1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
//! Probability distributions that can be used as entropy models for stream codes.
//!
//! This module provides utilities for dealing with probabilistic models of data sources
//! ("entropy models") in exactly invertible fixed-point arithmetic so that no rounding
//! errors occur. As explained in the [motivation](#motivation) below, preventing rounding
//! errors is necessary for reliable entropy coding.
//!
//! The types defined in this module approximate arbitrary discrete (or quantized
//! one-dimensional continuous) probability distributions with a fixed-point representation.
//! The fixed-point representation has customizable numeric precision and can be either
//! explicit or implicit (i.e., lazy). While the conversion to the fixed-point approximation
//! itself generally involves rounding, once the fixed-point representation is obtained,
//! operations on it are exact. Therefore, the fixed-point representation can be used for
//! entropy coding.
//!
//! # Module Overview
//!
//! This module declares the base trait [`EntropyModel`] and its subtraits [`EncoderModel`]
//! and [`DecoderModel`], which specify the interfaces that entropy models provide and that
//! entropy coders in the sister modules can rely on.
//!
//! In addition, this module provides the following three utilities for constructing entropy
//! models:
//! - an adapter that converts parameterized discrete distributions (e.g., [`Binomial`]) or
//!   one-dimensional continuous probability distributions (e.g. [`Gaussian`]) from a
//!   representation in terms of float-valued functions to an (implicit) exactly invertible
//!   fixed-point representation; when provided with a continuous distribution (a
//!   probability density) then this adapter also quantizes the data space into bins. See
//!   [`DefaultLeakyQuantizer`] and [`SmallLeakyQuantizer`];
//! - types for representing arbitrary categorical distributions in an explicit fixed-point
//!   representation; these types are intended either as fallbacks for probability
//!   distributions that lack an efficiently evaluable analytic expression of the cumulative
//!   distribution function (and that therefore can't be handled by the above adaptor), or
//!   for efficient *encoding* of i.i.d. symbols by precalculating and tabularizing the
//!   fixed-point representation of each allowed symbol. See [`DefaultLeakyQuantizer`],
//!   [`DefaultContiguousCategoricalEntropyModel`],
//!   [`DefaultNonContiguousCategoricalEncoderModel`], and
//!   [`DefaultNonContiguousCategoricalDecoderModel`] (and their respective counterparts
//!   with the "Small" instead of "Default" preset); and
//! - types for high-performance "lookup tables" that enable efficient
//!   *decoding* of i.i.d. data; these types build up a lookup table with `2^PRECISION`
//!   entries (one entry per
//!   possible *quantile*) and are therefore only recommended to be used with relatively
//!   small `PRECISION`. See [`SmallContiguousLookupDecoderModel`] and
//!   [`SmallNonContiguousLookupDecoderModel`].
//!
//! # Examples
//!
//! See [`LeakyQuantizer`](LeakyQuantizer#examples), [`ContiguousCategoricalEntropyModel`],
//! [`NonContiguousCategoricalEncoderModel`]. [`NonContiguousCategoricalDecoderModel`], and
//! [`LookupDecoderModel`].
//!
//! TODO: direct links to "Examples" sections.
//!
//! # Motivation
//!
//! The general idea of entropy coding to find an optimal compression strategy by using a
//! *probabilistic model of the data source*. Ideally, all conceivable data points would be
//! compressed into a short bit string. However, short bit strings are a scarce commodity:
//! for any integer `N`, there are only `2^N - 1` distinct bit strings that are shorter than
//! `N` bits. For this reason, entropy coding algorithms assign the scarce short bit strings
//! to data points that are most probable to appear in practice, while assigning longer bit
//! strings to data points that may be possible in principle but that are extremely
//! improbable in practice. More precisely, entropy coding aims to minimize the expected bit
//! rate under a probabilistic model of the data source. We refer to this model as an
//! "entropy model".
//!
//! In contrast to many other use cases of probabilistic models in computing, entropy models
//! must be amenable to *exact* arithmetic operations. In particular, no rounding errors are
//! allowed when inverting the cumulative distribution function. Even a single arbitrarily
//! small rounding error could set off a chain reaction leading to arbitrarily large and
//! arbitrarily many errors when compressing and then decompressing a sequence of symbols
//! (see, e.g., the [motivating example for the `ChainCoder`](super::chain#motivation)).
//! This module provides utilities for defining entropy models that can be inverted exactly
//! without any rounding errors.
//!
//! # Zero Probability
//!
//! All entropy models provided in this module have a predictable support, i.e., it is
//! always easy to predict exactly which symbols have nonzero probability under the model.
//! This is an important property for entropy coding because trying to encode a symbol that
//! has zero probability under the used entropy model would fail.
//!
//! When constructing an entropy model then the caller always has to provide a support
//! (either as an integer range or as a list of symbols of arbitrary type). All entropy
//! models in this module enforce the following constraints:
//!
//! 1. all symbols within the user-provided support are assigned at least the smallest
//!    nonzero probability that is representable at the used fixed-point `PRECISION` (even
//!    if naive rounding would lead to zero probability);
//! 2. all symbols that are not in the user-provided support have probability zero;
//! 3. the probabilities add up to one (this even holds when, e.g., quantizing a continuous
//!    probability distribution on a finite support that is smaller than the continuous
//!    distribution's possibly unbounded support); and
//! 4. no single symbol has probability one, i.e., we disallow degenerate entropy models
//!    that put all probability mass on a single symbol, as such models can lead to problems
//!    in some entropy coders (if you don't know whether you may encounter degenerate
//!    entropy models for some symbols, just check for degeneracy and encode nothing in that
//!    case since the corresponding symbols can be trivially reconstructed).
//!
//! When entropy models are constructed from a floating-point representation of some
//! probability distribution then rounding is done in such a way that the above constraints
//! are satisfied. When entropy models are constructed by passing in probabilities that are
//! already in fixed-point representation, then the constructor verifies the above
//! constraints in an efficient way.
//!
//! While constraints (1) and (4) above are strictly enforced (for types defined in this
//! module), constraints (2) and (3) hold in practice but must not be relied on for memory
//! safety as they can technically be violated without the use of `unsafe` (by using a
//! [`LeakyQuantizer`] with an invalid
//! [`Distribution`](probability::distribution::Distribution), i.e., one whose cumulative
//! distribution function either isn't monotonic or has an image that exceeds the interval
//! `[0, 1]`).
//!
//! [`stack`]: super::stack
//! [`queue`]: super::queue
//! [`Binomial`]: probability::distribution::Binomial
//! [`Gaussian`]: probability::distribution::Gaussian

#[cfg(feature = "std")]
use std::collections::{
    hash_map::Entry::{Occupied, Vacant},
    HashMap,
};

#[cfg(not(feature = "std"))]
use hashbrown::hash_map::{
    Entry::{Occupied, Vacant},
    HashMap,
};

use alloc::{boxed::Box, vec::Vec};
use core::{borrow::Borrow, fmt::Debug, hash::Hash, marker::PhantomData, ops::RangeInclusive};
use libm::log1p;
use num_traits::{float::FloatCore, AsPrimitive, One, PrimInt, WrappingAdd, WrappingSub, Zero};

/// Re-export of [`probability::distribution::Distribution`].
///
/// Most users will never have to interact with this trait directly. When a method requires
/// a type that implements `Distribution`, most users will likely use a predefined type from
/// the [`probability`] crate. You only need to implement this trait if you want to use a
/// probability distribution that is not (yet) provided by the `probability` crate.
///
/// # See Also
///
/// - [`Inverse`]
///
/// [`probability::distribution::Distribution`]:
///     https://docs.rs/probability/latest/probability/distribution/trait.Distribution.html
/// [`probability`]: https://docs.rs/probability/latest/probability/
pub use probability::distribution::Distribution;

/// Re-export of [`probability::distribution::Inverse`].
///
/// Most users will never have to interact with this trait directly. When a method requires
/// a type that implements `Inverse`, most users will likely use a predefined type from
/// the [`probability`] crate. You only need to implement this trait if you want to use a
/// probability distribution that is not (yet) provided by the `probability` crate.
///
/// # See Also
///
/// - [`Distribution`]
///
/// [`probability::distribution::Inverse`]:
///     https://docs.rs/probability/latest/probability/distribution/trait.Inverse.html
/// [`probability`]: https://docs.rs/probability/latest/probability/
pub use probability::distribution::Inverse;

use crate::{wrapping_pow2, BitArray, NonZeroBitArray};

/// Base trait for probabilistic models of a data source.
///
/// All entropy models (see [module level documentation](self)) that can be used for
/// encoding and/or decoding with stream codes must implement this trait and at least one of
/// [`EncoderModel`] and/or [`DecoderModel`]. This trait exposes the type of [`Symbol`]s
/// over which the entropy model is defined, the type that is used to represent a
/// [`Probability`] in fixed-point arithmetic, and the fixed point `PRECISION` (see
/// [discussion of type parameters](super#type-parameters-of-entropy-models)).
///
/// # Blanket Implementation for `&impl EntropyModel`
///
/// We provide the following blanket implementation for references to `EntropyModel`s:
///
/// ```ignore
/// impl<M, const PRECISION: usize> EntropyModel<PRECISION> for &M
/// where
///     M: EntropyModel<PRECISION> + ?Sized
/// { ... }
/// ```
///
/// This means that, if some type `M` implements `EntropyModel<PRECISION>` for some
/// `PRECISION`, then so does the reference type `&M`. Analogous blanket implementations are
/// provided for the traits [`EncoderModel`], [`DecoderModel`], and
/// [`IterableEntropyModel`]. The implementations simply delegate all calls to `M` (which is
/// possible since all methods only take an `&self` receiver). Therefore:
/// - you don't need to (and, in fact, currently can't) implement `EntropyModel`,
///   `EncoderModel`, or `DecoderModel` for reference types `&M`; just implement these
///   traits for "value types" `M` and you'll get the implementation for the corresponding
///   reference types for free.
/// - when you write a function or method that takes a generic entropy model as an argument,
///   always take the entropy model (formally) *by value* (i.e., declare your function as
///   `fn f(model: impl EntropyModel<PRECISION>)` or as `f<M:
///   EntropyModel<PRECISION>>(model: M)`). Since all references to `EntropyModel`s are also
///   `EntropyModel`s themselves, a function with one of these signatures can be called with
///   an entropy model passed in either by value or by reference. If your function or method
///   needs to pass out several copies of `model` then add an extra bound `M: Copy` (see,
///   e.g., [`Encode::encode_iid_symbols`](super::Encode::encode_iid_symbols)). This will
///   allow users to call your function either with a reference to an entropy model (all
///   shared references implement `Copy`), or with some cheaply copyable entropy model such
///   as a view to a lookup model (see [`LookupDecoderModel::as_view`]).
///
/// # See Also
///
/// - [`EncoderModel`]
/// - [`DecoderModel`]
///
/// [`Symbol`]: Self::Symbol
/// [`Probability`]: Self::Probability
pub trait EntropyModel<const PRECISION: usize> {
    /// The type of data over which the entropy model is defined.
    ///
    /// This is the type of an item of the *uncompressed* data.
    ///
    /// Note that, although any given `EntropyModel` has a fixed associated `Symbol` type,
    /// this doesn't prevent you from encoding heterogeneous sequences of symbols where each
    /// symbol has a different type. You can use a different `EntropyModel` with a different
    /// associated `Symbol` type for each symbol.
    type Symbol;

