1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
//! Startup code and minimal runtime for Cortex-M microcontrollers
//!
//! This crate contains all the required parts to build a `no_std` application (binary crate) that
//! targets a Cortex-M microcontroller.
//!
//! # Features
//!
//! This crates takes care of:
//!
//! - The memory layout of the program. In particular, it populates the vector table so the device
//! can boot correctly, and properly dispatch exceptions and interrupts.
//!
//! - Initializing `static` variables before the program entry point.
//!
//! - Enabling the FPU before the program entry point if the target is `thumbv7em-none-eabihf`.
//!
//! This crate also provides the following attributes:
//!
//! - [`#[entry]`][attr-entry] to declare the entry point of the program
//! - [`#[exception]`][attr-exception] to override an exception handler. If not overridden all
//!   exception handlers default to an infinite loop.
//! - [`#[pre_init]`][attr-pre_init] to run code *before* `static` variables are initialized
//!
//! This crate also implements a related attribute called `#[interrupt]`, which allows you
//! to define interrupt handlers. However, since which interrupts are available depends on the
//! microcontroller in use, this attribute should be re-exported and used from a device crate.
//!
//! The documentation for these attributes can be found in the [Attribute Macros](#attributes)
//! section.
//!
//! # Requirements
//!
//! ## `memory.x`
//!
//! This crate expects the user, or some other crate, to provide the memory layout of the target
//! device via a linker script named `memory.x`. This section covers the contents of `memory.x`
//! The `memory.x` file is used by during linking by the `link.x` script provided by this crate.
//!
//! ### `MEMORY`
//!
//! The linker script must specify the memory available in the device as, at least, two `MEMORY`
//! regions: one named `FLASH` and one named `RAM`. The `.text` and `.rodata` sections of the
//! program will be placed in the `FLASH` region, whereas the `.bss` and `.data` sections, as well
//! as the heap,will be placed in the `RAM` region.
//!
//! ```text
//! /* Linker script for the STM32F103C8T6 */
//! MEMORY
//! {
//!   FLASH : ORIGIN = 0x08000000, LENGTH = 64K
//!   RAM : ORIGIN = 0x20000000, LENGTH = 20K
//! }
//! ```
//!
//! ### `_stack_start`
//!
//! This optional symbol can be used to indicate where the call stack of the program should be
//! placed. If this symbol is not used then the stack will be placed at the *end* of the `RAM`
//! region -- the stack grows downwards towards smaller address. This symbol can be used to place
//! the stack in a different memory region, for example:
//!
//! ```text
//! /* Linker script for the STM32F303VCT6 */
//! MEMORY
//! {
//!     FLASH : ORIGIN = 0x08000000, LENGTH = 256K
//!
//!     /* .bss, .data and the heap go in this region */
//!     RAM : ORIGIN = 0x20000000, LENGTH = 40K
//!
//!     /* Core coupled (faster) RAM dedicated to hold the stack */
//!     CCRAM : ORIGIN = 0x10000000, LENGTH = 8K
//! }
//!
//! _stack_start = ORIGIN(CCRAM) + LENGTH(CCRAM);
//! ```
//!
//! ### `_stext`
//!
//! This optional symbol can be used to control where the `.text` section is placed. If omitted the
//! `.text` section will be placed right after the vector table, which is placed at the beginning of
//! `FLASH`. Some devices store settings like Flash configuration right after the vector table;
//! for these devices one must place the `.text` section after this configuration section --
//! `_stext` can be used for this purpose.
//!
//! ```text
//! MEMORY
//! {
//!   /* .. */
//! }
//!
//! /* The device stores Flash configuration in 0x400-0x40C so we place .text after that */
//! _stext = ORIGIN(FLASH) + 0x40C
//! ```
//!
//! # An example
//!
//! This section presents a minimal application built on top of `cortex-m-rt`. Apart from the
//! mandatory `memory.x` linker script describing the memory layout of the device, the hard fault
//! handler and the default exception handler must also be defined somewhere in the dependency
//! graph (see [`#[exception]`]). In this example we define them in the binary crate:
//!
//! ```no_run
//! // IMPORTANT the standard `main` interface is not used because it requires nightly
//! #![no_main]
//! #![no_std]
//!
//! // Some panic handler needs to be included. This one halts the processor on panic.
//! extern crate panic_halt;
//!
//! use cortex_m_rt::entry;
//!
//! // use `main` as the entry point of this application
//! // `main` is not allowed to return
//! #[entry]
//! fn main() -> ! {
//!     // initialization
//!
//!     loop {
//!         // application logic
//!     }
//! }
//! ```
//!
//! To actually build this program you need to place a `memory.x` linker script somewhere the linker
//! can find it, e.g. in the current directory; and then link the program using `cortex-m-rt`'s
//! linker script: `link.x`. The required steps are shown below:
//!
//! ```text
//! $ cat > memory.x <<EOF
//! /* Linker script for the STM32F103C8T6 */
//! MEMORY
//! {
//!   FLASH : ORIGIN = 0x08000000, LENGTH = 64K
//!   RAM : ORIGIN = 0x20000000, LENGTH = 20K
//! }
//! EOF
//!
//! $ cargo rustc --target thumbv7m-none-eabi -- \
//!       -C link-arg=-nostartfiles -C link-arg=-Tlink.x
//!
//! $ file target/thumbv7m-none-eabi/debug/app
//! app: ELF 32-bit LSB executable, ARM, EABI5 version 1 (SYSV), statically linked, (..)
//! ```
//!
//! # Optional features
//!
//! ## `device`
//!
//! If this feature is disabled then this crate populates the whole vector table. All the interrupts
//! in the vector table, even the ones unused by the target device, will be bound to the default
//! exception handler. This makes the final application device agnostic: you will be able to run it
//! on any Cortex-M device -- provided that you correctly specified its memory layout in `memory.x`
//! -- without hitting undefined behavior.
//!
//! If this feature is enabled then the interrupts section of the vector table is left unpopulated
//! and some other crate, or the user, will have to populate it. This mode is meant to be used in
//! conjunction with crates generated using `svd2rust`. Those *device crates* will populate the
//! missing part of the vector table when their `"rt"` feature is enabled.
//!
//! # Inspection
//!
//! This section covers how to inspect a binary that builds on top of `cortex-m-rt`.
//!
//! ## Sections (`size`)
//!
//! `cortex-m-rt` uses standard sections like `.text`, `.rodata`, `.bss` and `.data` as one would
//! expect. `cortex-m-rt` separates the vector table in its own section, named `.vector_table`. This
//! lets you distinguish how much space is taking the vector table in Flash vs how much is being
//! used by actual instructions (`.text`) and constants (`.rodata`).
//!
//! ```text
//! $ size -Ax target/thumbv7m-none-eabi/examples/app
//! target/thumbv7m-none-eabi/release/examples/app  :
//! section             size         addr
//! .vector_table      0x400    0x8000000
//! .text               0x88    0x8000400
//! .rodata              0x0    0x8000488
//! .data                0x0   0x20000000
//! .bss                 0x0   0x20000000
//! ```
//!
//! Without the `-A` argument `size` reports the sum of the sizes of `.text`, `.rodata` and
//! `.vector_table` under "text".
//!
//! ```text
//! $ size target/thumbv7m-none-eabi/examples/app
//!   text    data     bss     dec     hex filename
//!   1160       0       0    1660     67c target/thumbv7m-none-eabi/release/app
//! ```
//!
//! ## Symbols (`objdump`, `nm`)
//!
//! One will always find the following (unmangled) symbols in `cortex-m-rt` applications:
//!
//! - `Reset`. This is the reset handler. The microcontroller will execute this function upon
//! booting. This function will call the user program entry point (cf. [`#[entry]`][attr-entry])
//! using the `main` symbol so you will also find that symbol in your program.
//!
//! - `DefaultHandler`. This is the default handler. If not overridden using `#[exception] fn
//! DefaultHandler(..` this will be an infinite loop.
//!
//! - `HardFaultTrampoline`. This is the real hard fault handler. This function is simply a
//! trampoline that jumps into the user defined hard fault handler named `HardFault`. The
//! trampoline is required to set up the pointer to the stacked exception frame.
//!
//! - `HardFault`. This is the user defined hard fault handler. If not overridden using
//! `#[exception] fn HardFault(..` it will default to an infinite loop.
//!
//! - `__STACK_START`. This is the first entry in the `.vector_table` section. This symbol contains
//! the initial value of the stack pointer; this is where the stack will be located -- the stack
//! grows downwards towards smaller addresses.
//!
//! - `__RESET_VECTOR`. This is the reset vector, a pointer to the `Reset` function. This vector
//! is located in the `.vector_table` section after `__STACK_START`.
//!
//! - `__EXCEPTIONS`. This is the core exceptions portion of the vector table; it's an array of 14
//! exception vectors, which includes exceptions like `HardFault` and `SysTick`. This array is
//! located after `__RESET_VECTOR` in the `.vector_table` section.
//!
//! - `__INTERRUPTS`. This is the device specific interrupt portion of the vector table; its exact
//! size depends on the target device but if the `"device"` feature has not been enabled it will
//! have a size of 32 vectors (on ARMv6-M) or 240 vectors (on ARMv7-M). This array is located after
//! `__EXCEPTIONS` in the `.vector_table` section.
//!
//! - `__pre_init`. This is a function to be run before RAM is initialized. It defaults to an empty
//! function. The function called can be changed by applying the [`#[pre_init]`][attr-pre_init]
//! attribute to a function.
//!
//! If you override any exception handler you'll find it as an unmangled symbol, e.g. `SysTick` or
//! `SVCall`, in the output of `objdump`,
//!
//! # Advanced usage
//!
//! ## Setting the program entry point
//!
//! This section describes how [`#[entry]`][attr-entry] is implemented. This information is useful
//! to developers who want to provide an alternative to [`#[entry]`][attr-entry] that provides extra
//! guarantees.
//!
//! The `Reset` handler will call a symbol named `main` (unmangled) *after* initializing `.bss` and
//! `.data`, and enabling the FPU (if the target has an FPU). A function with the `entry` attribute
//! will be set to have the export name "`main`"; in addition, its mutable statics are turned into
//! safe mutable references (see [`#[entry]`][attr-entry] for details).
//!
//! The unmangled `main` symbol must have signature `extern "C" fn() -> !` or its invocation from
//! `Reset`  will result in undefined behavior.
//!
//! ## Incorporating device specific interrupts
//!
//! This section covers how an external crate can insert device specific interrupt handlers into the
//! vector table. Most users don't need to concern themselves with these details, but if you are
//! interested in how device crates generated using `svd2rust` integrate with `cortex-m-rt` read on.
//!
//! The information in this section applies when the `"device"` feature has been enabled.
//!
//! ### `__INTERRUPTS`
//!
//! The external crate must provide the interrupts portion of the vector table via a `static`
//! variable named`__INTERRUPTS` (unmangled) that must be placed in the `.vector_table.interrupts`
//! section of its object file.
//!
//! This `static` variable will be placed at `ORIGIN(FLASH) + 0x40`. This address corresponds to the
//! spot where IRQ0 (IRQ number 0) is located.
//!
//! To conform to the Cortex-M ABI `__INTERRUPTS` must be an array of function pointers; some spots
//! in this array may need to be set to 0 if they are marked as *reserved* in the data sheet /
//! reference manual. We recommend using a `union` to set the reserved spots to `0`; `None`
//! (`Option<fn()>`) may also work but it's not guaranteed that the `None` variant will *always* be
//! represented by the value `0`.
//!
//! Let's illustrate with an artificial example where a device only has two interrupt: `Foo`, with
//! IRQ number = 2, and `Bar`, with IRQ number = 4.
//!
//! ```no_run
//! pub union Vector {
//!     handler: unsafe extern "C" fn(),
//!     reserved: usize,
//! }
//!
//! extern "C" {
//!     fn Foo();
//!     fn Bar();
//! }
//!
//! #[link_section = ".vector_table.interrupts"]
//! #[no_mangle]
//! pub static __INTERRUPTS: [Vector; 5] = [
//!     // 0-1: Reserved
//!     Vector { reserved: 0 },
//!     Vector { reserved: 0 },
//!
//!     // 2: Foo
//!     Vector { handler: Foo },
//!
//!     // 3: Reserved
//!     Vector { reserved: 0 },
//!
//!     // 4: Bar
//!     Vector { handler: Bar },
//! ];
//! ```
//!
//! ### `device.x`
//!
//! Linking in `__INTERRUPTS` creates a bunch of undefined references. If the user doesn't set a
//! handler for *all* the device specific interrupts then linking will fail with `"undefined
//! reference"` errors.
//!
//! We want to provide a default handler for all the interrupts while still letting the user
//! individually override each interrupt handler. In C projects, this is usually accomplished using
//! weak aliases declared in external assembly files. In Rust, we could achieve something similar
//! using `global_asm!`, but that's an unstable feature.
//!
//! A solution that doesn't require `global_asm!` or external assembly files is to use the `PROVIDE`
//! command in a linker script to create the weak aliases. This is the approach that `cortex-m-rt`
//! uses; when the `"device"` feature is enabled `cortex-m-rt`'s linker script (`link.x`) depends on
//! a linker script named `device.x`. The crate that provides `__INTERRUPTS` must also provide this
//! file.
//!
//! For our running example the `device.x` linker script looks like this:
//!
//! ```text
//! /* device.x */
//! PROVIDE(Foo = DefaultHandler);
//! PROVIDE(Bar = DefaultHandler);
//! ```
//!
//! This weakly aliases both `Foo` and `Bar`. `DefaultHandler` is the default exception handler and
//! that the core exceptions use unless overridden.
//!
//! Because this linker script is provided by a dependency of the final application the dependency
//! must contain build script that puts `device.x` somewhere the linker can find. An example of such
//! build script is shown below:
//!
//! ```ignore
//! use std::env;
//! use std::fs::File;
//! use std::io::Write;
//! use std::path::PathBuf;
//!
//! fn main() {
//!     // Put the linker script somewhere the linker can find it
//!     let out = &PathBuf::from(env::var_os("OUT_DIR").unwrap());
//!     File::create(out.join("device.x"))
//!         .unwrap()
//!         .write_all(include_bytes!("device.x"))
//!         .unwrap();
//!     println!("cargo:rustc-link-search={}", out.display());
//! }
//! ```
//!
//! ## Uninitialized static variables
//!
//! The `.uninit` linker section can be used to leave `static mut` variables uninitialized. One use
//! case of unitialized static variables is to avoid zeroing large statically allocated buffers (say
//! to be used as thread stacks) -- this can considerably reduce initialization time on devices that
//! operate at low frequencies.
//!
//! The only correct way to use this section is by placing `static mut` variables with type
//! [`MaybeUninit`] in it.
//!
//! [`MaybeUninit`]: https://doc.rust-lang.org/core/mem/union.MaybeUninit.html
//!
//! ```no_run,edition2018
//! # extern crate core;
//! use core::mem::MaybeUninit;
//!
//! const STACK_SIZE: usize = 8 * 1024;
//! const NTHREADS: usize = 4;
//!
//! #[link_section = ".uninit.STACKS"]
//! static mut STACKS: MaybeUninit<[[u8; STACK_SIZE]; NTHREADS]> = MaybeUninit::uninit();
//! ```
//!
//! Be very careful with the `link_section` attribute because it's easy to misuse in ways that cause
//! undefined behavior. At some point in the future we may add an attribute to safely place static
//! variables in this section.
//!
//! ## Extra Sections
//!
//! Some microcontrollers provide additional memory regions beyond RAM and FLASH.
//! For example, some STM32 devices provide "CCM" or core-coupled RAM that is
//! only accessible from the core. In order to access these using
//! [`link_section`] attributes from your code, you need to modify `memory.x`
//! to declare the additional sections:
//!
//! [`link_section`]: https://doc.rust-lang.org/reference/abi.html#the-link_section-attribute
//!
//! ```text
//! MEMORY
//! {
//!     FLASH  (rx) : ORIGIN = 0x08000000, LENGTH = 1024K
//!     RAM    (rw) : ORIGIN = 0x20000000, LENGTH = 128K
//!     CCMRAM (rw) : ORIGIN = 0x10000000, LENGTH = 64K
//! }
//!
//! SECTIONS
//! {
//!     .ccmram (NOLOAD) : ALIGN(4)
//!     {
//!         *(.ccmram .ccmram.*);
//!         . = ALIGN(4);
//!     } > CCMRAM
//! }
//! ```
//!
//! You can then use something like this to place a variable into this specific section of memory:
//!
//! ```no_run,edition2018
//! #[link_section=".ccmram.BUFFERS"]
//! static mut BUF: [u8; 1024] = [0u8; 1024];
//! ```
//!
//! [attr-entry]: attr.entry.html
//! [attr-exception]: attr.exception.html
//! [attr-pre_init]: attr.pre_init.html
//!
//! # Minimum Supported Rust Version (MSRV)
//!
//! The MSRV of this release is Rust 1.39.0.

// # Developer notes
//
// - `link_section` is used to place symbols in specific places of the final binary. The names used
// here will appear in the linker script (`link.x`) in conjunction with the `KEEP` command.

#![deny(missing_docs)]
#![no_std]

extern crate cortex_m_rt_macros as macros;

use core::fmt;
use core::sync::atomic::{self, Ordering};

/// Attribute to declare an interrupt (AKA device-specific exception) handler
///
/// **IMPORTANT**: If you are using Rust 1.30 this attribute must be used on reachable items (i.e.
/// there must be no private modules between the item and the root of the crate); if the item is in
/// the root of the crate you'll be fine. This reachability restriction doesn't apply to Rust 1.31
/// and newer releases.
///
/// **NOTE**: This attribute is exposed by `cortex-m-rt` only when the `device` feature is enabled.
/// However, that export is not meant to be used directly -- using it will result in a compilation
/// error. You should instead use the device crate (usually generated using `svd2rust`) re-export of
/// that attribute. You need to use the re-export to have the compiler check that the interrupt
/// exists on the target device.
///
/// # Syntax
///
/// ``` ignore
/// extern crate device;
///
/// // the attribute comes from the device crate not from cortex-m-rt
/// use device::interrupt;
///
/// #[interrupt]
/// fn USART1() {
///     // ..
/// }
/// ```
///
/// where the name of the function must be one of the device interrupts.
///
/// # Usage
///
/// `#[interrupt] fn Name(..` overrides the default handler for the interrupt with the given `Name`.
/// These handlers must have signature `[unsafe] fn() [-> !]`. It's possible to add state to these
/// handlers by declaring `static mut` variables at the beginning of the body of the function. These
/// variables will be safe to access from the function body.
///
/// If the interrupt handler has not been overridden it will be dispatched by the default exception
/// handler (`DefaultHandler`).
///
/// # Properties
///
/// Interrupts handlers can only be called by the hardware. Other parts of the program can't refer
/// to the interrupt handlers, much less invoke them as if they were functions.
///
/// `static mut` variables declared within an interrupt handler are safe to access and can be used
/// to preserve state across invocations of the handler. The compiler can't prove this is safe so
/// the attribute will help by making a transformation to the source code: for this reason a
/// variable like `static mut FOO: u32` will become `let FOO: &mut u32;`.
///
/// # Examples
///
/// - Using state within an interrupt handler
///
/// ``` ignore
/// extern crate device;
///
/// use device::interrupt;
///
/// #[interrupt]
/// fn TIM2() {
///     static mut COUNT: i32 = 0;
///
///     // `COUNT` is safe to access and has type `&mut i32`
///     *COUNT += 1;
///
///     println!("{}", COUNT);
/// }
/// ```
#[cfg(feature = "device")]
pub use macros::interrupt;

