coins) -> Self {
        value.into_vec()
    }
}

impl FromStr for Coins {
    type Err = StdError;

    fn from_str(s: &str) -> StdResult<Self> {
        if s.is_empty() {
            return Ok(Self::default());
        }

        Ok(s.split(',')
            .map(Coin::from_str)
            .collect::<Result<Vec<_>, _>>()?
            .try_into()?)
    }
}

impl fmt::Display for Coins {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        let s = self
            .0
            .values()
            .map(|coin| coin.to_string())
            .collect::<Vec<_>>()
            .join(",");
        write!(f, "{s}")
    }
}

impl Coins {
    /// Conversion to Vec<Coin>, while NOT consuming the original object.
    ///
    /// This produces a vector of coins that is sorted alphabetically by denom with
    /// no duplicate denoms.
    pub fn to_vec(&self) -> Vec<Coin> {
        self.0.values().cloned().collect()
    }

    /// Conversion to Vec<Coin>, consuming the original object.
    ///
    /// This produces a vector of coins that is sorted alphabetically by denom with
    /// no duplicate denoms.
    pub fn into_vec(self) -> Vec<Coin> {
        self.0.into_values().collect()
    }

    /// Returns the number of different denoms in this collection.
    pub fn len(&self) -> usize {
        self.0.len()
    }

    /// Returns `true` if this collection contains no coins.
    pub fn is_empty(&self) -> bool {
        self.0.is_empty()
    }

    /// Returns the denoms as a vector of strings.
    /// The vector is guaranteed to not contain duplicates and sorted alphabetically.
    pub fn denoms(&self) -> Vec<String> {
        self.0.keys().cloned().collect()
    }

    /// Returns the amount of the given denom or zero if the denom is not present.
    pub fn amount_of(&self, denom: &str) -> Uint128 {
        self.0
            .get(denom)
            .map(|c| c.amount)
            .unwrap_or_else(Uint128::zero)
    }

    /// Returns the amount of the given denom if and only if this collection contains only
    /// the given denom. Otherwise `None` is returned.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use cosmwasm_std::{Coin, Coins, coin};
    ///
    /// let coins: Coins = [coin(100, "uatom")].try_into().unwrap();
    /// assert_eq!(coins.contains_only("uatom").unwrap().u128(), 100);
    /// assert_eq!(coins.contains_only("uluna"), None);
    /// ```
    ///
    /// ```rust
    /// use cosmwasm_std::{Coin, Coins, coin};
    ///
    /// let coins: Coins = [coin(100, "uatom"), coin(200, "uusd")].try_into().unwrap();
    /// assert_eq!(coins.contains_only("uatom"), None);
    /// ```
    pub fn contains_only(&self, denom: &str) -> Option<Uint128> {
        if self.len() == 1 {
            self.0.get(denom).map(|c| c.amount)
        } else {
            None
        }
    }

    /// Adds the given coin to this `Coins` instance.
    /// Errors in case of overflow.
    pub fn add(&mut self, coin: Coin) -> StdResult<()> {
        if coin.amount.is_zero() {
            return Ok(());
        }

        // if the coin is not present yet, insert it, otherwise add to existing amount
        match self.0.get_mut(&coin.denom) {
            None => {
                self.0.insert(coin.denom.clone(), coin);
            }
            Some(existing) => {
                existing.amount = existing.amount.checked_add(coin.amount)?;
            }
        }
        Ok(())
    }

    /// Subtracts the given coin from this `Coins` instance.
    /// Errors in case of overflow or if the denom is not present.
    pub fn sub(&mut self, coin: Coin) -> StdResult<()> {
        match self.0.get_mut(&coin.denom) {
            Some(existing) => {
                existing.amount = existing.amount.checked_sub(coin.amount)?;
                // make sure to remove zero coin
                if existing.amount.is_zero() {
                    self.0.remove(&coin.denom);
                }
            }
            None => {
                // ignore zero subtraction
                if coin.amount.is_zero() {
                    return Ok(());
                }
                return Err(OverflowError::new(OverflowOperation::Sub).into());
            }
        }