    /// The type used to represent probabilities, cumulatives, and quantiles.
    ///
    /// This is a primitive unsigned integer type that must hold at least `PRECISION` bits.
    /// An integer value `p: Probability` semantically represents the probability,
    /// cumulative, or quantile `p * 2.0^(-PRECISION)` (where `^` denotes exponentiation and
    /// `PRECISION` is a const generic parameter of the trait `EntropyModel`).
    ///
    /// In many places where `constriction`'s public API *returns* probabilities, they have
    /// already been verified to be nonzero. In such a case, the probability is returned as
    /// a `Probability::NonZero`, which denotes the corresponding non-zeroable type (e.g.,
    /// if `Probability` is `u32` then `Probability::NonZero` is
    /// [`NonZeroU32`](core::num::NonZeroU32)). The "bare" `Probability` type is mostly used
    /// for left-cumulatives and quantiles (i.e., for points on the y-axis in the graph of a
    /// cumulative distribution function).
    ///
    /// # Enforcing the Constraints
    ///
    /// The constraint that `1 <= PRECISION <= Probability::BITS` currently isn't enforced
    /// statically since Rust does not yet allow const expressions in type bounds.
    /// Therefore, if your implementation of `EntropyModel` relies on this constraint at any
    /// point, it should state it as an assertion: `assert!(1 <= PRECISOIN && PRECISION <=
    /// Probability::BITS)`. This assertion has zero runtime cost because it can be
    /// trivially evaluated at compile time and therefore will be optimized out if it holds.
    /// The implementations provided by `constriction` strive to include this and related
    /// assertions wherever necessary.
    ///
    /// # (Internal) Representation of Probability One
    ///
    /// The case of "probability one" is treated specially. This case does not come up in
    /// the public API since we disallow probability one for any individual symbol under any
    /// entropy model, and since all left-sided cumulatives always correspond to a symbol
    /// with nonzero probability. But the value "one" still comes up internally as the
    /// right-cumulative of the last allowed symbol for any model. Although our treatment of
    /// "probability one" can thus be considered an implementation detail, it is likely to
    /// become an issue in third-party implementations of `EntropyModel`, so it is worth
    /// documenting our recommended treatment.
    ///
    /// We internally represent "probability one" by its normal fixed-point representation
    /// of `p = 1 << PRECISION` (i.e., `p = 2^PRECISION` in mathematical notation) if this
    /// value fits into `Probability`, i.e., if `PRECISION != Probability::BITS`. In the
    /// (uncommon) case where `PRECISION == Probability::BITS`, we represent "probability
    /// one" as the integer zero (i.e., cutting off the overflowing bit). This means that
    /// any probability that is guaranteed to not be one can always be calculated by
    /// subtracting its left-sided cumulative from its right-sided cumulative in wrapping
    /// arithmetic. However, this convention means that one has to be careful not to confuse
    /// probability zero with probabilty one. In our implementations, these two possible
    /// interpretations of the integer `p = 0` always turned out to be easy to disambiguate
    /// statically.
    type Probability: BitArray;
}

/// A trait for [`EntropyModel`]s that can be serialized into a common format.
///
/// The method [`symbol_table`] iterates over all symbols with nonzero probability under the
/// entropy. The iteration occurs in uniquely defined order of increasing left-sided
/// cumulative probability distribution of the symbols. All `EntropyModel`s for which such
/// iteration can be implemented efficiently should implement this trait. `EntropyModel`s
/// for which such iteration would require extra work (e.g., sorting symbols by left-sided
/// cumulative distribution) should *not* implement this trait so that callers can assume
/// that calling `symbol_table` is cheap.
///
/// The main advantage of implementing this trait is that it provides default
/// implementations of conversions to various other `EncoderModel`s and `DecoderModel`s, see
/// [`to_generic_encoder_model`], [`to_generic_decoder_model`], and
/// [`to_generic_lookup_decoder_model`].
///
/// [`symbol_table`]: Self::symbol_table
/// [`to_generic_encoder_model`]: Self::to_generic_encoder_model
/// [`to_generic_decoder_model`]: Self::to_generic_decoder_model
/// [`to_generic_lookup_decoder_model`]: Self::to_generic_lookup_decoder_model
pub trait IterableEntropyModel<'m, const PRECISION: usize>: EntropyModel<PRECISION> {
    /// The type of the iterator returned by [`symbol_table`](Self::symbol_table).
    ///
    /// Each item is a tuple `(symbol, left_sided_cumulative, probability)`.
    type Iter: Iterator<
        Item = (
            Self::Symbol,
            Self::Probability,
            <Self::Probability as BitArray>::NonZero,
        ),
    >;

    /// Iterates over all symbols in the unique order that is consistent with the cumulative
    /// distribution.
    ///
    /// The iterator iterates in order of increasing cumulative.
    ///
    /// This method may be used, e.g., to export the model into a serializable format. It is
    /// also used internally by constructors that create a different but equivalent
    /// representation of the same entropy model (e.g., to construct a
    /// [`LookupDecoderModel`] from some `EncoderModel`).
    ///
    /// # Example
    ///
    /// ```
    /// use constriction::stream::model::{
    ///     IterableEntropyModel, SmallNonContiguousCategoricalDecoderModel
    /// };
    ///
    /// let symbols = vec!['a', 'b', 'x', 'y'];
    /// let probabilities = vec![0.125, 0.5, 0.25, 0.125]; // Can all be represented without rounding.
    /// let model = SmallNonContiguousCategoricalDecoderModel
    ///     ::from_symbols_and_floating_point_probabilities(&symbols, &probabilities).unwrap();
    ///
    /// // Print a table representation of this entropy model (e.g., for debugging).
    /// dbg!(model.symbol_table().collect::<Vec<_>>());
    ///
    /// // Create a lookup model. This method is provided by the trait `IterableEntropyModel`.
    /// let lookup_decoder_model = model.to_generic_lookup_decoder_model();
    /// ```
    ///
    /// # See also
    ///
    /// - [`floating_point_symbol_table`](Self::floating_point_symbol_table)
    fn symbol_table(&'m self) -> Self::Iter;

    /// Similar to [`symbol_table`], but yields both cumulatives and probabilities in
    /// floating point representation.
    ///
    /// The conversion to floats is guaranteed to be lossless due to the trait bound `F:
    /// From<Self::Probability>`.
    ///
    /// [`symbol_table`]: Self::symbol_table
    fn floating_point_symbol_table<F>(
        &'m self,
    ) -> FloatingPointSymbolTable<F, Self::Iter, PRECISION>
    where
        F: From<Self::Probability>,
    {
        FloatingPointSymbolTable {
            inner: self.symbol_table(),
            phantom: PhantomData,
        }
    }

    /// Returns the entropy in units of bits (i.e., base 2).
    ///
    /// The entropy is the theoretical lower bound on the *expected* bit rate in any
    /// lossless entropy coder.
    ///
    /// Note that calling this method on a [`LeakilyQuantizedDistribution`] will return the
    /// entropy *after quantization*, not the differential entropy of the underlying
    /// continuous probability distribution.
    fn entropy_base2<F>(&'m self) -> F
    where
        F: num_traits::Float + core::iter::Sum,
        Self::Probability: Into<F>,
    {
        let entropy_scaled = self
            .symbol_table()
            .map(|(_, _, probability)| {
                let probability = probability.get().into();
                probability * probability.log2() // probability is guaranteed to be nonzero.
            })
            .sum::<F>();

        let whole = (F::one() + F::one()) * (Self::Probability::one() << (PRECISION - 1)).into();
        F::from(PRECISION).unwrap() - entropy_scaled / whole
    }

    /// Creates an [`EncoderModel`] from this `EntropyModel`
    ///
    /// This is a fallback method that should only be used if no more specialized
    /// conversions are available. It generates a [`NonContiguousCategoricalEncoderModel`]
    /// with the same probabilities and left-sided cumulatives as `self`. Note that a
    /// `NonContiguousCategoricalEncoderModel` is very generic and therefore not
    /// particularly optimized. Thus, before calling this method first check:
    /// - if the original `Self` type already implements `EncoderModel` (some types
    ///   implement *both* `EncoderModel` and `DecoderModel`); or
    /// - if the `Self` type has some inherent method with a name like `to_encoder_model`;
    ///   if it does, that method probably returns an implementation of `EncoderModel` that
    ///   is better optimized for your use case.
    #[inline(always)]
    fn to_generic_encoder_model(
        &'m self,
    ) -> NonContiguousCategoricalEncoderModel<Self::Symbol, Self::Probability, PRECISION>
    where
        Self::Symbol: Hash + Eq,
    {
        self.into()
    }