/// Attribute to declare the entry point of the program
///
/// **IMPORTANT**: This attribute must appear exactly *once* in the dependency graph. Also, if you
/// are using Rust 1.30 the attribute must be used on a reachable item (i.e. there must be no
/// private modules between the item and the root of the crate); if the item is in the root of the
/// crate you'll be fine. This reachability restriction doesn't apply to Rust 1.31 and newer releases.
///
/// The specified function will be called by the reset handler *after* RAM has been initialized. In
/// the case of the `thumbv7em-none-eabihf` target the FPU will also be enabled before the function
/// is called.
///
/// The type of the specified function must be `[unsafe] fn() -> !` (never ending function)
///
/// # Properties
///
/// The entry point will be called by the reset handler. The program can't reference to the entry
/// point, much less invoke it.
///
/// `static mut` variables declared within the entry point are safe to access. The compiler can't
/// prove this is safe so the attribute will help by making a transformation to the source code: for
/// this reason a variable like `static mut FOO: u32` will become `let FOO: &'static mut u32;`. Note
/// that `&'static mut` references have move semantics.
///
/// # Examples
///
/// - Simple entry point
///
/// ``` no_run
/// # #![no_main]
/// # use cortex_m_rt::entry;
/// #[entry]
/// fn main() -> ! {
///     loop {
///         /* .. */
///     }
/// }
/// ```
///
/// - `static mut` variables local to the entry point are safe to modify.
///
/// ``` no_run
/// # #![no_main]
/// # use cortex_m_rt::entry;
/// #[entry]
/// fn main() -> ! {
///     static mut FOO: u32 = 0;
///
///     let foo: &'static mut u32 = FOO;
///     assert_eq!(*foo, 0);
///     *foo = 1;
///     assert_eq!(*foo, 1);
///
///     loop {
///         /* .. */
///     }
/// }
/// ```
pub use macros::entry;

/// Attribute to declare an exception handler
///
/// **IMPORTANT**: If you are using Rust 1.30 this attribute must be used on reachable items (i.e.
/// there must be no private modules between the item and the root of the crate); if the item is in
/// the root of the crate you'll be fine. This reachability restriction doesn't apply to Rust 1.31
/// and newer releases.
///
/// # Syntax
///
/// ```
/// # use cortex_m_rt::exception;
/// #[exception]
/// fn SysTick() {
///     // ..
/// }
///
/// # fn main() {}
/// ```
///
/// where the name of the function must be one of:
///
/// - `DefaultHandler`
/// - `NonMaskableInt`
/// - `HardFault`
/// - `MemoryManagement` (a)
/// - `BusFault` (a)
/// - `UsageFault` (a)
/// - `SecureFault` (b)
/// - `SVCall`
/// - `DebugMonitor` (a)
/// - `PendSV`
/// - `SysTick`
///
/// (a) Not available on Cortex-M0 variants (`thumbv6m-none-eabi`)
///
/// (b) Only available on ARMv8-M
///
/// # Usage
///
/// `#[exception] unsafe fn HardFault(..` sets the hard fault handler. The handler must have
/// signature `unsafe fn(&ExceptionFrame) -> !`. This handler is not allowed to return as that can
/// cause undefined behavior.
///
/// `#[exception] unsafe fn DefaultHandler(..` sets the *default* handler. All exceptions which have
/// not been assigned a handler will be serviced by this handler. This handler must have signature
/// `unsafe fn(irqn: i16) [-> !]`. `irqn` is the IRQ number (See CMSIS); `irqn` will be a negative
/// number when the handler is servicing a core exception; `irqn` will be a positive number when the
/// handler is servicing a device specific exception (interrupt).
///
/// `#[exception] fn Name(..` overrides the default handler for the exception with the given `Name`.
/// These handlers must have signature `[unsafe] fn() [-> !]`. When overriding these other exception
/// it's possible to add state to them by declaring `static mut` variables at the beginning of the
/// body of the function. These variables will be safe to access from the function body.
///
/// # Properties
///
/// Exception handlers can only be called by the hardware. Other parts of the program can't refer to
/// the exception handlers, much less invoke them as if they were functions.
///
/// `static mut` variables declared within an exception handler are safe to access and can be used
/// to preserve state across invocations of the handler. The compiler can't prove this is safe so
/// the attribute will help by making a transformation to the source code: for this reason a
/// variable like `static mut FOO: u32` will become `let FOO: &mut u32;`.
///
/// # Safety
///
/// It is not generally safe to register handlers for non-maskable interrupts. On Cortex-M,
/// `HardFault` is non-maskable (at least in general), and there is an explicitly non-maskable
/// interrupt `NonMaskableInt`.
///
/// The reason for that is that non-maskable interrupts will preempt any currently running function,
/// even if that function executes within a critical section. Thus, if it was safe to define NMI
/// handlers, critical sections wouldn't work safely anymore.
///
/// This also means that defining a `DefaultHandler` must be unsafe, as that will catch
/// `NonMaskableInt` and `HardFault` if no handlers for those are defined.
///
/// The safety requirements on those handlers is as follows: The handler must not access any data
/// that is protected via a critical section and shared with other interrupts that may be preempted
/// by the NMI while holding the critical section. As long as this requirement is fulfilled, it is
/// safe to handle NMIs.
///
/// # Examples
///
/// - Setting the default handler
///
/// ```
/// use cortex_m_rt::exception;
///
/// #[exception]
/// unsafe fn DefaultHandler(irqn: i16) {
///     println!("IRQn = {}", irqn);
/// }
///
/// # fn main() {}
/// ```
///
/// - Overriding the `SysTick` handler
///
/// ```
/// use cortex_m_rt::exception;
///
/// #[exception]
/// fn SysTick() {
///     static mut COUNT: i32 = 0;
///
///     // `COUNT` is safe to access and has type `&mut i32`
///     *COUNT += 1;
///
///     println!("{}", COUNT);
/// }
///
/// # fn main() {}
/// ```
pub use macros::exception;

/// Attribute to mark which function will be called at the beginning of the reset handler.
///
/// **IMPORTANT**: This attribute can appear at most *once* in the dependency graph. Also, if you
/// are using Rust 1.30 the attribute must be used on a reachable item (i.e. there must be no
/// private modules between the item and the root of the crate); if the item is in the root of the
/// crate you'll be fine. This reachability restriction doesn't apply to Rust 1.31 and newer
/// releases.
///
/// The function must have the signature of `unsafe fn()`.
///
/// # Safety
///
/// The function will be called before memory is initialized, as soon as possible after reset. Any
/// access of memory, including any static variables, will result in undefined behavior.
///
/// **Warning**: Due to [rvalue static promotion][rfc1414] static variables may be accessed whenever
/// taking a reference to a constant. This means that even trivial expressions such as `&1` in the
/// `#[pre_init]` function *or any code called by it* will cause **immediate undefined behavior**.
///
/// Users are advised to only use the `#[pre_init]` feature when absolutely necessary as these
/// constraints make safe usage difficult.
///
/// # Examples
///
/// ```
/// # use cortex_m_rt::pre_init;
/// #[pre_init]
/// unsafe fn before_main() {
///     // do something here
/// }
///
/// # fn main() {}
/// ```
///
/// [rfc1414]: https://github.com/rust-lang/rfcs/blob/master/text/1414-rvalue_static_promotion.md
pub use macros::pre_init;

// We export this static with an informative name so that if an application attempts to link
// two copies of cortex-m-rt together, linking will fail. We also declare a links key in
// Cargo.toml which is the more modern way to solve the same problem, but we have to keep
// __ONCE__ around to prevent linking with versions before the links key was added.
#[export_name = "error: cortex-m-rt appears more than once in the dependency graph"]
#[doc(hidden)]
pub static __ONCE__: () = ();

/// Registers stacked (pushed onto the stack) during an exception.
#[derive(Clone, Copy)]
#[repr(C)]
pub struct ExceptionFrame {
    r0: u32,
    r1: u32,
    r2: u32,
    r3: u32,
    r12: u32,
    lr: u32,
    pc: u32,
    xpsr: u32,
}

impl ExceptionFrame {
    /// Returns the value of (general purpose) register 0.
    #[inline(always)]
    pub fn r0(&self) -> u32 {
        self.r0
    }

    /// Returns the value of (general purpose) register 1.
    #[inline(always)]
    pub fn r1(&self) -> u32 {
        self.r1
    }

    /// Returns the value of (general purpose) register 2.
    #[inline(always)]
    pub fn r2(&self) -> u32 {
        self.r2
    }

    /// Returns the value of (general purpose) register 3.
    #[inline(always)]
    pub fn r3(&self) -> u32 {
        self.r3
    }

    /// Returns the value of (general purpose) register 12.
    #[inline(always)]
    pub fn r12(&self) -> u32 {
        self.r12
    }

    /// Returns the value of the Link Register.
    #[inline(always)]
    pub fn lr(&self) -> u32 {
        self.lr
    }

    /// Returns the value of the Program Counter.
    #[inline(always)]
    pub fn pc(&self) -> u32 {
        self.pc
    }

    /// Returns the value of the Program Status Register.
    #[inline(always)]
    pub fn xpsr(&self) -> u32 {
        self.xpsr
    }

    /// Sets the stacked value of (general purpose) register 0.
    ///
    /// # Safety
    ///
    /// This affects the `r0` register of the preempted code, which must not rely on it getting
    /// restored to its previous value.
    #[inline(always)]
    pub unsafe fn set_r0(&mut self, value: u32) {
        self.r0 = value;
    }

    /// Sets the stacked value of (general purpose) register 1.
    ///
    /// # Safety
    ///
    /// This affects the `r1` register of the preempted code, which must not rely on it getting
    /// restored to its previous value.
    #[inline(always)]
    pub unsafe fn set_r1(&mut self, value: u32) {
        self.r1 = value;
    }

    /// Sets the stacked value of (general purpose) register 2.
    ///
    /// # Safety
    ///
    /// This affects the `r2` register of the preempted code, which must not rely on it getting
    /// restored to its previous value.
    #[inline(always)]
    pub unsafe fn set_r2(&mut self, value: u32) {
        self.r2 = value;
    }

    /// Sets the stacked value of (general purpose) register 3.
    ///
    /// # Safety
    ///
    /// This affects the `r3` register of the preempted code, which must not rely on it getting
    /// restored to its previous value.
    #[inline(always)]
    pub unsafe fn set_r3(&mut self, value: u32) {
        self.r3 = value;
    }

    /// Sets the stacked value of (general purpose) register 12.
    ///
    /// # Safety
    ///
    /// This affects the `r12` register of the preempted code, which must not rely on it getting
    /// restored to its previous value.
    #[inline(always)]
    pub unsafe fn set_r12(&mut self, value: u32) {
        self.r12 = value;
    }

    /// Sets the stacked value of the Link Register.
    ///
    /// # Safety
    ///
    /// This affects the `lr` register of the preempted code, which must not rely on it getting
    /// restored to its previous value.
    #[inline(always)]
    pub unsafe fn set_lr(&mut self, value: u32) {
        self.lr = value;
    }

    /// Sets the stacked value of the Program Counter.
    ///
    /// # Safety
    ///
    /// This affects the `pc` register of the preempted code, which must not rely on it getting
    /// restored to its previous value.
    #[inline(always)]
    pub unsafe fn set_pc(&mut self, value: u32) {
        self.pc = value;
    }

    /// Sets the stacked value of the Program Status Register.
    ///
    /// # Safety
    ///
    /// This affects the `xPSR` registers (`IPSR`, `APSR`, and `EPSR`) of the preempted code, which
    /// must not rely on them getting restored to their previous value.
    #[inline(always)]
    pub unsafe fn set_xpsr(&mut self, value: u32) {
        self.xpsr = value;
    }
}

impl fmt::Debug for ExceptionFrame {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        struct Hex(u32);
        impl fmt::Debug for Hex {
            fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
                write!(f, "0x{:08x}", self.0)
            }
        }
        f.debug_struct("ExceptionFrame")
            .field("r0", &Hex(self.r0))
            .field("r1", &Hex(self.r1))
            .field("r2", &Hex(self.r2))
            .field("r3", &Hex(self.r3))
            .field("r12", &Hex(self.r12))
            .field("lr", &Hex(self.lr))
            .field("pc", &Hex(self.pc))
            .field("xpsr", &Hex(self.xpsr))
            .finish()
    }
}

/// Returns a pointer to the start of the heap
///
/// The returned pointer is guaranteed to be 4-byte aligned.
#[inline]
pub fn heap_start() -> *mut u32 {
    extern "C" {
        static mut __sheap: u32;
    }

    unsafe { &mut __sheap }
}

// Entry point is Reset.
#[doc(hidden)]
#[cfg_attr(cortex_m, link_section = ".vector_table.reset_vector")]
#[no_mangle]
pub static __RESET_VECTOR: unsafe extern "C" fn() -> ! = Reset;

#[allow(unused_variables)]
#[doc(hidden)]
#[cfg_attr(cortex_m, link_section = ".HardFault.default")]
#[no_mangle]
pub unsafe extern "C" fn HardFault_(ef: &ExceptionFrame) -> ! {
    loop {
        // add some side effect to prevent this from turning into a UDF instruction
        // see rust-lang/rust#28728 for details
        atomic::compiler_fence(Ordering::SeqCst);
    }
}

#[doc(hidden)]
#[no_mangle]
pub unsafe extern "C" fn DefaultHandler_() -> ! {
    loop {
        // add some side effect to prevent this from turning into a UDF instruction
        // see rust-lang/rust#28728 for details
        atomic::compiler_fence(Ordering::SeqCst);
    }
}

#[doc(hidden)]
#[no_mangle]
pub unsafe extern "C" fn DefaultPreInit() {}

/* Exceptions */
#[doc(hidden)]
pub enum Exception {
    NonMaskableInt,

    // Not overridable
    // HardFault,
    #[cfg(not(armv6m))]
    MemoryManagement,

    #[cfg(not(armv6m))]
    BusFault,

    #[cfg(not(armv6m))]
    UsageFault,

    #[cfg(armv8m)]
    SecureFault,

    SVCall,

    #[cfg(not(armv6m))]
    DebugMonitor,

    PendSV,

    SysTick,
}

#[doc(hidden)]
pub use self::Exception as exception;

extern "C" {
    fn Reset() -> !;

    fn NonMaskableInt();

    fn HardFaultTrampoline();

    #[cfg(not(armv6m))]
    fn MemoryManagement();

    #[cfg(not(armv6m))]
    fn BusFault();

    #[cfg(not(armv6m))]
    fn UsageFault();

    #[cfg(armv8m)]
    fn SecureFault();

    fn SVCall();

    #[cfg(not(armv6m))]
    fn DebugMonitor();

    fn PendSV();

    fn SysTick();
}

#[doc(hidden)]
pub union Vector {
    handler: unsafe extern "C" fn(),
    reserved: usize,
}

#[doc(hidden)]
#[cfg_attr(cortex_m, link_section = ".vector_table.exceptions")]
#[no_mangle]
pub static __EXCEPTIONS: [Vector; 14] = [
    // Exception 2: Non Maskable Interrupt.
    Vector {
        handler: NonMaskableInt,
    },
    // Exception 3: Hard Fault Interrupt.
    Vector {
        handler: HardFaultTrampoline,
    },
    // Exception 4: Memory Management Interrupt [not on Cortex-M0 variants].
    #[cfg(not(armv6m))]
    Vector {
        handler: MemoryManagement,
    },
    #[cfg(armv6m)]
    Vector { reserved: 0 },
    // Exception 5: Bus Fault Interrupt [not on Cortex-M0 variants].
    #[cfg(not(armv6m))]
    Vector { handler: BusFault },
    #[cfg(armv6m)]
    Vector { reserved: 0 },
    // Exception 6: Usage Fault Interrupt [not on Cortex-M0 variants].
    #[cfg(not(armv6m))]
    Vector {
        handler: UsageFault,
    },
    #[cfg(armv6m)]
    Vector { reserved: 0 },
    // Exception 7: Secure Fault Interrupt [only on Armv8-M].
    #[cfg(armv8m)]
    Vector {
        handler: SecureFault,
    },
    #[cfg(not(armv8m))]
    Vector { reserved: 0 },
    // 8-10: Reserved
    Vector { reserved: 0 },
    Vector { reserved: 0 },
    Vector { reserved: 0 },
    // Exception 11: SV Call Interrupt.
    Vector { handler: SVCall },
    // Exception 12: Debug Monitor Interrupt [not on Cortex-M0 variants].
    #[cfg(not(armv6m))]
    Vector {
        handler: DebugMonitor,
    },
    #[cfg(armv6m)]
    Vector { reserved: 0 },
    // 13: Reserved
    Vector { reserved: 0 },
    // Exception 14: Pend SV Interrupt [not on Cortex-M0 variants].
    Vector { handler: PendSV },
    // Exception 15: System Tick Interrupt.
    Vector { handler: SysTick },
];

// If we are not targeting a specific device we bind all the potential device specific interrupts
// to the default handler
#[cfg(all(any(not(feature = "device"), test), not(armv6m)))]
#[doc(hidden)]
#[cfg_attr(cortex_m, link_section = ".vector_table.interrupts")]
#[no_mangle]
pub static __INTERRUPTS: [unsafe extern "C" fn(); 240] = [{
    extern "C" {
        fn DefaultHandler();
    }

    DefaultHandler
}; 240];

// ARMv6-M can only have a maximum of 32 device specific interrupts
#[cfg(all(not(feature = "device"), armv6m))]
#[doc(hidden)]
#[link_section = ".vector_table.interrupts"]
#[no_mangle]
pub static __INTERRUPTS: [unsafe extern "C" fn(); 32] = [{
    extern "C" {
        fn DefaultHandler();
    }

    DefaultHandler
}; 32];