        Ok(())
    }

    /// Returns an iterator over the coins.
    ///
    /// # Examples
    ///
    /// ```
    /// # use cosmwasm_std::{coin, Coin, Coins, Uint128};
    /// let mut coins = Coins::default();
    /// coins.add(coin(500, "uluna")).unwrap();
    /// coins.add(coin(1000, "uatom")).unwrap();
    /// let mut iterator = coins.iter();
    ///
    /// let uatom = iterator.next().unwrap();
    /// assert_eq!(uatom.denom, "uatom");
    /// assert_eq!(uatom.amount.u128(), 1000);
    ///
    /// let uluna = iterator.next().unwrap();
    /// assert_eq!(uluna.denom, "uluna");
    /// assert_eq!(uluna.amount.u128(), 500);
    ///
    /// assert_eq!(iterator.next(), None);
    /// ```
    pub fn iter(&self) -> CoinsIter<'_> {
        CoinsIter(self.0.iter())
    }
}

impl IntoIterator for Coins {
    type Item = Coin;
    type IntoIter = CoinsIntoIter;

    fn into_iter(self) -> Self::IntoIter {
        CoinsIntoIter(self.0.into_iter())
    }
}

impl<'a> IntoIterator for &'a Coins {
    type Item = &'a Coin;
    type IntoIter = CoinsIter<'a>;

    fn into_iter(self) -> Self::IntoIter {
        self.iter()
    }
}

#[derive(Debug)]
pub struct CoinsIntoIter(alloc::collections::btree_map::IntoIter<String, Coin>);

impl Iterator for CoinsIntoIter {
    type Item = Coin;

    fn next(&mut self) -> Option<Self::Item> {
        self.0.next().map(|(_, coin)| coin)
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        // Since btree_map::IntoIter implements ExactSizeIterator, this is guaranteed to return the exact length
        self.0.size_hint()
    }
}

impl DoubleEndedIterator for CoinsIntoIter {
    fn next_back(&mut self) -> Option<Self::Item> {
        self.0.next_back().map(|(_, coin)| coin)
    }
}

impl ExactSizeIterator for CoinsIntoIter {
    fn len(&self) -> usize {
        self.0.len()
    }
}

#[derive(Debug)]
pub struct CoinsIter<'a>(alloc::collections::btree_map::Iter<'a, String, Coin>);

impl<'a> Iterator for CoinsIter<'a> {
    type Item = &'a Coin;

    fn next(&mut self) -> Option<Self::Item> {
        self.0.next().map(|(_, coin)| coin)
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        // Since btree_map::Iter implements ExactSizeIterator, this is guaranteed to return the exact length
        self.0.size_hint()
    }
}

impl<'a> DoubleEndedIterator for CoinsIter<'a> {
    fn next_back(&mut self) -> Option<Self::Item> {
        self.0.next_back().map(|(_, coin)| coin)
    }
}

impl<'a> ExactSizeIterator for CoinsIter<'a> {
    fn len(&self) -> usize {
        self.0.len()
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::coin;

    /// Sort a Vec<Coin> by denom alphabetically
    fn sort_by_denom(vec: &mut [Coin]) {
        vec.sort_by(|a, b| a.denom.cmp(&b.denom));
    }

    /// Returns a mockup Vec<Coin>. In this example, the coins are not in order
    fn mock_vec() -> Vec<Coin> {
        vec![
            coin(12345, "uatom"),
            coin(69420, "ibc/1234ABCD"),
            coin(88888, "factory/osmo1234abcd/subdenom"),
        ]
    }

    /// Return a mockup Coins that contains the same coins as in `mock_vec`
    fn mock_coins() -> Coins {
        let mut coins = Coins::default();
        for coin in mock_vec() {
            coins.add(coin).unwrap();
        }
        coins
    }

    #[test]
    fn converting_vec() {
        let mut vec = mock_vec();
        let coins = mock_coins();

        // &[Coin] --> Coins
        assert_eq!(Coins::try_from(vec.as_slice()).unwrap(), coins);
        // Vec<Coin> --> Coins
        assert_eq!(Coins::try_from(vec.clone()).unwrap(), coins);

        sort_by_denom(&mut vec);

        // &Coins --> Vec<Coins>
        // NOTE: the returned vec should be sorted
        assert_eq!(coins.to_vec(), vec);
        // Coins --> Vec<Coins>
        // NOTE: the returned vec should be sorted
        assert_eq!(coins.into_vec(), vec);
    }

    #[test]
    fn converting_str() {
        // not in order
        let s1 = "88888factory/osmo1234abcd/subdenom,12345uatom,69420ibc/1234ABCD";
        // in order
        let s2 = "88888factory/osmo1234abcd/subdenom,69420ibc/1234ABCD,12345uatom";

        let invalid = "12345uatom,noamount";

        let coins = mock_coins();

        // &str --> Coins
        // NOTE: should generate the same Coins, regardless of input order
        assert_eq!(Coins::from_str(s1).unwrap(), coins);
        assert_eq!(Coins::from_str(s2).unwrap(), coins);
        assert_eq!(Coins::from_str("").unwrap(), Coins::default());