    /// Creates a [`DecoderModel`] from this `EntropyModel`
    ///
    /// This is a fallback method that should only be used if no more specialized
    /// conversions are available. It generates a [`NonContiguousCategoricalDecoderModel`]
    /// with the same probabilities and left-sided cumulatives as `self`. Note that a
    /// `NonContiguousCategoricalEncoderModel` is very generic and therefore not
    /// particularly optimized. Thus, before calling this method first check:
    /// - if the original `Self` type already implements `DecoderModel` (some types
    ///   implement *both* `EncoderModel` and `DecoderModel`); or
    /// - if the `Self` type has some inherent method with a name like `to_decoder_model`;
    ///   if it does, that method probably returns an implementation of `DecoderModel` that
    ///   is better optimized for your use case.
    #[inline(always)]
    fn to_generic_decoder_model(
        &'m self,
    ) -> NonContiguousCategoricalDecoderModel<
        Self::Symbol,
        Self::Probability,
        Vec<(Self::Probability, Self::Symbol)>,
        PRECISION,
    >
    where
        Self::Symbol: Clone,
    {
        self.into()
    }

    /// Creates a [`DecoderModel`] from this `EntropyModel`
    ///
    /// This is a fallback method that should only be used if no more specialized
    /// conversions are available. It generates a [`LookupDecoderModel`] that makes no
    /// assumption about contiguity of the support. Thus, before calling this method first
    /// check if the `Self` type has some inherent method with a name like
    /// `to_lookup_decoder_model`. If it does, that method probably returns a
    /// `LookupDecoderModel` that is better optimized for your use case.
    #[inline(always)]
    fn to_generic_lookup_decoder_model(
        &'m self,
    ) -> LookupDecoderModel<
        Self::Symbol,
        Self::Probability,
        NonContiguousSymbolTable<Vec<(Self::Probability, Self::Symbol)>>,
        Box<[Self::Probability]>,
        PRECISION,
    >
    where
        Self::Probability: Into<usize>,
        usize: AsPrimitive<Self::Probability>,
        Self::Symbol: Copy + Default,
    {
        self.into()
    }
}

/// The iterator returned by [`IterableEntropyModel::floating_point_symbol_table`].
#[derive(Debug)]
pub struct FloatingPointSymbolTable<F, I, const PRECISION: usize> {
    inner: I,
    phantom: PhantomData<F>,
}

impl<F, Symbol, Probability, I, const PRECISION: usize> Iterator
    for FloatingPointSymbolTable<F, I, PRECISION>
where
    F: FloatCore,
    Probability: BitArray + Into<F>,
    I: Iterator<Item = (Symbol, Probability, <Probability as BitArray>::NonZero)>,
{
    type Item = (Symbol, F, F);

    #[inline]
    fn next(&mut self) -> Option<Self::Item> {
        let (symbol, cumulative, prob) = self.inner.next()?;

        // This gets compiled into a constant, and the divisions by `whole` get compiled
        // into floating point multiplications rather than (slower) divisions.
        let whole = (F::one() + F::one()) * (Probability::one() << (PRECISION - 1)).into();
        Some((symbol, cumulative.into() / whole, prob.get().into() / whole))
    }

    #[inline(always)]
    fn size_hint(&self) -> (usize, Option<usize>) {
        self.inner.size_hint()
    }
}

impl<F, Symbol, Probability, I, const PRECISION: usize> ExactSizeIterator
    for FloatingPointSymbolTable<F, I, PRECISION>
where
    F: FloatCore,
    Probability: BitArray + Into<F>,
    I: ExactSizeIterator<Item = (Symbol, Probability, <Probability as BitArray>::NonZero)>,
{
}

/// A trait for [`EntropyModel`]s that can be used for encoding (compressing) data.
///
/// As discussed in the [module level documentation](self), all stream codes in
/// `constriction` use so-called [`EntropyModel`]s for encoding and/or decoding data. Some
/// of these `EntropyModel`s may be used only for encoding, only for decoding, or for both,
/// depending on their internal representation.
///
/// This `EncoderModel` trait is implemented for all entropy models that can be used for
/// *encoding* data. To encode data with an `EncoderModel`, construct an entropy coder that
/// implements the [`Encode`] trait and pass the data and the entropy model to one of the
/// methods of the [`Encode`] trait (or to an inherent method of the entropy coder, such as
/// [`AnsCoder::encode_symbols_reverse`]).
///
/// # Blanket Implementation for `&impl EncoderModel`
///
/// We provide the following blanket implementation for references to `EncoderModel`s:
///
/// ```ignore
/// impl<M, const PRECISION: usize> EncoderModel<PRECISION> for &M
/// where
///     M: EncoderModel<PRECISION> + ?Sized
/// { ... }
/// ```
///
/// This means that, if some type `M` implements `EncoderModel<PRECISION>` for some
/// `PRECISION`, then so does the reference type `&M`. Therefore, generic functions or
/// methods should never take a generic `EncoderModel` by reference. They should always take
/// the generic `EncoderModel` *by value* because this also covers the case of references
/// but is strictly more general. If your generic function needs to be able to cheaply copy
/// the `EncoderModel` (as it could with a shared reference) then it should still take the
/// generic `EncoderModel` formally by value and just add an additional `Copy` bound (see,
/// e.g., the method signature of [`Encode::encode_iid_symbols`]. For a more elaborate
/// explanation, please refer to the discussion of the analogous blanket implementation for
/// [`EntropyModel`].
///
/// # See Also
///
/// - base trait: [`EntropyModel`]
/// - sister trait: [`DecoderModel`]
/// - used with: [`Encode`]
///
/// [`Encode`]: super::Encode
/// [`AnsCoder::encode_symbols_reverse`]: super::stack::AnsCoder::encode_symbols_reverse
/// [`Encode::encode_iid_symbols`]: super::Encode::encode_iid_symbols
pub trait EncoderModel<const PRECISION: usize>: EntropyModel<PRECISION> {
    /// Looks up a symbol in the entropy model.
    ///
    /// Takes a `symbol` either by value or by reference and looks it up in the entropy
    /// model.
    /// - If `symbol` has a nonzero probability under the model, then this method returns
    ///   `Some((left_sided_cumulative, probability))`, where `probability` is the
    ///   probability in fixed-point representation (see
    ///   [discussion](EntropyModel::Probability)) and `left_sided_cumulative` is the sum of
    ///   the probabilities of all symbols up to but not including `symbol` (also in
    ///   fixed-point representation). Both `left_sided_cumulative` and `probability` are
    ///   guaranteed to be strictly smaller than `1 << PRECISION` (which would semantically
    ///   represent "probability one") because `probability` is nonzero and because we don't
    ///   support degenerate entropy models that put all probability mass on a single
    ///   symbol.
    /// - If `symbol` has zero probability under the model, then this method returns `None`.
    fn left_cumulative_and_probability(
        &self,
        symbol: impl Borrow<Self::Symbol>,
    ) -> Option<(Self::Probability, <Self::Probability as BitArray>::NonZero)>;

    /// Returns the probability of the given symbol in floating point representation.
    ///
    /// The trait bound `Self::Probability: Into<F>` guarantees that no rounding occurs in
    /// the conversion. You may have to specify the return type explicitly using "turbofish"
    /// notation `::<f64>(...)` or `::<f32>(...)`, see example below.
    ///
    /// Returns `0.0` if `symbol` is not in the support of the entropy model.
    ///
    /// This method is provided mainly as a convenience for debugging.
    ///
    /// # Example
    ///
    /// ```
    /// use constriction::stream::model::{EncoderModel, DefaultNonContiguousCategoricalEncoderModel};
    ///
    /// let symbols = vec!['a', 'b', 'c', 'd'];
    /// let probabilities = vec![1u32 << 21, 1 << 23, 1 << 22, 1 << 21];
    /// let model = DefaultNonContiguousCategoricalEncoderModel // "Default" uses `PRECISION = 24`
    ///     ::from_symbols_and_nonzero_fixed_point_probabilities(
    ///         symbols.iter().copied(), &probabilities, false)
    ///     .unwrap();
    ///
    /// assert_eq!(model.floating_point_probability::<f64>('a'), 0.125);
    /// assert_eq!(model.floating_point_probability::<f64>('b'), 0.5);
    /// assert_eq!(model.floating_point_probability::<f64>('c'), 0.25);
    /// assert_eq!(model.floating_point_probability::<f64>('d'), 0.125);
    /// assert_eq!(model.floating_point_probability::<f64>('x'), 0.0);
    /// ```
    ///
    /// [`fixed_point_probabilities`]: #method.fixed_point_probabilities
    /// [`floating_point_probabilities_lossy`]: #method.floating_point_probabilities_lossy
    /// [`from_floating_point_probabilities`]: #method.from_floating_point_probabilities
    /// [`from_nonzero_fixed_point_probabilities`]:
    /// #method.from_nonzero_fixed_point_probabilities
    #[inline]
    fn floating_point_probability<F>(&self, symbol: Self::Symbol) -> F
    where
        F: FloatCore,
        Self::Probability: Into<F>,
    {
        // This gets compiled to a single floating point multiplication rather than a (slow)
        // division.
        let whole = (F::one() + F::one()) * (Self::Probability::one() << (PRECISION - 1)).into();
        let probability = self
            .left_cumulative_and_probability(symbol)
            .map_or(Self::Probability::zero(), |(_, p)| p.get());
        probability.into() / whole
    }
}

