1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
//! Codebooks for Huffman Coding
//!
//! # References
//!
//! Huffman, David A. "A method for the construction of minimum-redundancy codes."
//! Proceedings of the IRE 40.9 (1952): 1098-1101.

use num_traits::float::FloatCore;

use alloc::{collections::BinaryHeap, vec, vec::Vec};
use core::{
    borrow::Borrow,
    cmp::Reverse,
    convert::Infallible,
    fmt::{Debug, Display},
    ops::Add,
};

use super::{Codebook, DecoderCodebook, EncoderCodebook, SymbolCodeError};
use crate::{CoderError, DefaultEncoderError, DefaultEncoderFrontendError, UnwrapInfallible};

#[derive(Debug, Clone)]
pub struct EncoderHuffmanTree {
    /// A `Vec` of size `num_symbols * 2 - 1`, where the first `num_symbol` items
    /// correspond to the symbols, i.e., leaf nodes of the Huffman tree, and the
    /// remaining items are ancestors. An entry with value `x: usize` represents a node
    /// with the following properties:
    /// - root node if `x == 0`;
    /// - otherwise, the lowest significant bit distinguishes left vs right children,
    ///   and the parent node is at index `x >> 1`.
    /// (This works the node with index 0, if it exists, is always a leaf node, i.e., it
    /// cannot be any other node's parent node.)
    ///
    /// It is guaranteed that `num_symbols != 0` i.e., `nodes` is not empty.
    nodes: Vec<usize>,
}

impl EncoderHuffmanTree {
    pub fn from_probabilities<P, I>(probabilities: I) -> Self
    where
        P: Ord + Clone + Add<Output = P>,
        I: IntoIterator,
        I::Item: Borrow<P>,
    {
        Self::try_from_probabilities::<_, Infallible, _>(
            probabilities.into_iter().map(|p| Ok(p.borrow().clone())),
        )
        .unwrap_infallible()
    }

    pub fn from_float_probabilities<P, I>(probabilities: I) -> Result<Self, NanError>
    where
        P: FloatCore + Clone + Add<Output = P>,
        I: IntoIterator,
        I::Item: Borrow<P>,
    {
        Self::try_from_probabilities(
            probabilities
                .into_iter()
                .map(|p| NonNanFloatCore::new(*p.borrow())),
        )
    }

    pub fn try_from_probabilities<P, E, I>(probabilities: I) -> Result<Self, E>
    where
        P: Ord + Clone + Add<Output = P>,
        I: IntoIterator<Item = Result<P, E>>,
    {
        // Collecting into a Vec first and then creating a binary heap is O(n)
        // whereas collecting directly into a binary heap would be O(n log(n)).
        let heap = probabilities
            .into_iter()
            .enumerate()
            .map(|(i, s)| s.map(|s| (Reverse((s, i)))))
            .collect::<Result<Vec<_>, E>>()?;
        let mut heap = BinaryHeap::from(heap);

        if heap.is_empty() || heap.len() > usize::max_value() / 4 {
            panic!();
        }

        let mut nodes = vec![0; heap.len() * 2 - 1];
        let mut next_node_index = heap.len();

        while let (Some(Reverse((prob0, index0))), Some(Reverse((prob1, index1)))) =
            (heap.pop(), heap.pop())
        {
            heap.push(Reverse((prob0 + prob1, next_node_index)));
            unsafe {
                // SAFETY:
                // - `nodes.len() == original_heap_len * 2 - 1` (which we made sure doesn't wrap),
                //   where `original_heap_len` is the value of `heap.len()` before entering this
                //   `while` loop, which we checked is nonzero.
                // - We access `nodes` and indices found in `heap`. These have to be either the
                //   indices `0..original_heap_len` that we wrote into it initially (which are all
                //   smaller than `original_heap_len * 2 - 1` since we checked that
                //   `!heap.is_empty()`, i.e., that `original_heap_len != 0`); or they have to be
                //   the indices we write to the heap in this `while` loop, which come from
                //   `next_node_index`.
                // - `next_node_index` starts at `original_heap_len` and increases by one in each
                //   iteration of this `while` loop.
                // - Each iteration of this `while` loop removes two elements from `heap` and
                //   pushes one element back onto `heap`; so each iteration reduces the number of
                //   elements on `heap` by one; since we terminate as soon as there are fewer than
                //   2 elements on `heap`, this `while` loop iterates `original_heap_len - 1` times
                //   (which is nonnegative since `original_heap_len != 0`).
                // - Thus, the largest value that `next_node_index` can take is
                //   `original_heap_len * 2 - 1`; but since we access `next_node_index` before
                //   incrementing it, all values we ever push on the heap are strictly smaller than
                //   `original_heap_len * 2 - 1`, and thus are valid indices.
                *nodes.get_unchecked_mut(index0) = next_node_index << 1;
                *nodes.get_unchecked_mut(index1) = (next_node_index << 1) | 1;
            }
            next_node_index += 1;
        }

        Ok(Self { nodes })
    }

    pub fn num_symbols(&self) -> usize {
        self.nodes.len() / 2 + 1
    }
}

impl Codebook for EncoderHuffmanTree {
    type Symbol = usize;
}

impl EncoderCodebook for EncoderHuffmanTree {
    fn encode_symbol_suffix<BackendError>(
        &self,
        symbol: impl Borrow<Self::Symbol>,
        mut emit: impl FnMut(bool) -> Result<(), BackendError>,
    ) -> Result<(), DefaultEncoderError<BackendError>> {
        let symbol = *symbol.borrow();
        if symbol > self.nodes.len() / 2 {
            return Err(DefaultEncoderFrontendError::ImpossibleSymbol.into_coder_error());
        }

        let mut node_index = symbol;
        loop {
            let node = unsafe {
                // SAFETY: `node_index` is
                // - either its initial value of `symbol`, which is `<= num_symbols`, and
                //   `nodes.len() = 2 * num_symbols - 1 > num_symbols` since `num_symbols != 0`;
                // - or `node_index` is `node >> 1` where `node` is the value of a parent node; in
                //   this case it is guaranteed to be a valid index.
                *self.nodes.get_unchecked(node_index)
            };
            if node == 0 {
                break;
            }
            emit(node & 1 != 0)?;
            node_index = node >> 1;
        }

        Ok(())
    }
}

#[derive(Debug, Clone)]
pub struct DecoderHuffmanTree {
    /// A `Vec` of size `num_symbols - 1`, containing only the non-leaf nodes of the
    /// Huffman tree. The root node is at the end. An entry with value
    /// `[x, y]: [usize; 2]` represents a with children `x` and `y`, each represented
    /// either by the associated symbol (if the respective child is a leaf node), or by
    /// `num_symbols + index` where `index` is the index into `nodes` where the
    /// respective child node can be found.
    ///
    /// # Invariants
    /// - `num_symbols != 0` (but `nodes` can still be empty if `num_symbols == 1`.
    /// - All entries of `nodes` are strictly smaller than `2 * nodes.len()`.
    nodes: Vec<[usize; 2]>,
}

impl DecoderHuffmanTree {
    pub fn from_probabilities<P, I>(probabilities: I) -> Self
    where
        P: Ord + Clone + Add<Output = P>,
        I: IntoIterator,
        I::Item: Borrow<P>,
    {
        Self::try_from_probabilities::<_, Infallible, _>(
            probabilities.into_iter().map(|p| Ok(p.borrow().clone())),
        )
        .unwrap_infallible()
    }

    pub fn from_float_probabilities<P, I>(probabilities: I) -> Result<Self, NanError>
    where
        P: FloatCore + Clone + Add<Output = P>,
        I: IntoIterator,
        I::Item: Borrow<P>,
    {
        Self::try_from_probabilities(
            probabilities
                .into_iter()
                .map(|p| NonNanFloatCore::new(*p.borrow())),
        )
    }

    pub fn try_from_probabilities<P, E, I>(probabilities: I) -> Result<Self, E>
    where
        P: Ord + Clone + Add<Output = P>,
        I: IntoIterator<Item = Result<P, E>>,
    {
        // Collecting into a Vec first and then creating a binary heap is O(n)
        // whereas collecting directly into a binary heap would be O(n log(n)).
        let heap = probabilities
            .into_iter()
            .enumerate()
            .map(|(i, s)| s.map(|s| (Reverse((s, i)))))
            .collect::<Result<Vec<_>, E>>()?;
        let mut heap = BinaryHeap::from(heap);

        if heap.is_empty() || heap.len() > usize::max_value() / 2 {
            panic!();
        }

        let mut nodes = Vec::with_capacity(heap.len() - 1);
        let mut next_node_index = heap.len();

        while let (Some(Reverse((prob0, index0))), Some(Reverse((prob1, index1)))) =
            (heap.pop(), heap.pop())
        {
            heap.push(Reverse((prob0 + prob1, next_node_index)));
            nodes.push([index0, index1]);
            next_node_index += 1;
        }

        Ok(Self { nodes })
    }

    pub fn num_symbols(&self) -> usize {
        self.nodes.len() + 1
    }
}

impl Codebook for DecoderHuffmanTree {
    type Symbol = usize;
}

impl DecoderCodebook for DecoderHuffmanTree {
    type InvalidCodeword = Infallible;

    fn decode_symbol<BackendError>(
        &self,
        mut source: impl Iterator<Item = Result<bool, BackendError>>,
    ) -> Result<Self::Symbol, CoderError<SymbolCodeError<Self::InvalidCodeword>, BackendError>>
    {
        let num_nodes = self.nodes.len();
        let num_symbols = num_nodes + 1;
        let mut node_index = 2 * num_nodes; // Start at root node.

        while node_index >= num_symbols {
            let bit = source
                .next()
                .ok_or_else(|| SymbolCodeError::OutOfCompressedData.into_coder_error())??;
            unsafe {
                // SAFETY:
                // - `node_index >= num_symbols` within this loop, so `node_index - num_symbols`
                //   does not wrap.
                // - `node_index is either the initial value `2 * num_nodes` or it comes from an
                //   entry of `nodes`, which are all strictly smaller than `2 * num_nodes`.
                // - Thus, `node_index - num_symbols = node_index - num_nodes - 1 <= num_nodes - 1`,
                //   which is a valid index into `nodes`.
                //
                // NOTE: No need to use `get_unchecked(bit as usize)` since the compiler is smart
                //       enough to optimize away the bounds check in this case on its own.
                node_index = self.nodes.get_unchecked(node_index - num_symbols)[bit as usize];
            }
        }

        Ok(node_index)
    }
}

#[derive(PartialOrd, Clone, Copy)]
struct NonNanFloatCore<F: FloatCore> {
    inner: F,
}

impl<F: FloatCore> NonNanFloatCore<F> {
    fn new(x: F) -> Result<Self, NanError> {
        if x.is_nan() {
            Err(NanError::NaN)
        } else {
            Ok(Self { inner: x })
        }
    }
}

impl<F: FloatCore> PartialEq for NonNanFloatCore<F> {
    fn eq(&self, other: &Self) -> bool {
        self.inner.eq(&other.inner)
    }
}

impl<F: FloatCore> Eq for NonNanFloatCore<F> {}

#[allow(clippy::derive_ord_xor_partial_ord)]
impl<F: FloatCore> Ord for NonNanFloatCore<F> {
    fn cmp(&self, other: &Self) -> core::cmp::Ordering {
        self.inner
            .partial_cmp(&other.inner)
            .expect("NonNanFloatCore::inner is not NaN.")
    }
}

impl<F: FloatCore> Add for NonNanFloatCore<F> {
    type Output = Self;

    fn add(self, rhs: Self) -> Self::Output {
        NonNanFloatCore {
            inner: self.inner + rhs.inner,
        }
    }
}

#[derive(Debug, PartialEq, Eq)]
pub enum NanError {
    NaN,
}

impl Display for NanError {
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        match self {
            Self::NaN => write!(f, "NaN Encountered."),
        }
    }
}

#[cfg(feature = "std")]
impl std::error::Error for NanError {}

#[cfg(test)]
mod tests {
    use super::{
        super::{SmallBitStack, WriteBitStream},
        *,
    };
    extern crate std;
    use std::string::String;

    #[test]
    fn encoder_huffman_tree() {
        fn encode_all_symbols(tree: &EncoderHuffmanTree) -> Vec<String> {
            (0..tree.num_symbols())
                .map(|symbol| {
                    let mut codeword = String::new();
                    tree.encode_symbol_prefix(symbol, |bit| {
                        codeword.push(if bit { '1' } else { '0' });
                        Result::<_, Infallible>::Ok(())
                    })
                    .unwrap();
                    codeword
                })
                .collect()
        }

        let tree = EncoderHuffmanTree::from_probabilities::<u32, _>(&[1]);
        assert_eq!(tree.nodes, [0]);
        assert_eq!(encode_all_symbols(&tree), [""]);

        let tree = EncoderHuffmanTree::from_probabilities::<u32, _>(&[1, 2]);
        assert_eq!(tree.nodes, [4, 5, 0]);
        assert_eq!(encode_all_symbols(&tree), ["0", "1"]);

        let tree = EncoderHuffmanTree::from_probabilities::<u32, _>(&[2, 1]);
        assert_eq!(tree.nodes, [5, 4, 0]);
        assert_eq!(encode_all_symbols(&tree), ["1", "0"]);

        // Ties are broken by index.
        let tree = EncoderHuffmanTree::from_probabilities::<u32, _>(&[1, 1]);
        assert_eq!(tree.nodes, [4, 5, 0]);
        assert_eq!(encode_all_symbols(&tree), ["0", "1"]);

        let tree = EncoderHuffmanTree::from_probabilities::<u32, _>(&[2, 2, 4, 1, 1]);
        assert_eq!(tree.nodes, [12, 13, 15, 10, 11, 14, 16, 17, 0]);
        assert_eq!(encode_all_symbols(&tree), ["00", "01", "11", "100", "101"]);

        // Let's not test ties of sums in floatCoreing point probabilities since they'll depend
        // on rounding errors (but should still be deterministic).
        let tree =
            EncoderHuffmanTree::from_float_probabilities::<f32, _>(&[0.19, 0.2, 0.41, 0.1, 0.1])
                .unwrap();
        assert_eq!(tree.nodes, [12, 13, 16, 10, 11, 14, 15, 17, 0,]);
        assert_eq!(
            encode_all_symbols(&tree),
            ["110", "111", "0", "100", "101",]
        );
    }

    #[test]
    fn decoder_huffman_tree() {
        fn test_decoding_all_symbols(
            decoder_tree: &DecoderHuffmanTree,
            encoder_tree: &EncoderHuffmanTree,
        ) {
            for symbol in 0..encoder_tree.num_symbols() {
                let mut codeword = SmallBitStack::new();
                encoder_tree
                    .encode_symbol_suffix(symbol, |bit| codeword.write_bit(bit))
                    .unwrap();
                let decoded = decoder_tree.decode_symbol(&mut codeword).unwrap();
                assert_eq!(symbol, decoded);
                assert!(codeword.next().is_none());
            }
        }

        let tree = DecoderHuffmanTree::from_probabilities::<u32, _>(&[1]);
        assert!(tree.nodes.is_empty());
        test_decoding_all_symbols(
            &tree,
            &EncoderHuffmanTree::from_probabilities::<u32, _>(&[1]),
        );

        let tree = DecoderHuffmanTree::from_probabilities::<u32, _>(&[1, 2]);
        assert_eq!(tree.nodes, [[0, 1]]);
        test_decoding_all_symbols(
            &tree,
            &EncoderHuffmanTree::from_probabilities::<u32, _>(&[0, 1]),
        );

        let tree = DecoderHuffmanTree::from_probabilities::<u32, _>(&[2, 1]);
        assert_eq!(tree.nodes, [[1, 0]]);
        test_decoding_all_symbols(
            &tree,
            &EncoderHuffmanTree::from_probabilities::<u32, _>(&[2, 1]),
        );

        // Ties are broken by index.
        let tree = DecoderHuffmanTree::from_probabilities::<u32, _>(&[1u32, 1]);
        assert_eq!(tree.nodes, [[0, 1]]);
        test_decoding_all_symbols(
            &tree,
            &EncoderHuffmanTree::from_probabilities::<u32, _>(&[1, 1]),
        );

        let tree = DecoderHuffmanTree::from_probabilities::<u32, _>(&[2, 2, 4, 1, 1]);
        assert_eq!(tree.nodes, [[3, 4], [0, 1], [5, 2], [6, 7]]);
        test_decoding_all_symbols(
            &tree,
            &EncoderHuffmanTree::from_probabilities::<u32, _>(&[2, 2, 4, 1, 1]),
        );

        // Let's not test ties of sums in floatCoreing point probabilities since they'll depend
        // on rounding errors (but should still be deterministic).
        let tree =
            DecoderHuffmanTree::from_float_probabilities::<f32, _>(&[0.19, 0.2, 0.41, 0.1, 0.1])
                .unwrap();
        assert_eq!(tree.nodes, [[3, 4], [0, 1], [5, 6], [2, 7]]);
        test_decoding_all_symbols(
            &tree,
            &EncoderHuffmanTree::from_float_probabilities::<f32, _>(&[0.19, 0.2, 0.41, 0.1, 0.1])
                .unwrap(),
        );
    }
}