        // Coins --> String
        // NOTE: the generated string should be sorted
        assert_eq!(coins.to_string(), s2);
        assert_eq!(Coins::default().to_string(), "");
        assert_eq!(
            Coins::from_str(invalid).unwrap_err().to_string(),
            "Generic error: Parsing Coin: Missing amount or non-digit characters in amount"
        );
    }

    #[test]
    fn handling_duplicates() {
        // create a Vec<Coin> that contains duplicate denoms
        let mut vec = mock_vec();
        vec.push(coin(67890, "uatom"));

        let err = Coins::try_from(vec).unwrap_err();
        assert_eq!(err, CoinsError::DuplicateDenom);
    }

    #[test]
    fn handling_zero_amount() {
        // create a Vec<Coin> that contains zero amounts
        let mut vec = mock_vec();
        vec[0].amount = Uint128::zero();

        let coins = Coins::try_from(vec).unwrap();
        assert_eq!(coins.len(), 2);
        assert_ne!(coins.amount_of("ibc/1234ABCD"), Uint128::zero());
        assert_ne!(
            coins.amount_of("factory/osmo1234abcd/subdenom"),
            Uint128::zero()
        );

        // adding a coin with zero amount should not be added
        let mut coins = Coins::default();
        coins.add(coin(0, "uusd")).unwrap();
        assert!(coins.is_empty());
    }

    #[test]
    fn length() {
        let coins = Coins::default();
        assert_eq!(coins.len(), 0);
        assert!(coins.is_empty());

        let coins = mock_coins();
        assert_eq!(coins.len(), 3);
        assert!(!coins.is_empty());
    }

    #[test]
    fn add_coin() {
        let mut coins = mock_coins();

        // existing denom
        coins.add(coin(12345, "uatom")).unwrap();
        assert_eq!(coins.len(), 3);
        assert_eq!(coins.amount_of("uatom").u128(), 24690);

        // new denom
        coins.add(coin(123, "uusd")).unwrap();
        assert_eq!(coins.len(), 4);

        // zero amount
        coins.add(coin(0, "uusd")).unwrap();
        assert_eq!(coins.amount_of("uusd").u128(), 123);

        // zero amount, new denom
        coins.add(coin(0, "utest")).unwrap();
        assert_eq!(coins.len(), 4);
    }

    #[test]
    fn sub_coins() {
        let mut coins: Coins = coin(12345, "uatom").into();

        // sub more than available
        let err = coins.sub(coin(12346, "uatom")).unwrap_err();
        assert!(matches!(err, StdError::Overflow { .. }));

        // sub non-existent denom
        let err = coins.sub(coin(12345, "uusd")).unwrap_err();
        assert!(matches!(err, StdError::Overflow { .. }));

        // partial sub
        coins.sub(coin(1, "uatom")).unwrap();
        assert_eq!(coins.len(), 1);
        assert_eq!(coins.amount_of("uatom").u128(), 12344);

        // full sub
        coins.sub(coin(12344, "uatom")).unwrap();
        assert!(coins.is_empty());

        // sub zero, existing denom
        coins.sub(coin(0, "uusd")).unwrap();
        assert!(coins.is_empty());
        let mut coins: Coins = coin(12345, "uatom").into();

        // sub zero, non-existent denom
        coins.sub(coin(0, "uatom")).unwrap();
        assert_eq!(coins.len(), 1);
        assert_eq!(coins.amount_of("uatom").u128(), 12345);
    }

    #[test]
    fn coin_to_coins() {
        // zero coin results in empty collection
        let coins: Coins = coin(0, "uusd").into();
        assert!(coins.is_empty());

        // happy path
        let coins = Coins::from(coin(12345, "uatom"));
        assert_eq!(coins.len(), 1);
        assert_eq!(coins.amount_of("uatom").u128(), 12345);
    }

    #[test]
    fn exact_size_iterator() {
        let coins = mock_coins();
        let iter = coins.iter();
        assert_eq!(iter.len(), 3);
        assert_eq!(iter.size_hint(), (3, Some(3)));

        let iter = coins.into_iter();
        assert_eq!(iter.len(), 3);
        assert_eq!(iter.size_hint(), (3, Some(3)));
    }

    #[test]
    fn can_iterate_owned() {
        let coins = mock_coins();
        let mut moved = Coins::default();
        for c in coins {
            moved.add(c).unwrap();
        }
        assert_eq!(moved.len(), 3);

        assert!(mock_coins().into_iter().eq(mock_coins().to_vec()));
    }

    #[test]
    fn can_iterate_borrowed() {
        let coins = mock_coins();
        assert!(coins
            .iter()
            .map(|c| &c.denom)
            .eq(coins.to_vec().iter().map(|c| &c.denom)));

        // can still use the coins afterwards
        assert_eq!(coins.amount_of("uatom").u128(), 12345);
    }
}