/// A trait for [`EntropyModel`]s that can be used for decoding (decompressing) data.
///
/// As discussed in the [module level documentation](self), all stream codes in
/// `constriction` use so-called [`EntropyModel`]s for encoding and/or decoding data. Some
/// of these `EntropyModel`s may be used only for encoding, only for decoding, or for both,
/// depending on their internal representation.
///
/// This `DecoderModel` trait is implemented for all entropy models that can be used for
/// *decoding* data. To decode data with a `DecoderModel`, construct an entropy coder that
/// implements the [`Decode`] trait and pass the entropy model to one of the methods of the
/// [`Decode`] trait.
///
/// # Blanket Implementation for `&impl DecoderModel`
///
/// We provide the following blanket implementation for references to `DecoderModel`s:
///
/// ```ignore
/// impl<M, const PRECISION: usize> DecoderModel<PRECISION> for &M
/// where
///     M: DecoderModel<PRECISION> + ?Sized
/// { ... }
/// ```
///
/// This means that, if some type `M` implements `DecoderModel<PRECISION>` for some
/// `PRECISION`, then so does the reference type `&M`. Therefore, generic functions or
/// methods should never take a generic `DecoderModel` by reference. They should always take
/// the generic `DecoderModel` *by value* because this also covers the case of references
/// but is strictly more general. If your generic function needs to be able to cheaply copy
/// the `DecoderModel` (as it could with a shared reference) then it should still take the
/// generic `DecoderModel` formally by value and just add an additional `Copy` bound (see,
/// e.g., the method signature of [`Decode::decode_iid_symbols`]. For a more elaborate
/// explanation, please refer to the discussion of the analogous blanket implementation for
/// [`EntropyModel`].
///
/// # See Also
///
/// - base trait: [`EntropyModel`]
/// - sister trait: [`EncoderModel`]
/// - used with: [`Decode`]
///
/// [`Decode`]: super::Decode
/// [`Decode::decode_iid_symbols`]: super::Encode::encode_iid_symbols
pub trait DecoderModel<const PRECISION: usize>: EntropyModel<PRECISION> {
    /// Looks up the symbol for a given quantile.
    ///
    /// The argument `quantile` represents a number in the half-open interval `[0, 1)` in
    /// fixed-point arithmetic, i.e., it must be strictly smaller than `1 << PRECISION`.
    /// Think of `quantile` as a point on the vertical axis of a plot of the cumulative
    /// distribution function of the probability model. This method evaluates the inverse of
    /// the cumulative distribution function, which is sometimes called the *quantile
    /// function*.
    ///
    /// Returns a tuple `(symbol, left_sided_cumulative, probability)` where `probability`
    /// is the probability of `symbol` under the entropy model (in fixed-point arithmetic)
    /// and `left_sided_cumulative` is the sum of the probabilities of all symbols up to and
    /// not including `symbol`. The returned `symbol` is the unique symbol that satisfies
    /// `left_sided_cumulative <= quantile < left_sided_cumulative + probability` (where the
    /// addition on the right-hand side is non-wrapping).
    ///
    /// Note that, in contrast to [`EncoderModel::left_cumulative_and_probability`], this
    /// method does *not* return an `Option`. This is because, as long as `quantile < 1 <<
    /// PRECISION`, a valid probability distribution always has a symbol for which the range
    /// `left_sided_cumulative..(left_sided_cumulative + quantile)` contains `quantile`, and
    /// the probability of this symbol is guaranteed to be nonzero because the probability
    /// is the size of the range, which contains at least the one element `quantile`.
    ///
    /// # Panics
    ///
    /// Implementations may panic if `quantile >= 1 << PRECISION`.
    fn quantile_function(
        &self,
        quantile: Self::Probability,
    ) -> (
        Self::Symbol,
        Self::Probability,
        <Self::Probability as BitArray>::NonZero,
    );
}

impl<M, const PRECISION: usize> EntropyModel<PRECISION> for &M
where
    M: EntropyModel<PRECISION> + ?Sized,
{
    type Probability = M::Probability;
    type Symbol = M::Symbol;
}

impl<'m, M, const PRECISION: usize> IterableEntropyModel<'m, PRECISION> for &'m M
where
    M: IterableEntropyModel<'m, PRECISION>,
{
    type Iter = M::Iter;

    fn symbol_table(&'m self) -> Self::Iter {
        (*self).symbol_table()
    }

    fn entropy_base2<F>(&'m self) -> F
    where
        F: num_traits::Float + core::iter::Sum,
        Self::Probability: Into<F>,
    {
        (*self).entropy_base2()
    }

    #[inline(always)]
    fn to_generic_encoder_model(
        &'m self,
    ) -> NonContiguousCategoricalEncoderModel<Self::Symbol, Self::Probability, PRECISION>
    where
        Self::Symbol: Hash + Eq,
    {
        (*self).to_generic_encoder_model()
    }

    #[inline(always)]
    fn to_generic_decoder_model(
        &'m self,
    ) -> NonContiguousCategoricalDecoderModel<
        Self::Symbol,
        Self::Probability,
        Vec<(Self::Probability, Self::Symbol)>,
        PRECISION,
    >
    where
        Self::Symbol: Clone,
    {
        (*self).to_generic_decoder_model()
    }
}

impl<M, const PRECISION: usize> EncoderModel<PRECISION> for &M
where
    M: EncoderModel<PRECISION> + ?Sized,
{
    #[inline(always)]
    fn left_cumulative_and_probability(
        &self,
        symbol: impl Borrow<Self::Symbol>,
    ) -> Option<(Self::Probability, <Self::Probability as BitArray>::NonZero)> {
        (*self).left_cumulative_and_probability(symbol)
    }
}

impl<M, const PRECISION: usize> DecoderModel<PRECISION> for &M
where
    M: DecoderModel<PRECISION> + ?Sized,
{
    #[inline(always)]
    fn quantile_function(
        &self,
        quantile: Self::Probability,
    ) -> (
        Self::Symbol,
        Self::Probability,
        <Self::Probability as BitArray>::NonZero,
    ) {
        (*self).quantile_function(quantile)
    }
}

#[derive(Debug, Clone, Copy)]
pub struct UniformModel<Probability: BitArray, const PRECISION: usize> {
    probability_per_bin: Probability::NonZero,
    last_symbol: Probability,
}

impl<Probability: BitArray, const PRECISION: usize> UniformModel<Probability, PRECISION> {
    pub fn new(range: Probability) -> Self {
        assert!(range > Probability::one()); // We don't support degenerate probability distributions (i.e. range=1).
        let range = unsafe { range.into_nonzero_unchecked() }; // For performance hint.
        let last_symbol = range.get() - Probability::one();

        if PRECISION == Probability::BITS {
            let probability_per_bin =
                (Probability::zero().wrapping_sub(&range.get()) / range.get()) + Probability::one();
            unsafe {
                Self {
                    probability_per_bin: probability_per_bin.into_nonzero_unchecked(),
                    last_symbol,
                }
            }
        } else {
            let probability_per_bin = (Probability::one() << PRECISION) / range.get();
            let probability_per_bin = probability_per_bin
                .into_nonzero()
                .expect("Range of Uniform model must not exceed 1 << PRECISION.");
            Self {
                probability_per_bin,
                last_symbol,
            }
        }
    }
}

impl<Probability: BitArray, const PRECISION: usize> EntropyModel<PRECISION>
    for UniformModel<Probability, PRECISION>
{
    type Symbol = Probability;
    type Probability = Probability;
}

impl<'m, Probability: BitArray, const PRECISION: usize> IterableEntropyModel<'m, PRECISION>
    for UniformModel<Probability, PRECISION>
where
    Probability: AsPrimitive<usize>,
{
    type Iter = UniformModelIter<'m, Probability, PRECISION>;

    fn symbol_table(&'m self) -> Self::Iter {
        UniformModelIter {
            model: self,
            symbol: Probability::zero(),
            terminated: false,
        }
    }
}

#[derive(Debug, Clone)]
pub struct UniformModelIter<'m, Probability: BitArray, const PRECISION: usize> {
    model: &'m UniformModel<Probability, PRECISION>,
    symbol: Probability,
    terminated: bool,
}

impl<'m, Probability: BitArray, const PRECISION: usize> Iterator
    for UniformModelIter<'m, Probability, PRECISION>
where
    Probability: AsPrimitive<usize>,
{
    type Item = (Probability, Probability, Probability::NonZero);

    fn next(&mut self) -> Option<Self::Item> {
        if self.terminated {
            None
        } else {
            let left_cumulative = self.symbol * self.model.probability_per_bin.get();

            if self.symbol != self.model.last_symbol {
                let symbol = self.symbol;
                self.symbol = symbol.wrapping_add(&Probability::one());
                // Most common case.
                Some((symbol, left_cumulative, self.model.probability_per_bin))
            } else {
                // Less common but possible case.
                self.terminated = true;
                self.symbol = self.symbol.wrapping_add(&Probability::one());
                let probability =
                    wrapping_pow2::<Probability>(PRECISION).wrapping_sub(&left_cumulative);
                let probability = unsafe { probability.into_nonzero_unchecked() };
                Some((self.model.last_symbol, left_cumulative, probability))
            }
        }
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        let len = self.model.last_symbol.as_() + 1 - self.symbol.as_();
        (len, Some(len))
    }
}

impl<'m, Probability: BitArray, const PRECISION: usize> ExactSizeIterator
    for UniformModelIter<'m, Probability, PRECISION>
where
    Probability: AsPrimitive<usize>,
{
}

impl<Probability: BitArray, const PRECISION: usize> EncoderModel<PRECISION>
    for UniformModel<Probability, PRECISION>
{
    fn left_cumulative_and_probability(
        &self,
        symbol: impl Borrow<Self::Symbol>,
    ) -> Option<(Self::Probability, <Self::Probability as BitArray>::NonZero)> {
        let symbol = *symbol.borrow();
        let left_cumulative = symbol.wrapping_mul(&self.probability_per_bin.get());

        #[allow(clippy::comparison_chain)]
        if symbol < self.last_symbol {
            // Most common case.
            Some((left_cumulative, self.probability_per_bin))
        } else if symbol == self.last_symbol {
            // Less common but possible case.
            let probability =
                wrapping_pow2::<Probability>(PRECISION).wrapping_sub(&left_cumulative);
            let probability = unsafe { probability.into_nonzero_unchecked() };
            Some((left_cumulative, probability))
        } else {
            // Least common case.
            None
        }
    }
}

impl<Probability: BitArray, const PRECISION: usize> DecoderModel<PRECISION>
    for UniformModel<Probability, PRECISION>
{
    fn quantile_function(
        &self,
        quantile: Self::Probability,
    ) -> (
        Self::Symbol,
        Self::Probability,
        <Self::Probability as BitArray>::NonZero,
    ) {
        let symbol_guess = quantile / self.probability_per_bin.get(); // Might be 1 too large for last symbol.
        let remainder = quantile % self.probability_per_bin.get();
        if symbol_guess < self.last_symbol {
            (symbol_guess, quantile - remainder, self.probability_per_bin)
        } else {
            let left_cumulative = self.last_symbol * self.probability_per_bin.get();
            let prob = wrapping_pow2::<Probability>(PRECISION).wrapping_sub(&left_cumulative);
            let prob = unsafe {
                // SAFETY: prob can't be zero because we have a `quantile` that is contained in its interval.
                prob.into_nonzero_unchecked()
            };
            (self.last_symbol, left_cumulative, prob)
        }
    }
}

/// Quantizes probability distributions and represents them in fixed-point precision.
///
/// You will usually want to use this type through one of its type aliases,
/// [`DefaultLeakyQuantizer`] or [`SmallLeakyQuantizer`], see [discussion of
/// presets](super#presets).
///
/// # Examples
///
/// ## Quantizing Continuous Distributions
///
/// ```
/// use constriction::{
///     stream::{model::DefaultLeakyQuantizer, stack::DefaultAnsCoder, Encode, Decode},
///     UnwrapInfallible,
/// };
///
/// // Create a quantizer that supports integer symbols from -5 to 20 (inclusively),
/// // using the "default" preset for `Probability` and `PRECISION`.
/// let quantizer = DefaultLeakyQuantizer::new(-5..=20);
///
/// // Quantize a normal distribution with mean 8.3 and standard deviation 4.1.
/// let continuous_distribution1 = probability::distribution::Gaussian::new(8.3, 4.1);
/// let entropy_model1 = quantizer.quantize(continuous_distribution1);
///
/// // You can reuse the same quantizer for more than one distribution, and the distributions don't
/// // even have to be of the same type (e.g., one can be a `Gaussian` and another a `Laplace`).
/// let continuous_distribution2 = probability::distribution::Laplace::new(-1.4, 2.7);
/// let entropy_model2 = quantizer.quantize(continuous_distribution2);
///
/// // Use the entropy models with an entropy coder.
/// let mut ans_coder = DefaultAnsCoder::new();
/// ans_coder.encode_symbol(4, entropy_model1).unwrap();
/// ans_coder.encode_symbol(-3, entropy_model2).unwrap();
///
/// // Decode symbols (in reverse order, since the `AnsCoder` is a stack) and verify correctness.
/// assert_eq!(ans_coder.decode_symbol(entropy_model2).unwrap_infallible(), -3);
/// assert_eq!(ans_coder.decode_symbol(entropy_model1).unwrap_infallible(), 4);
/// assert!(ans_coder.is_empty());
/// ```
///
/// ## Quantizing a Discrete Distribution (That Has an Analytic Expression)
///
/// If you pass a discrete probability distribution to the method [`quantize`] then it no
/// longer needs to perform any quantization in the data space, but it will still perform
/// steps 2 and 3 in the list below, i.e., it will still convert to a "leaky" fixed-point
/// approximation that can be used by any of `constrictions`'s stream codes. In the
/// following example, we'll quantize a [`Binomial`](probability::distribution::Binomial)
/// distribution (as discussed [below](#dont-quantize-categorical-distributions-though), you
/// should *not* quantize a [`Categorical`](probability::distribution::Categorical)
/// distribution since there are more efficient specialized types for this use case).
///
/// ```
/// use constriction::stream::{
///     model::DefaultLeakyQuantizer, queue::DefaultRangeEncoder, Encode, Decode
/// };
///
/// let distribution = probability::distribution::Binomial::new(1000, 0.1); // arguments: `n, p`
/// let quantizer = DefaultLeakyQuantizer::new(0..=1000); // natural support is `0..=n`
/// let entropy_model = quantizer.quantize(distribution);
///
/// // Let's use a Range Coder this time, just for fun (we could as well use an ANS Coder again).
/// let mut range_encoder = DefaultRangeEncoder::new();
///
/// // Encode a "typical" symbol from the distribution (i.e., one with non-negligible probability).
/// range_encoder.encode_symbol(107, entropy_model).unwrap();
///
/// // Due to the "leakiness" of the quantizer, the following still works despite the fact that
/// // the symbol `1000` has a ridiculously low probability under the binomial distribution.
/// range_encoder.encode_symbol(1000, entropy_model).unwrap();
///
/// // Decode symbols (in forward order, since range coding operates as a queue) and verify.
/// let mut range_decoder = range_encoder.into_decoder().unwrap();
/// assert_eq!(range_decoder.decode_symbol(entropy_model).unwrap(), 107);
/// assert_eq!(range_decoder.decode_symbol(entropy_model).unwrap(), 1000);
/// assert!(range_decoder.maybe_exhausted());
/// ```
///
/// # Detailed Description
///
/// A `LeakyQuantizer` is a builder of [`LeakilyQuantizedDistribution`]s. It takes an
/// arbitrary probability distribution that implements the [`Distribution`] trait from the
/// crate [`probability`] and turns it into a [`LeakilyQuantizedDistribution`] by performing
/// the following three steps:
///
/// 1. **quantization**: lossless entropy coding can only be performed over *discrete* data.
///    Any continuous (real-valued) data has to be approximated by some discrete set of
///    points. If you provide a continuous distributions (i.e., a probability density
///    function) to this builder, then it will quantize the data space by rounding values to
///    the nearest integer. This step is optional, see
///    [below](#continuous-vs-discrete-probability-distributions).
/// 2. **approximation with fixed-point arithmetic**: an entropy model that is used for
///    compressing and decompressing has to be *exactly* invertible, so that its
///    [`EncoderModel`] implementation is compatible with its [`DecoderModel`]
///    implementation. The `LeakilyQuantizedDistribution`s that are built by this builder
///    represent probabilities and quantiles in fixed-point arithmetic with `PRECISION`
///    bits. This allows them to avoid rounding errors when inverting the model, so that
///    they can implement both `EncoderModel` and `DecoderModel` in such a way that one is
///    the *exact* inverse of the other.
/// 3. **introducing leakiness**: naively approximating a probability distribution with
///    fixed point arithmetic could lead to problems: it could round some very small
///    probabilities to zero. This would have the undesirable effect that the corresponding
///    symbol then could no longer be encoded. This builder ensures that the
///    `LeakilyQuantizedDistribution`s that it creates assign a nonzero probability to all
///    symbols within a user-defined range, so that these symbols can always be encoded,
///    even if their probabilities under the *original* probability distribution are very
///    low (or even zero).
///
/// # Continuous vs. Discrete Probability Distributions
///
/// The method [`quantize`] accepts both continuous probability distributions (i.e.,
/// probability density functions, such as [`Gaussian`]) and discrete distributions that are
/// defined only on (some) integers (i.e., probability mass functions, such as
/// [`Binomial`]). The resulting [`LeakilyQuantizedDistribution`] will always be a discrete
/// probability distribution. If the original probability distribution is continuous, then
/// the quantizer implicitly creates bins of size one by rounding to the nearest integer
/// (i.e., the bins range from `i - 0.5` to `i + 0.5` for each integer `i`). If the original
/// probability distribution is discrete then no rounding in the symbol space occurs, but
/// the quantizer still performs steps 2 and 3 above, i.e., it still rounds probabilities
/// and quantiles to fixed-point arithmetic in a way that ensures that all probabilities
/// within a user-defined range are nonzero.
///
/// ## Don't Quantize *Categorical* Distributions, Though.
///
/// Although you can use a `LeakyQuantizer` for *discrete* probability distributions, you
/// should *not* use it for probability distributions of the type
/// [`probability::distribution::Categorical`]. While this will technically work, it will
/// lead to poor computational performance (and also to *slightly* suboptimal compression
/// efficiency). If you're dealing with categorical distributions, use one of the dedicated
/// types [`ContiguousCategoricalEntropyModel`], [`NonContiguousCategoricalEncoderModel`],
/// [`NonContiguousCategoricalDecoderModel`], or [`LookupDecoderModel`] instead.
///
/// By contrast, *do* use a `LeakyQuantizer` if the underlying probability [`Distribution`]
/// can be described by some analytic function (e.g., the function `f(x) ∝ e^{-(x-\mu)^2/2}`
/// describing the bell curve of a Gaussian distribution, or the function `f_n(k) = (n
/// choose k) p^k (1-p)^{n-k}` describing the probability mass function of a binomial
/// distribution). For such parameterized distributions, both the cumulative distribution
/// function and its inverse can often be expressed as, or at least approximated by, some
/// analytic expression that can be evaluated in constant time, independent of the number of
/// possible symbols.
///
/// # Computational Efficiency
///
/// Two things should be noted about computational efficiency:
///
/// - **quantization is lazy:** both the constructor of a `LeakyQuantizer` and the method
///   [`quantize`] perform only a small constant amount of work, independent of the
///   `PRECISION` and the number of symbols on which the resulting entropy model will be
///   defined. The actual quantization is done once the resulting
///   [`LeakilyQuantizedDistribution`] is used for encoding and/or decoding, and it is only
///   done for the involved symbols.
/// - **quantization for decoding is more expensive than for encoding:** using a
///   `LeakilyQuantizedDistribution` as an [`EncoderModel`] only requires evaluating the
///   cumulative distribution function (CDF) of the underlying continuous probability
///   distribution a constant number of times (twice, to be precise). By contrast, using it
///   as a [`DecoderModel`] requires numerical inversion of the cumulative distribution
///   function. This numerical inversion starts by calling [`Inverse::inverse`] from the
///   crate [`probability`] on the underlying continuous probability distribution. But the
///   result of this method call then has to be refined by repeatedly probing the CDF in
///   order to deal with inevitable rounding errors in the implementation of
///   `Inverse::inverse`. The number of required iterations will depend on how accurate the
///   implementation of `Inverse::inverse` is.
///
/// The laziness means that it is relatively cheap to use a different
/// `LeakilyQuantizedDistribution` for each symbol of the message, which is a common
/// thing to do in machine-learning based compression methods. By contrast, if you want to
/// use the *same* entropy model for many symbols then a `LeakilyQuantizedDistribution` can
/// become unnecessarily expensive, especially for decoding, because you might end up
/// calculating the inverse CDF in the same region over and over again. If this is the case,
/// consider tabularizing the `LeakilyQuantizedDistribution` that you obtain from the method
/// [`quantize`] by calling [`to_generic_encoder_model`] or [`to_generic_decoder_model`] on
/// it (or, if you use a low `PRECISION`, you may even consider calling
/// [`to_generic_lookup_decoder_model`]). You'll have to bring the trait
/// [`IterableEntropyModel`] into scope to call these conversion methods (`use
/// constriction::stream::model::IterableEntropyModel`).
///
/// # Requirements for Correctness
///
/// The original distribution that you pass to the method [`quantize`] can only be an
/// approximation of a true (normalized) probability distribution because it represents
/// probabilities with finite (floating point) precision. Despite the possibility of
/// rounding errors in the underlying (floating point) distribution, a `LeakyQuantizer` is
/// guaranteed to generate a valid entropy model with exactly compatible implementations of
/// [`EncoderModel`] and [`DecoderModel`] as long as both of the following requirements are
/// met:
///
/// - The cumulative distribution function (CDF) [`Distribution::distribution`] is defined
///   on all mid points between integers that lie within the range that is provided as
///   argument `support` to the `new` method; it is monotonically nondecreasing, and its
///   values do not exceed the closed interval `[0.0, 1.0]`. It is OK if the CDF does not
///   cover the entire interval from `0.0` to `1.0` (e.g., due to rounding errors or
///   clipping); any remaining probability mass on the tails is added to the probability
///   of the symbols at the respective ends of the `support`.
/// - The quantile function or inverse CDF [`Inverse::inverse`] evaluates to a finite
///   non-NaN value everywhere on the open interval `(0.0, 1.0)`, and it is monotonically
///   nondecreasing on this interval. It does not have to be defined at the boundaries `0.0`
///   or `1.0` (more precisely, it only has to be defined on the closed interval
///   `[epsilon, 1.0 - epsilon]` where `epsilon := 2.0^{-(PRECISION+1)}` and `^` denotes
///   mathematical exponentiation). Further, the implementation of `Inverse::inverse` does
///   not actually have to be the inverse of `Distribution::distribution` because it is only
///   used as an initial hint where to start a search for the true inverse. It is OK if
///   `Inverse::inverse` is just some approximation of the true inverse CDF. Any deviations
///   between `Inverse::inverse` and the true inverse CDF will negatively impact runtime
///   performance but will otherwise have no observable effect.
///
/// [`quantize`]: Self::quantize
/// [`Gaussian`]: probability::distribution::Gaussian
/// [`Binomial`]: probability::distribution::Binomial
/// [`to_generic_encoder_model`]: IterableEntropyModel::to_generic_encoder_model
/// [`to_generic_decoder_model`]: IterableEntropyModel::to_generic_decoder_model
/// [`to_generic_lookup_decoder_model`]: IterableEntropyModel::to_generic_lookup_decoder_model
/// [`IterableEntropyModel`]: IterableEntropyModel
#[derive(Debug, Clone, Copy)]
pub struct LeakyQuantizer<F, Symbol, Probability, const PRECISION: usize> {
    min_symbol_inclusive: Symbol,
    max_symbol_inclusive: Symbol,
    free_weight: F,
    phantom: PhantomData<Probability>,
}

/// Type alias for a typical [`LeakyQuantizer`].
///
/// See:
/// - [`LeakyQuantizer`]
/// - [discussion of presets](super#presets)
pub type DefaultLeakyQuantizer<F, Symbol> = LeakyQuantizer<F, Symbol, u32, 24>;

/// Type alias for a [`LeakyQuantizer`] optimized for compatibility with lookup decoder
/// models.
///
/// See:
/// - [`LeakyQuantizer`]
/// - [discussion of presets](super#presets)
pub type SmallLeakyQuantizer<F, Symbol> = LeakyQuantizer<F, Symbol, u16, 12>;

impl<F, Symbol, Probability, const PRECISION: usize>
    LeakyQuantizer<F, Symbol, Probability, PRECISION>
where
    Probability: BitArray + Into<F>,
    Symbol: PrimInt + AsPrimitive<Probability> + WrappingSub + WrappingAdd,
    F: FloatCore,
{
    /// Constructs a `LeakyQuantizer` with a finite support.
    ///
    /// The `support` is an inclusive range (which can be expressed with the `..=` notation,
    /// as in `-100..=100`). All [`LeakilyQuantizedDistribution`]s generated by this
    /// `LeakyQuantizer` are then guaranteed to assign a nonzero probability to all symbols
    /// within the `support`, and a zero probability to all symbols outside of the
    /// `support`. Having a known support is often a useful property of entropy models
    /// because it ensures that all symbols within the `support` can indeed be encoded, even
    /// if their probability under the underlying probability distribution is extremely
    /// small.
    ///
    /// This method takes `support` as a `RangeInclusive` because we want to support, e.g.,
    /// probability distributions over the `Symbol` type `u8` with full support `0..=255`.
    ///
    /// # Panics
    ///
    /// Panics if either of the following conditions is met:
    ///
    /// - `support` is empty; or
    /// - `support` contains only a single value (we do not support degenerate probability
    ///   distributions that put all probability mass on a single symbol); or
    /// - `support` is larger than `1 << PRECISION` (because in this case, assigning any
    ///   representable nonzero probability to all elements of `support` would exceed our
    ///   probability budge).
    ///
    /// [`quantize`]: #method.quantize
    pub fn new(support: RangeInclusive<Symbol>) -> Self {
        assert!(PRECISION > 0 && PRECISION <= Probability::BITS);

        // We don't support degenerate probability distributions (i.e., distributions that
        // place all probability mass on a single symbol).
        assert!(support.end() > support.start());

        let support_size_minus_one = support.end().wrapping_sub(support.start()).as_();
        let max_probability = Probability::max_value() >> (Probability::BITS - PRECISION);
        let free_weight = max_probability
            .checked_sub(&support_size_minus_one)
            .expect("The support is too large to assign a nonzero probability to each element.")
            .into();

        LeakyQuantizer {
            min_symbol_inclusive: *support.start(),
            max_symbol_inclusive: *support.end(),
            free_weight,
            phantom: PhantomData,
        }
    }

    /// Quantizes the given probability distribution and returns an [`EntropyModel`].
    ///
    /// See [struct documentation](Self) for details and code examples.
    ///
    /// Note that this method takes `self` only by reference, i.e., you can reuse
    /// the same `Quantizer` to quantize arbitrarily many distributions.
    #[inline]
    pub fn quantize<D: Distribution>(
        self,
        distribution: D,
    ) -> LeakilyQuantizedDistribution<F, Symbol, Probability, D, PRECISION> {
        LeakilyQuantizedDistribution {
            inner: distribution,
            quantizer: self,
        }
    }

    /// Returns the exact range of symbols that have nonzero probability.
    ///
    /// The returned inclusive range is the same as the one that was passed in to the
    /// constructor [`new`](Self::new). All entropy models created by the method
    /// [`quantize`](Self::quantize) will assign a nonzero probability to all elements in
    /// the `support`, and they will assign a zero probability to all elements outside of
    /// the `support`. The support contains at least two and at most `1 << PRECISION`
    /// elements.
    #[inline]
    pub fn support(&self) -> RangeInclusive<Symbol> {
        self.min_symbol_inclusive..=self.max_symbol_inclusive
    }
}

/// An [`EntropyModel`] that approximates a parameterized probability [`Distribution`].
///
/// A `LeakilyQuantizedDistribution` can be created with a [`LeakyQuantizer`]. It can be
/// used for encoding and decoding with any of the stream codes provided by the
/// `constriction` crate (it can only be used for decoding if the underlying
/// [`Distribution`] implements the the trait [`Inverse`] from the [`probability`] crate).
///
/// # When Should I Use This Type of Entropy Model?
///
/// Use a `LeakilyQuantizedDistribution` when you have a probabilistic model that is defined
/// through some analytic expression (e.g., a mathematical formula for the probability
/// density function of a continuous probability distribution, or a mathematical formula for
/// the probability mass functions of some discrete probability distribution). Examples of
/// probabilistic models that lend themselves to being quantized are continuous
/// distributions such as [`Gaussian`], [`Laplace`], or [`Exponential`], as well as discrete
/// distributions with some analytic expression, such as [`Binomial`].
///
/// Do *not* use a `LeakilyQuantizedDistribution` if your probabilistic model can only be
/// presented as an explicit probability table. While you could, in principle, apply a
/// [`LeakyQuantizer`] to such a [`Categorical`] distribution, you will get better
/// computational performance (and also *slightly* better compression effectiveness) if you
/// instead use one of the dedicated types [`ContiguousCategoricalEntropyModel`],
/// [`NonContiguousCategoricalEncoderModel`], [`NonContiguousCategoricalDecoderModel`], or
/// [`LookupDecoderModel`].
///
/// # Examples
///
/// See [examples for `LeakyQuantizer`](LeakyQuantizer#examples).
///
/// # Computational Efficiency
///
/// See [discussion for `LeakyQuantizer`](LeakyQuantizer#computational-efficiency).
///
/// [`Gaussian`]: probability::distribution::Gaussian
/// [`Laplace`]: probability::distribution::Laplace
/// [`Exponential`]: probability::distribution::Exponential
/// [`Binomial`]: probability::distribution::Binomial
/// [`Categorical`]: probability::distribution::Categorical
#[derive(Debug, Clone, Copy)]
pub struct LeakilyQuantizedDistribution<F, Symbol, Probability, D, const PRECISION: usize> {
    inner: D,
    quantizer: LeakyQuantizer<F, Symbol, Probability, PRECISION>,
}

impl<F, Symbol, Probability, D, const PRECISION: usize>
    LeakilyQuantizedDistribution<F, Symbol, Probability, D, PRECISION>
where
    Probability: BitArray + Into<F>,
    Symbol: PrimInt + AsPrimitive<Probability> + WrappingSub + WrappingAdd,
    F: FloatCore,
{
    /// Returns the quantizer that was used to create this entropy model.
    ///
    /// You may want to reuse this quantizer to quantize further probability distributions.
    #[inline]
    pub fn quantizer(self) -> LeakyQuantizer<F, Symbol, Probability, PRECISION> {
        self.quantizer
    }

    /// Returns a reference to the underlying (floating-point) probability [`Distribution`].
    ///
    /// Returns the floating-point probability distribution which this
    /// `LeakilyQuantizedDistribution` approximates in fixed-point arithmetic.
    ///
    /// # See also
    ///
    /// - [`inner_mut`](Self::inner_mut)
    /// - [`into_inner`](Self::into_inner)
    ///
    /// [`Distribution`]: probability::distribution::Distribution
    #[inline]
    pub fn inner(&self) -> &D {
        &self.inner
    }

    /// Returns a mutable reference to the underlying (floating-point) probability
    /// [`Distribution`].
    ///
    /// You can use this method to mutate parameters of the underlying [`Distribution`]
    /// after it was already quantized. This is safe and cheap since quantization is done
    /// lazily anyway. Note that you can't mutate the [`support`](Self::support) since it is a
    /// property of the [`LeakyQuantizer`], not of the `Distribution`. If you want to modify
    /// the `support` then you have to create a new `LeakyQuantizer` with a different support.
    ///
    /// # See also
    ///
    /// - [`inner`](Self::inner)
    /// - [`into_inner`](Self::into_inner)
    ///
    /// [`Distribution`]: probability::distribution::Distribution
    #[inline]
    pub fn inner_mut(&mut self) -> &mut D {
        &mut self.inner
    }

    /// Consumes the entropy model and returns the underlying (floating-point) probability
    /// [`Distribution`].
    ///
    /// Returns the floating-point probability distribution which this
    /// `LeakilyQuantizedDistribution` approximates in fixed-point arithmetic.
    ///
    /// # See also
    ///
    /// - [`inner`](Self::inner)
    /// - [`inner_mut`](Self::inner_mut)
    ///
    /// [`Distribution`]: probability::distribution::Distribution
    #[inline]
    pub fn into_inner(self) -> D {
        self.inner
    }

    /// Returns the exact range of symbols that have nonzero probability.
    ///
    /// See [`LeakyQuantizer::support`].
    #[inline]
    pub fn support(&self) -> RangeInclusive<Symbol> {
        self.quantizer.support()
    }
}

#[inline(always)]
fn slack<Probability, Symbol>(symbol: Symbol, min_symbol_inclusive: Symbol) -> Probability
where
    Probability: BitArray,
    Symbol: AsPrimitive<Probability> + WrappingSub,
{
    // This whole `mask` business is only relevant if `Symbol` is a signed type smaller than
    // `Probability`, which should be very uncommon. In all other cases, this whole stuff
    // will be optimized away.
    let mask = wrapping_pow2::<Probability>(8 * core::mem::size_of::<Symbol>())
        .wrapping_sub(&Probability::one());
    symbol.wrapping_sub(&min_symbol_inclusive).as_() & mask
}

impl<F, Symbol, Probability, D, const PRECISION: usize> EntropyModel<PRECISION>
    for LeakilyQuantizedDistribution<F, Symbol, Probability, D, PRECISION>
where
    Probability: BitArray,
{
    type Probability = Probability;
    type Symbol = Symbol;
}

impl<Symbol, Probability, D, const PRECISION: usize> EncoderModel<PRECISION>
    for LeakilyQuantizedDistribution<f64, Symbol, Probability, D, PRECISION>
where
    f64: AsPrimitive<Probability>,
    Symbol: PrimInt + AsPrimitive<Probability> + Into<f64> + WrappingSub,
    Probability: BitArray + Into<f64>,
    D: Distribution,
    D::Value: AsPrimitive<Symbol>,
{
    /// Performs (one direction of) the quantization.
    ///
    /// # Panics
    ///
    /// Panics if it detects some invalidity in the underlying probability distribution.
    /// This means that there is a bug in the implementation of [`Distribution`] for the
    /// distribution `D`: the cumulative distribution function is either not monotonically
    /// nondecreasing, returns NaN, or its values exceed the interval `[0.0, 1.0]` at some
    /// point.
    ///
    /// More precisely, this method panics if the quantization procedure leads to a zero
    /// probability despite the added leakiness (and despite the fact that the constructor
    /// checks that `min_symbol_inclusive < max_symbol_inclusive`, i.e., that there are at
    /// least two symbols with nonzero probability and therefore the probability of a single
    /// symbol should not be able to overflow).
    ///
    /// See [requirements for correctness](LeakyQuantizer#requirements-for-correctness).
    ///
    /// [`Distribution`]: probability::distribution::Distribution
    fn left_cumulative_and_probability(
        &self,
        symbol: impl Borrow<Symbol>,
    ) -> Option<(Probability, Probability::NonZero)> {
        let min_symbol_inclusive = self.quantizer.min_symbol_inclusive;
        let max_symbol_inclusive = self.quantizer.max_symbol_inclusive;
        let free_weight = self.quantizer.free_weight;

        if symbol.borrow() < &min_symbol_inclusive || symbol.borrow() > &max_symbol_inclusive {
            return None;
        };
        let slack = slack(*symbol.borrow(), min_symbol_inclusive);

        // Round both cumulatives *independently* to fixed point precision.
        let left_sided_cumulative = if symbol.borrow() == &min_symbol_inclusive {
            // Corner case: make sure that the probabilities add up to one. The generic
            // calculation in the `else` branch may lead to a lower total probability
            // because we're cutting off the left tail of the distribution.
            Probability::zero()
        } else {
            let non_leaky: Probability =
                (free_weight * self.inner.distribution((*symbol.borrow()).into() - 0.5)).as_();
            non_leaky + slack
        };

        let right_sided_cumulative = if symbol.borrow() == &max_symbol_inclusive {
            // Corner case: make sure that the probabilities add up to one. The generic
            // calculation in the `else` branch may lead to a lower total probability
            // because we're cutting off the right tail of the distribution and we're
            // rounding down.
            wrapping_pow2(PRECISION)
        } else {
            let non_leaky: Probability =
                (free_weight * self.inner.distribution((*symbol.borrow()).into() + 0.5)).as_();
            non_leaky + slack + Probability::one()
        };

        let probability = right_sided_cumulative
            .wrapping_sub(&left_sided_cumulative)
            .into_nonzero()
            .expect("Invalid underlying continuous probability distribution.");

        Some((left_sided_cumulative, probability))
    }
}

impl<Symbol, Probability, D, const PRECISION: usize> DecoderModel<PRECISION>
    for LeakilyQuantizedDistribution<f64, Symbol, Probability, D, PRECISION>
where
    f64: AsPrimitive<Probability>,
    Symbol: PrimInt + AsPrimitive<Probability> + Into<f64> + WrappingSub + WrappingAdd,
    Probability: BitArray + Into<f64>,
    D: Inverse,
    D::Value: AsPrimitive<Symbol>,
{
    fn quantile_function(
        &self,
        quantile: Probability,
    ) -> (Self::Symbol, Probability, Probability::NonZero) {
        let max_probability = Probability::max_value() >> (Probability::BITS - PRECISION);
        // This check should usually compile away in inlined and verifiably correct usages
        // of this method.
        assert!(quantile <= max_probability);

        let inverse_denominator = 1.0 / (max_probability.into() + 1.0);

        let min_symbol_inclusive = self.quantizer.min_symbol_inclusive;
        let max_symbol_inclusive = self.quantizer.max_symbol_inclusive;
        let free_weight = self.quantizer.free_weight;

        // Make an initial guess for the inverse of the leaky CDF.
        let mut symbol: Self::Symbol = self
            .inner
            .inverse((quantile.into() + 0.5) * inverse_denominator)
            .as_();

        let mut left_sided_cumulative = if symbol <= min_symbol_inclusive {
            // Corner case: we're in the left cut off tail of the distribution.
            symbol = min_symbol_inclusive;
            Probability::zero()
        } else {
            if symbol > max_symbol_inclusive {
                // Corner case: we're in the right cut off tail of the distribution.
                symbol = max_symbol_inclusive;
            }

            let non_leaky: Probability =
                (free_weight * self.inner.distribution(symbol.into() - 0.5)).as_();
            non_leaky + slack(symbol, min_symbol_inclusive)
        };

        // SAFETY: We have to ensure that all paths lead to a state where
        // `right_sided_cumulative != left_sided_cumulative`.
        let mut step = Self::Symbol::one(); // `step` will always be a power of 2.
        let right_sided_cumulative = if left_sided_cumulative > quantile {
            // Our initial guess for `symbol` was too high. Reduce it until we're good.
            symbol = symbol - step;
            let mut found_lower_bound = false;

            loop {
                let old_left_sided_cumulative = left_sided_cumulative;

                if symbol == min_symbol_inclusive {
                    left_sided_cumulative = Probability::zero();
                    if step <= Symbol::one() {
                        // This can only be reached from a downward search, so `old_left_sided_cumulative`
                        // is the right sided cumulative since the step size is one.
                        // SAFETY: `old_left_sided_cumulative > quantile >= 0 = left_sided_cumulative`
                        break old_left_sided_cumulative;
                    }
                } else {
                    let non_leaky: Probability =
                        (free_weight * self.inner.distribution(symbol.into() - 0.5)).as_();
                    left_sided_cumulative = non_leaky + slack(symbol, min_symbol_inclusive);
                }

                if left_sided_cumulative <= quantile {
                    found_lower_bound = true;
                    // We found a lower bound, so we're either done or we have to do a binary
                    // search now.
                    if step <= Symbol::one() {
                        let right_sided_cumulative = if symbol == max_symbol_inclusive {
                            wrapping_pow2(PRECISION)
                        } else {
                            let non_leaky: Probability =
                                (free_weight * self.inner.distribution(symbol.into() + 0.5)).as_();
                            (non_leaky + slack(symbol, min_symbol_inclusive))
                                .wrapping_add(&Probability::one())
                        };
                        // SAFETY: `old_left_sided_cumulative > quantile >= left_sided_cumulative`
                        break right_sided_cumulative;
                    } else {
                        step = step >> 1;
                        // The following addition can't overflow because we're in the binary search phase.
                        symbol = symbol + step;
                    }
                } else if found_lower_bound {
                    // We're in the binary search phase, so all following guesses will be within bounds.
                    if step > Symbol::one() {
                        step = step >> 1
                    }
                    symbol = symbol - step;
                } else {
                    // We're still in the downward search phase with exponentially increasing step size.
                    if step << 1 != Symbol::zero() {
                        step = step << 1;
                    }

                    // Find a smaller `symbol` that is still `>= min_symbol_inclusive`.
                    symbol = loop {
                        let new_symbol = symbol.wrapping_sub(&step);
                        if new_symbol >= min_symbol_inclusive && new_symbol <= symbol {
                            break new_symbol;
                        }
                        // The following cannot set `step` to zero because this would mean that
                        // `step == 1` and thus either the above `if` branch would have been
                        // chosen, or `symbol == min_symbol_inclusive` (which would imply
                        // `left_sided_cumulative <= quantile`), or `symbol` would be the
                        // lowest representable symbol (which would also require
                        // `symbol == min_symbol_inclusive`).
                        step = step >> 1;
                    };
                }
            }
        } else {
            // Our initial guess for `symbol` was either exactly right or too low.
            // Check validity of the right sided cumulative. If it isn't valid,
            // keep increasing `symbol` until it is.
            let mut found_upper_bound = false;

            loop {
                let right_sided_cumulative = if symbol == max_symbol_inclusive {
                    let right_sided_cumulative = wrapping_pow2(PRECISION);
                    if step <= Symbol::one() {
                        let non_leaky: Probability =
                            (free_weight * self.inner.distribution(symbol.into() - 0.5)).as_();
                        left_sided_cumulative = non_leaky + slack(symbol, min_symbol_inclusive);

                        // SAFETY: we have to manually check here.
                        if right_sided_cumulative == left_sided_cumulative {
                            panic!("Invalid underlying probability distribution.");
                        }

                        break right_sided_cumulative;
                    } else {
                        right_sided_cumulative
                    }
                } else {
                    let non_leaky: Probability =
                        (free_weight * self.inner.distribution(symbol.into() + 0.5)).as_();
                    (non_leaky + slack(symbol, min_symbol_inclusive))
                        .wrapping_add(&Probability::one())
                };

                if right_sided_cumulative > quantile
                    || right_sided_cumulative == Probability::zero()
                {
                    found_upper_bound = true;
                    // We found an upper bound, so we're either done or we have to do a binary
                    // search now.
                    if step <= Symbol::one() {
                        left_sided_cumulative = if symbol == min_symbol_inclusive {
                            Probability::zero()
                        } else {
                            let non_leaky: Probability =
                                (free_weight * self.inner.distribution(symbol.into() - 0.5)).as_();
                            non_leaky + slack(symbol, min_symbol_inclusive)
                        };

                        if left_sided_cumulative <= quantile || symbol == min_symbol_inclusive {
                            // SAFETY: we have `left_sided_cumulative <= quantile < right_sided_sided_cumulative`
                            break right_sided_cumulative;
                        }
                    } else {
                        step = step >> 1;
                    }
                    // The following subtraction can't overflow because we're in the binary search phase.
                    symbol = symbol - step;
                } else if found_upper_bound {
                    // We're in the binary search phase, so all following guesses will be within bounds.
                    if step > Symbol::one() {
                        step = step >> 1
                    }
                    symbol = symbol + step;
                } else {
                    // We're still in the upward search phase with exponentially increasing step size.
                    if step << 1 != Symbol::zero() {
                        step = step << 1;
                    }

                    symbol = loop {
                        let new_symbol = symbol.wrapping_add(&step);
                        if new_symbol <= max_symbol_inclusive && new_symbol >= symbol {
                            break new_symbol;
                        }
                        // The following cannot set `step` to zero because this would mean that
                        // `step == 1` and thus either the above `if` branch would have been
                        // chosen, or `symbol == max_symbol_inclusive` (which would imply
                        // `right_sided_cumulative > quantile || right_sided_cumulative == 0`),
                        // or `symbol` would be the largest representable symbol (which would
                        // also require `symbol == max_symbol_inclusive`).
                        step = step >> 1;
                    };
                }
            }
        };

        let probability = unsafe {
            // SAFETY: see above "SAFETY" comments on all paths that lead here.
            right_sided_cumulative
                .wrapping_sub(&left_sided_cumulative)
                .into_nonzero_unchecked()
        };
        (symbol, left_sided_cumulative, probability)
    }
}

impl<'m, 'q: 'm, Symbol, Probability, D, const PRECISION: usize> IterableEntropyModel<'m, PRECISION>
    for LeakilyQuantizedDistribution<f64, Symbol, Probability, D, PRECISION>
where
    f64: AsPrimitive<Probability>,
    Symbol: PrimInt + AsPrimitive<Probability> + AsPrimitive<usize> + Into<f64> + WrappingSub,
    Probability: BitArray + Into<f64>,
    D: Distribution + 'm,
    D::Value: AsPrimitive<Symbol>,
{
    type Iter = LeakilyQuantizedDistributionIter<Symbol, Probability, &'m Self, PRECISION>;

    fn symbol_table(&'m self) -> Self::Iter {
        LeakilyQuantizedDistributionIter {
            model: self,
            symbol: Some(self.quantizer.min_symbol_inclusive),
            left_sided_cumulative: Probability::zero(),
        }
    }
}

/// Iterator over the [`symbol_table`] of a [`LeakilyQuantizedDistribution`].
///
/// This type will become private once anonymous return types are allowed in trait methods.
/// Do not use it outside of the `constriction` library.
///
/// [`symbol_table`]: IterableEntropyModel::symbol_table
#[derive(Debug)]
pub struct LeakilyQuantizedDistributionIter<Symbol, Probability, M, const PRECISION: usize> {
    model: M,
    symbol: Option<Symbol>,
    left_sided_cumulative: Probability,
}

impl<'m, Symbol, Probability, D, const PRECISION: usize> Iterator
    for LeakilyQuantizedDistributionIter<
        Symbol,
        Probability,
        &'m LeakilyQuantizedDistribution<f64, Symbol, Probability, D, PRECISION>,
        PRECISION,
    >
where
    f64: AsPrimitive<Probability>,
    Symbol: PrimInt + AsPrimitive<Probability> + AsPrimitive<usize> + Into<f64> + WrappingSub,
    Probability: BitArray + Into<f64>,
    D: Distribution,
    D::Value: AsPrimitive<Symbol>,
{
    type Item = (Symbol, Probability, Probability::NonZero);

    fn next(&mut self) -> Option<Self::Item> {
        let symbol = self.symbol?;

        let right_sided_cumulative = if symbol == self.model.quantizer.max_symbol_inclusive {
            self.symbol = None;
            wrapping_pow2(PRECISION)
        } else {
            let next_symbol = symbol + Symbol::one();
            self.symbol = Some(next_symbol);
            let non_leaky: Probability = (self.model.quantizer.free_weight
                * self.model.inner.distribution((symbol).into() - 0.5))
            .as_();
            non_leaky + slack(next_symbol, self.model.quantizer.min_symbol_inclusive)
        };

        let probability = unsafe {
            // SAFETY: probabilities of
            right_sided_cumulative
                .wrapping_sub(&self.left_sided_cumulative)
                .into_nonzero_unchecked()
        };

        let left_sided_cumulative = self.left_sided_cumulative;
        self.left_sided_cumulative = right_sided_cumulative;

        Some((symbol, left_sided_cumulative, probability))
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        if let Some(symbol) = self.symbol {
            let len = slack::<usize, _>(symbol, self.model.quantizer.max_symbol_inclusive)
                .saturating_add(1);
            (len, None)
        } else {
            (0, Some(0))
        }
    }
}

/// A trait for internal representations of various forms of categorical entropy models.
///
/// This trait will become private once anonymous return types are allowed in trait methods.
/// Do not use it outside of the `constriction` library.
pub trait SymbolTable<Symbol, Probability: BitArray> {
    fn left_cumulative(&self, index: usize) -> Option<Probability>;

    fn support_size(&self) -> usize;

    /// # Safety
    ///
    /// Argument `index` must be strictly smaller than `1 << PRECISION` (for `PRECISION !=
    /// Probability::BITS`).
    unsafe fn left_cumulative_unchecked(&self, index: usize) -> Probability;

    /// # Safety
    ///
    /// Argument `symbol` must be in the support of the model.
    unsafe fn symbol_unchecked(&self, index: usize) -> Symbol;

    /// Bisects the symbol table to find the bin that contains `quantile`.
    fn quantile_function<const PRECISION: usize>(
        &self,
        quantile: Probability,
    ) -> (Symbol, Probability, Probability::NonZero) {
        assert!(PRECISION <= Probability::BITS);
        let max_probability = Probability::max_value() >> (Probability::BITS - PRECISION);
        assert!(quantile <= max_probability);

        let mut left = 0; // Smallest possible index.
        let mut right = self.support_size(); // One above largest possible index.

        // Bisect the symbol table to find the last entry whose left-sided cumulative is
        // `<= quantile`, exploiting the following facts:
        // - `self.as_ref.len() >= 2` (therefore, `left < right` initially)
        // - `cdf[0] == 0` (where `cdf[n] = self.left_cumulative_unchecked(n).0`)
        // - `quantile <= max_probability` (if this is violated then the method is still
        //   memory safe but will return the last bin; thus, memory safety doesn't hinge on
        //   `PRECISION` being correct).
        // - `cdf[self.as_ref().len() - 1] == max_probability.wrapping_add(1)`
        // - `cdf` is monotonically increasing except that it may wrap around only at the
        //   last entry (this happens iff `PRECISION == Probability::BITS`).
        //
        // The loop maintains the following two invariants:
        // (1) `0 <= left <= mid < right < self.as_ref().len()`
        // (2) `cdf[left] <= cdf[mid]`
        // (3) `cdf[mid] <= cdf[right]` unless `right == cdf.len() - 1`
        while left + 1 != right {
            let mid = (left + right) / 2;

            // SAFETY: safe by invariant (1)
            let pivot = unsafe { self.left_cumulative_unchecked(mid) };
            if pivot <= quantile {
                // Since `mid < right` and wrapping can occur only at the last entry,
                // `pivot` has not yet wrapped around
                left = mid;
            } else {
                right = mid;
            }
        }

        // SAFETY: invariant `0 <= left < right < self.as_ref().len()` still holds.
        let cdf = unsafe { self.left_cumulative_unchecked(left) };
        let symbol = unsafe { self.symbol_unchecked(left) };
        let next_cdf = unsafe { self.left_cumulative_unchecked(right) };

        let probability = unsafe {
            // SAFETY: The constructor ensures that all probabilities within bounds are
            // nonzero. (TODO)
            next_cdf.wrapping_sub(&cdf).into_nonzero_unchecked()
        };

        (symbol, cdf, probability)
    }
}

/// Internal representation of [`ContiguousCategoricalEntropyModel`].
///
/// This type will become private once anonymous return types are allowed in trait methods.
/// Do not use it outside of the `constriction` library.
#[derive(Debug, Clone, Copy)]
pub struct ContiguousSymbolTable<Table>(Table);

/// Internal representation of [`NonContiguousCategoricalEncoderModel`] and
/// [`NonContiguousCategoricalDecoderModel`].
///
/// This type will become private once anonymous return types are allowed in trait methods.
/// