1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
//! Real Time For the Masses (RTFM), a framework for building concurrent
//! applications, for ARM Cortex-M microcontrollers
//!
//! This crate is based on [the RTFM framework] created by the Embedded Systems
//! group at [Luleå University of Technology][ltu], led by Prof. Per Lindgren,
//! and uses a simplified version of the Stack Resource Policy as scheduling
//! policy (check the [references] for details).
//!
//! [the RTFM framework]: http://www.rtfm-lang.org/
//! [ltu]: https://www.ltu.se/?l=en
//! [per]: https://www.ltu.se/staff/p/pln-1.11258?l=en
//! [references]: ./index.html#references
//!
//! # Features
//!
//! - **Event triggered tasks** as the unit of concurrency.
//! - Support for prioritization of tasks and, thus, **preemptive
//!   multitasking**.
//! - **Efficient and data race free memory sharing** through fine grained *non
//!   global* critical sections.
//! - **Deadlock free execution** guaranteed at compile time.
//! - **Minimal scheduling overhead** as the scheduler has no "software
//!   component": the hardware does all the scheduling.
//! - **Highly efficient memory usage**: All the tasks share a single call stack
//!   and there's no hard dependency on a dynamic memory allocator.
//! - **All Cortex M3, M4 and M7 devices are fully supported**. M0(+) is
//!   partially supported as the whole API is not available due to missing
//!   hardware features.
//! - The number of task priority levels is configurable at compile time through
//!   the `P2` (4 levels), `P3` (8 levels), etc. Cargo features. The number of
//!   priority levels supported by the hardware is device specific but this
//!   crate defaults to 16 as that's the most common scenario.
//! - This task model is amenable to known WCET (Worst Case Execution Time)
//!   analysis and scheduling analysis techniques. (Though we haven't yet
//!   developed Rust friendly tooling for that.)
//!
//! # Requirements
//!
//! - Tasks must run to completion. That's it, tasks can't contain endless
//!   loops.
//! - Task priorities must remain constant at runtime.
//!
//! # Dependencies
//!
//! - A device crate generated using [`svd2rust`] v0.7.x
//! - A `start` lang time: Vanilla `main` must be supported in binary crates.
//!   You can use the [`cortex-m-rt`] crate to fulfill the requirement
//!
//! [`svd2rust`]: https://docs.rs/svd2rust/0.7.0/svd2rust/
//! [`cortex-m-rt`]: https://docs.rs/cortex-m-rt/0.1.1/cortex_m_rt/
//!
//! # Examples
//!
//! Ordered in increasing level of complexity:
//!
//! - [Zero tasks](./index.html#zero-tasks)
//! - [One task](./index.html#one-task)
//! - [Two "serial" tasks](./index.html#two-serial-tasks)
//! - [Preemptive multitasking](./index.html#preemptive-multitasking)
//! - [Peripherals as resources](./index.html#peripherals-as-resources)
//!
//! ## Zero tasks
//!
//! ``` ignore
//! #![feature(used)]
//! #![no_std]
//!
//! #[macro_use] // for the `hprintln!` macro
//! extern crate cortex_m;
//!
//! // before main initialization + `start` lang item
//! extern crate cortex_m_rt;
//!
//! #[macro_use] // for the `tasks!` macro
//! extern crate cortex_m_rtfm as rtfm;
//!
//! // device crate generated using svd2rust
//! extern crate stm32f30x;
//!
//! use rtfm::{P0, T0, TMax};
//!
//! // TASKS (None in this example)
//! tasks!(stm32f30x, {});
//!
//! // INITIALIZATION PHASE
//! fn init(_priority: P0, _threshold: &TMax) {
//!     hprintln!("INIT");
//! }
//!
//! // IDLE LOOP
//! fn idle(_priority: P0, _threshold: T0) -> ! {
//!     hprintln!("IDLE");
//!
//!     // Sleep
//!     loop {
//!         rtfm::wfi();
//!     }
//! }
//! ```
//!
//! Expected output:
//!
//! ``` text
//! INIT
//! IDLE
//! ```
//!
//! The `tasks!` macro overrides the `main` function and imposes the following
//! structure into your program:
//!
//! - `init`, the initialization phase, runs first. This function is executed
//!   "atomically", in the sense that no task / interrupt can preempt it.
//!
//! - `idle`, a never ending function that runs after `init`.
//!
//! Both `init` and `idle` have a priority of 0, the lowest priority. In RTFM,
//! a higher priority value means more urgent.
//!
//! # One task
//!
//! ``` ignore
//! #![feature(const_fn)]
//! #![feature(used)]
//! #![no_std]
//!
//! extern crate cortex_m_rt;
//! #[macro_use]
//! extern crate cortex_m_rtfm as rtfm;
//! extern crate stm32f30x;
//!
//! use stm32f30x::interrupt::Tim7;
//! use rtfm::{Local, P0, P1, T0, T1, TMax};
//!
//! // INITIALIZATION PHASE
//! fn init(_priority: P0, _threshold: &TMax) {
//!     // Configure TIM7 for periodic interrupts
//!     // Configure GPIO for LED driving
//! }
//!
//! // IDLE LOOP
//! fn idle(_priority: P0, _threshold: T0) -> ! {
//!     // Sleep
//!     loop {
//!         rtfm::wfi();
//!     }
//! }
//!
//! // TASKS
//! tasks!(stm32f30x, {
//!     periodic: Task {
//!         interrupt: Tim7,
//!         priority: P1,
//!         enabled: true,
//!     },
//! });
//!
//! fn periodic(mut task: Tim7, _priority: P1, _threshold: T1) {
//!     // Task local data
//!     static STATE: Local<bool, Tim7> = Local::new(false);
//!
//!     let state = STATE.borrow_mut(&mut task);
//!
//!     // Toggle state
//!     *state = !*state;
//!
//!     // Blink an LED
//!     if *state {
//!         LED.on();
//!     } else {
//!         LED.off();
//!     }
//! }
//! ```
//!
//! Here we define a task named `periodic` and bind it to the `Tim7`
//! interrupt. The `periodic` task will run every time the `Tim7` interrupt
//! is triggered. We assign to this task a priority of 1 (`P1`); this is the
//! lowest priority that a task can have.
//!
//! We use the [`Local`](./struct.Local.html) abstraction to add state to the
//! task; this task local data will be preserved across runs of the `periodic`
//! task. Note that `STATE` is owned by the `periodic` task, in the sense that
//! no other task can access it; this is reflected in its type signature (the
//! `Tim7` type parameter).
//!
//! # Two "serial" tasks
//!
//! ``` ignore
//! #![feature(const_fn)]
//! #![feature(used)]
//! #![no_std]
//!
//! extern crate cortex_m_rt;
//! #[macro_use]
//! extern crate cortex_m_rtfm as rtfm;
//! extern crate stm32f30x;
//!
//! use core::cell::Cell;
//!
//! use stm32f30x::interrupt::{Tim6Dacunder, Tim7};
//! use rtfm::{C1, P0, P1, Resource, T0, T1, TMax};
//!
//! tasks!(stm32f30x, {
//!     t1: Task {
//!         interrupt: Tim6Dacunder,
//!         priority: P1,
//!         enabled: true,
//!     },
//!     t2: Task {
//!         interrupt: Tim7,
//!         priority: P1,
//!         enabled: true,
//!     },
//! });
//!
//! // Data shared between tasks `t1` and `t2`
//! static COUNTER: Resource<Cell<u32>, C1> = Resource::new(Cell::new(0));
//!
//! fn init(priority: P0, threshold: &TMax) {
//!     // ..
//! }
//!
//! fn idle(priority: P0, threshold: T0) -> ! {
//!     // Sleep
//!     loop {
//!         rtfm::wfi();
//!     }
//! }
//!
//! fn t1(_task: Tim6Dacunder, priority: P1, threshold: T1) {
//!     let counter = COUNTER.access(&priority, &threshold);
//!
//!     counter.set(counter.get() + 1);
//! }
//!
//! fn t2(_task: Tim7, priority: P1, threshold: T1) {
//!     let counter = COUNTER.access(&priority, &threshold);
//!
//!     counter.set(counter.get() + 2);
//! }
//! ```
//!
//! Here we declare two tasks, `t1` and `t2`; both with a priority of 1 (`P1`).
//! As both tasks have the same priority, we say that they are *serial* tasks in
//! the sense that `t1` can only run *after* `t2` is done and vice versa; i.e.
//! no preemption between them is possible.
//!
//! To share data between these two tasks, we use the
//! [`Resource`](./struct.Resource.html) abstraction. As the tasks can't preempt
//! each other, they can access the `COUNTER` resource using the zero cost
//! [`access`](./struct.Resource.html#method.access) method -- no
//! synchronization is required.
//!
//! `COUNTER` has an extra type parameter: `C1`. This is the *ceiling* of the
//! resource. For now suffices to say that the ceiling must be the maximum of
//! the priorities of all the tasks that access the resource -- in this case,
//! `C1 == max(P1, P1)`. If you try a smaller value like `C0`, you'll find out
//! that your program doesn't compile.
//!
//! # Preemptive multitasking
//!
//! ``` ignore
//! #![feature(const_fn)]
//! #![feature(used)]
//! #![no_std]
//!
//! extern crate cortex_m_rt;
//! #[macro_use]
//! extern crate cortex_m_rtfm as rtfm;
//! extern crate stm32f30x;
//!
//! use core::cell::Cell;
//!
//! use stm32f30x::interrupt::{Tim6Dacunder, Tim7};
//! use rtfm::{C2, P0, P1, P2, Resource, T0, T1, T2, TMax};
//!
//! tasks!(stm32f30x, {
//!     t1: Task {
//!         interrupt: Tim6Dacunder,
//!         priority: P1,
//!         enabled: true,
//!     },
//!     t2: Task {
//!         interrupt: Tim7,
//!         priority: P2,
//!         enabled: true,
//!     },
//! });
//!
//! static COUNTER: Resource<Cell<u32>, C2> = Resource::new(Cell::new(0));
//!
//! fn init(priority: P0, threshold: &TMax) {
//!     // ..
//! }
//!
//! fn idle(priority: P0, threshold: T0) -> ! {
//!     // Sleep
//!     loop {
//!         rtfm::wfi();
//!     }
//! }
//!
//! fn t1(_task: Tim6Dacunder, priority: P1, threshold: T1) {
//!     // ..
//!
//!     threshold.raise(
//!         &COUNTER, |threshold: &T2| {
//!             let counter = COUNTER.access(&priority, threshold);
//!
//!             counter.set(counter.get() + 1);
//!         }
//!     );
//!
//!     // ..
//! }
//!
//! fn t2(_task: Tim7, priority: P2, threshold: T2) {
//!     let counter = COUNTER.access(&priority, &threshold);
//!
//!     counter.set(counter.get() + 2);
//! }
//! ```
//!
//! Now we have a variation of the previous example. Like before, `t1` has a
//! priority of 1 (`P1`) but `t2` now has a priority of 2 (`P2`). This means
//! that `t2` can preempt `t1` if a `Tim7` interrupt occurs while `t1` is
//! being executed.
//!
//! To avoid data races, `t1` must modify `COUNTER` in an atomic way; i.e. `t2`
//! most not preempt `t1` while `COUNTER` is being modified. This is
//! accomplished by [`raise`](./struct.C.html#method.raise)-ing the preemption
//! `threshold`. This creates a critical section, denoted by a closure; for
//! whose execution, `COUNTER` is accessible while `t2` is prevented from
//! preempting `t1`.
//!
//! How `t2` accesses `COUNTER` remains unchanged. Since `t1` can't preempt `t2`
//! due to the differences in priority; no critical section is needed in `t2`.
//!
//! Note that the ceiling of `COUNTER` had to  be changed to `C2`. This is
//! required because the ceiling must be the maximum between `P1` and `P2`.
//!
//! Finally, it should be noted that the critical section in `t1` will only
//! block tasks with a priority of 2 or lower. This is exactly what the
//! preemption threshold represents: it's the "bar" that a task priority must
//! pass in order to be able to preempt the current task / critical section.
//! Note that a task with a priority of e.g. 3 (`P3`) effectively imposes a
//! threshold of 3 (`C3`) because only a task with a priority of 4 or greater
//! can preempt it.
//!
//! # Peripherals as resources
//!
//! ``` ignore
//! #![feature(const_fn)]
//! #![feature(used)]
//! #![no_std]
//!
//! extern crate cortex_m_rt;
//! #[macro_use]
//! extern crate cortex_m_rtfm as rtfm;
//! extern crate stm32f30x;
//!
//! use rtfm::{P0, Peripheral, T0, TMax};
//!
//! peripherals!(stm32f30x, {
//!     GPIOA: Peripheral {
//!         register_block: Gpioa,
//!         ceiling: C0,
//!     },
//!     RCC: Peripheral {
//!         register_block: Rcc,
//!         ceiling: C0,
//!     },
//! });
//!
//! tasks!(stm32f30x, {});
//!
//! fn init(priority: P0, threshold: &TMax) {
//!     let gpioa = GPIOA.access(&priority, threshold);
//!     let rcc = RCC.access(&priority, threshold);
//!
//!     // ..
//! }
//!
//! fn idle(_priority: P0, _threshold: T0) -> ! {
//!     // Sleep
//!     loop {
//!         rtfm::wfi();
//!     }
//! }
//! ```
//!
//! Peripherals are global resources too and as such they can be protected in
//! the same way as `Resource`s using the
//! [`Peripheral`](./struct.Peripheral.html) abstraction.
//!
//! `Peripheral` and `Resource` has pretty much the same API except that
//! `Peripheral` instances must be declared using the
//! [`peripherals!`](./macro.peripherals.html) macro.
//!
//! # References
//!
//! - Baker, T. P. (1991). Stack-based scheduling of realtime processes.
//!   *Real-Time Systems*, 3(1), 67-99.
//!
//! > The original Stack Resource Policy paper. [PDF].
//!
//! [PDF]: http://www.cs.fsu.edu/~baker/papers/mstacks3.pdf
//!
//! - Eriksson, J., Häggström, F., Aittamaa, S., Kruglyak, A., & Lindgren, P.
//!   (2013, June). Real-time for the masses, step 1: Programming API and static
//!   priority SRP kernel primitives. In Industrial Embedded Systems (SIES),
//!   2013 8th IEEE International Symposium on (pp. 110-113). IEEE.
//!
//! > A description of the RTFM task and resource model. [PDF]
//!
//! [PDF]: http://www.diva-portal.org/smash/get/diva2:1005680/FULLTEXT01.pdf

#![deny(missing_docs)]
#![deny(warnings)]
#![feature(asm)]
#![feature(const_fn)]
#![feature(optin_builtin_traits)]
#![no_std]

extern crate cortex_m;
extern crate static_ref;
extern crate typenum;

use core::cell::UnsafeCell;
use core::marker::PhantomData;
use core::ptr;

use cortex_m::ctxt::Context;
use cortex_m::interrupt::Nr;
#[cfg(not(thumbv6m))]
use cortex_m::register::{basepri, basepri_max};
use static_ref::Ref;
use typenum::{Cmp, Greater, U0, Unsigned};
#[cfg(not(thumbv6m))]
use typenum::Less;

pub use cortex_m::asm::{bkpt, wfi};

#[doc(hidden)]
pub use cortex_m::peripheral::NVIC as _NVIC;

/// Compiler barrier
macro_rules! barrier {
    () => {
        asm!(""
             :
             :
             : "memory"
             : "volatile");
    }
}

/// Task local data
///
/// This data can only be accessed by the task `T`
pub struct Local<D, T> {
    _task: PhantomData<T>,
    data: UnsafeCell<D>,
}

impl<T, TASK> Local<T, TASK> {
    /// Creates a task local variable with some initial `value`
    pub const fn new(value: T) -> Self {
        Local {
            _task: PhantomData,
            data: UnsafeCell::new(value),
        }
    }

    /// Borrows the task local data for the duration of the task
    pub fn borrow<'task>(&'static self, _task: &'task TASK) -> &'task T {
        unsafe { &*self.data.get() }
    }

    /// Mutably borrows the task local data for the duration of the task
    pub fn borrow_mut<'task>(
        &'static self,
        _task: &'task mut TASK,
    ) -> &'task mut T {
        unsafe { &mut *self.data.get() }
    }
}

unsafe impl<T, TASK> Sync for Local<T, TASK> {}

/// A resource with ceiling `C`
///
/// A resource is used to share memory between two or more tasks
pub struct Resource<T, C> {
    _ceiling: PhantomData<C>,
    data: UnsafeCell<T>,
}

impl<T, RC> Resource<T, RC>
where
    RC: GreaterThanOrEqual<U0>,
    RC: LessThanOrEqual<UMax>,
{
    /// Creates a new resource
    pub const fn new(data: T) -> Self {
        Resource {
            _ceiling: PhantomData,
            data: UnsafeCell::new(data),
        }
    }
}

impl<T, RC> Resource<T, RC> {
    /// Grants data race free and deadlock free access to the resource data
    ///
    /// This operation is zero cost and doesn't impose any additional blocking.
    ///
    /// # Requirements
    ///
    /// To access the resource data these conditions must be met:
    ///
    /// - The resource ceiling must be greater than or equal to the task
    ///   priority
    /// - The preemption threshold must be greater than or equal to the resource
    ///   ceiling
    pub fn access<'cs, TP, PT>(
        &'static self,
        _task_priority: &Priority<TP>,
        _preemption_threshold: &'cs Threshold<PT>,
    ) -> Ref<'cs, T>
    where
        RC: GreaterThanOrEqual<TP>,
        PT: GreaterThanOrEqual<RC>,
    {
        unsafe { Ref::new(&*self.data.get()) }
    }
}

unsafe impl<T, C> Sync for Resource<T, C>
where
    T: Send,
{
}

/// A hardware peripheral as a resource
///
/// To assign a ceiling to a peripheral, use the
/// [`peripherals!`](./macro.peripherals.html) macro
pub struct Peripheral<P, PC>
where
    P: 'static,
{
    peripheral: cortex_m::peripheral::Peripheral<P>,
    _ceiling: PhantomData<PC>,
}

impl<P, PC> Peripheral<P, PC>
where
    PC: GreaterThanOrEqual<U0>,
    PC: LessThanOrEqual<UMax>,
{
    #[doc(hidden)]
    pub const unsafe fn _new(peripheral: cortex_m::peripheral::Peripheral<P>,)
        -> Self {
        Peripheral {
            _ceiling: PhantomData,
            peripheral: peripheral,
        }
    }
}

impl<Periph, PC> Peripheral<Periph, PC> {
    /// See [Resource.access](./struct.Resource.html#method.access)
    pub fn access<'cs, TP, PT>(
        &'static self,
        _task_priority: &Priority<TP>,
        _preemption_threshold: &'cs Threshold<PT>,
    ) -> Ref<'cs, Periph>
    where
        PC: GreaterThanOrEqual<TP>,
        PT: GreaterThanOrEqual<PC>,
    {
        unsafe { Ref::new(&*self.peripheral.get()) }
    }
}

unsafe impl<T, C> Sync for Peripheral<T, C> {}

/// Runs the closure `f` "atomically"
///
/// No task can preempt the execution of the closure
pub fn atomic<R, F>(f: F) -> R
where
    F: FnOnce(&TMax) -> R,
{
    let primask = ::cortex_m::register::primask::read();
    ::cortex_m::interrupt::disable();

    let r = f(&Threshold { _marker: PhantomData });

    // If the interrupts were active before our `disable` call, then re-enable
    // them. Otherwise, keep them disabled
    if primask.is_active() {
        unsafe { ::cortex_m::interrupt::enable() }
    }

    r
}

/// Disables a `task`
///
/// The task won't run even if the underlying interrupt is raised
pub fn disable<T, N>(_task: fn(T, Priority<N>, Threshold<N>))
where
    T: Context + Nr,
{
    // NOTE(safe) zero sized type
    let _task = unsafe { ptr::read(0x0 as *const T) };

    // NOTE(safe) atomic write
    unsafe { (*_NVIC.get()).disable(_task) }
}

/// Enables a `task`
pub fn enable<T, N>(_task: fn(T, Priority<N>, Threshold<N>))
where
    T: Context + Nr,
{
    // NOTE(safe) zero sized type
    let _task = unsafe { ptr::read(0x0 as *const T) };

    // NOTE(safe) atomic write
    unsafe { (*_NVIC.get()).enable(_task) }
}

/// Converts a shifted hardware priority into a logical priority
pub fn hw2logical(hw: u8) -> u8 {
    (1 << PRIORITY_BITS) - (hw >> (8 - PRIORITY_BITS))
}

/// Converts a logical priority into a shifted hardware priority, as used by the
/// NVIC and the BASEPRI register
///
/// # Panics
///
/// This function panics if `logical` is outside the closed range
/// `[1, 1 << PRIORITY_BITS]`. Where `PRIORITY_BITS` is the number of priority
/// bits used by the device specific NVIC implementation.
pub fn logical2hw(logical: u8) -> u8 {
    assert!(logical >= 1 && logical <= (1 << PRIORITY_BITS));

    ((1 << PRIORITY_BITS) - logical) << (8 - PRIORITY_BITS)
}

/// Requests the execution of a `task`
pub fn request<T, N>(_task: fn(T, Priority<N>, Threshold<N>))
where
    T: Context + Nr,
{
    let nvic = unsafe { &*_NVIC.get() };

    match () {
        #[cfg(debug_assertions)]
        () => {
            // NOTE(safe) zero sized type
            let task = unsafe { core::ptr::read(0x0 as *const T) };
            // NOTE(safe) atomic read
            assert!(!nvic.is_pending(task),
                    "Task is already in the pending state");
        }
        #[cfg(not(debug_assertions))]
        () => {}
    }

    // NOTE(safe) zero sized type
    let task = unsafe { core::ptr::read(0x0 as *const T) };

    // NOTE(safe) atomic write
    nvic.set_pending(task);
}

#[doc(hidden)]
pub fn _validate_priority<TP>(_: &Priority<TP>)
where
    TP: Cmp<U0, Output = Greater> + LessThanOrEqual<UMax>,
{
}

/// Preemption threshold
pub struct Threshold<T> {
    _marker: PhantomData<T>,
}

impl<PT> Threshold<PT> {
    /// Raises the preemption threshold to match the `resource` ceiling
    #[cfg(not(thumbv6m))]
    pub fn raise<RC, RES, R, F>(&self, _resource: &'static RES, f: F) -> R
    where
        RES: ResourceLike<Ceiling = RC>,
        RC: Cmp<PT, Output = Greater> + Cmp<UMax, Output = Less> + Unsigned,
        F: FnOnce(&Threshold<RC>) -> R,
    {
        unsafe {
            let old_basepri = basepri::read();
            basepri_max::write(logical2hw(RC::to_u8()));
            barrier!();
            let ret = f(&Threshold { _marker: PhantomData });
            barrier!();
            basepri::write(old_basepri);
            ret
        }
    }
}

impl<N> !Send for Threshold<N> {}

/// Priority
pub struct Priority<N> {
    _marker: PhantomData<N>,
}

impl<T> Priority<T>
where
    T: Unsigned,
{
    #[doc(hidden)]
    pub fn _hw() -> u8 {
        logical2hw(T::to_u8())
    }
}

impl<N> !Send for Priority<N> {}

/// Maps a `Resource` / `Peripheral` to its ceiling
///
/// Do not implement this trait yourself. This is an implementation detail.
pub unsafe trait ResourceLike {
    /// The ceiling of the resource
    type Ceiling;
}

unsafe impl<P, PC> ResourceLike for Peripheral<P, PC> {
    type Ceiling = PC;
}

unsafe impl<T, RC> ResourceLike for Resource<T, RC> {
    type Ceiling = RC;
}

/// Type-level `>=` operator
///
/// Do not implement this trait yourself. This is an implementation detail.
pub unsafe trait GreaterThanOrEqual<RHS> {}

/// Type-level `<=` operator
///
/// Do not implement this trait yourself. This is an implementation detail.
pub unsafe trait LessThanOrEqual<RHS> {}

/// A macro to assign ceilings to peripherals
///
/// **NOTE** A peripheral instance, like RCC, can only be bound to a *single*
/// ceiling. Trying to use this macro to bind the same peripheral to several
/// ceiling will result in a compiler error.
///
/// # Example
///
/// ``` ignore
/// #[macro_use]
/// extern crate cortex_m_rtfm;
/// // device crate generated using `svd2rust`
/// extern crate stm32f30x;
///
/// peripherals!(stm32f30x, {
///     GPIOA: Peripheral {
///         register_block: Gpioa,
///         ceiling: C1,
///     },
///     RCC: Peripheral {
///         register_block: Rcc,
///         ceiling: C0,
///     },
/// });
/// ```
#[macro_export]
macro_rules! peripherals {
    ($device:ident, {
        $($PERIPHERAL:ident: Peripheral {
            register_block: $RegisterBlock:ident,
            ceiling: $C:ident,
        },)+
    }) => {
        $(
            #[allow(private_no_mangle_statics)]
            #[no_mangle]
            static $PERIPHERAL:
                $crate::Peripheral<::$device::$RegisterBlock, $crate::$C> =
                    unsafe { $crate::Peripheral::_new(::$device::$PERIPHERAL) };
        )+
    }
}

/// A macro to declare tasks
///
/// **NOTE** This macro will expand to a `main` function.
///
/// Each `$task` is bound to an `$Interrupt` handler and has a priority `$P`.
/// The minimum priority of a task is `P1`. `$enabled` indicates whether the
/// task will be enabled before `idle` runs.
///
/// The `$Interrupt` handlers are defined in the `$device` crate.
///
/// Apart from defining the listed `$tasks`, the `init` and `idle` functions
/// must be defined as well. `init` has signature `fn(P0, &TMax)`, and `idle`
/// has signature `fn(P0) -> !`.
///
/// # Example
///
/// ``` ignore
/// #[feature(used)]
/// #[no_std]
///
/// extern crate cortex_m_rt;
/// #[macro_use]
/// extern crate cortex_m_rtfm as rtfm;
/// // device crate generated using `svd2rust`
/// extern crate stm32f30x;
///
/// use rtfm::{P0, P1, P2, T0, T1, T2, TMax};
/// use stm32f30x::interrupt::{Exti0, Tim7};
///
/// tasks!(stm32f30x, {
///     periodic: Task {
///         interrupt: Tim7,
///         priority: P1,
///         enabled: true,
///     },
///     button: Task {
///         interrupt: Exti0,
///         priority: P2,
///         enabled: true,
///     },
/// });
///
/// fn init(priority: P0, threshold: &TMax) {
///     // ..
/// }
///
/// fn idle(priority: P0, threshold: T0) -> ! {
///     // Sleep
///     loop {
///         rtfm::wfi();
///     }
/// }
///
/// // NOTE signature must match the tasks! declaration
/// fn periodic(task: Tim7, priority: P1, threshold: T1) {
///     // ..
/// }
///
/// fn button(task: Exti0, priority: P2, threshold: T2) {
///     // ..
/// }
/// ```
#[macro_export]
macro_rules! tasks {
    ($device:ident, {
        $($task:ident: Task {
            interrupt:$Interrupt:ident,
            priority: $P:ident,
            enabled: $enabled:expr,
        },)*
    }) => {
        fn main() {
            $crate::atomic(|t_max| {
                fn validate_signature(_: fn($crate::P0, &$crate::TMax)) {}

                validate_signature(init);
                let p0 = unsafe { ::core::mem::transmute::<_, P0>(()) };
                init(p0, t_max);
                set_priorities();
                enable_tasks();
            });

            fn validate_signature(_: fn($crate::P0, $crate::T0) -> !) {}

            validate_signature(idle);
            let p0 = unsafe { ::core::mem::transmute::<_, P0>(()) };
            let t0 = unsafe { ::core::mem::transmute::<_, T0>(()) };
            idle(p0, t0);

            fn set_priorities() {
                // NOTE(safe) this function runs in an interrupt free context
                let _nvic = unsafe { &*$crate::_NVIC.get() };

                $(
                    {
                        let hw = $crate::$P::_hw();
                        unsafe {
                            _nvic.set_priority(
                                ::$device::interrupt::Interrupt::$Interrupt,
                                hw,
                            );
                        }
                    }
                )*

                // TODO freeze the NVIC.IPR register using the MPU, if available
            }

            fn enable_tasks() {
                // NOTE(safe) this function runs in an interrupt free context
                let _nvic = unsafe { &*$crate::_NVIC.get() };

                $(
                    if $enabled {
                        $crate::enable(::$task);
                    }
                )*
            }

            #[allow(dead_code)]
            #[link_section = ".rodata.interrupts"]
            #[used]
            static INTERRUPTS: ::$device::interrupt::Handlers =
                ::$device::interrupt::Handlers {
                $(
                    $Interrupt: {
                        extern "C" fn $task(
                            task: ::$device::interrupt::$Interrupt
                        ) {
                            fn validate_signature<N>(
                                _: fn(::$device::interrupt::$Interrupt,
                                      $crate::Priority<N>,
                                      $crate::Threshold<N>)) {}
                            validate_signature(::$task);
                            let p = unsafe {
                                ::core::mem::transmute::<_, $crate::$P>(())
                            };
                            let t = unsafe {
                                ::core::mem::transmute(())
                            };
                            $crate::_validate_priority(&p);
                            ::$task(task, p, t)
                        }

                        $task
                    },
                )*
                    ..::$device::interrupt::DEFAULT_HANDLERS
                };
        }
    }
}

include!(concat!(env!("OUT_DIR"), "/prio.rs"));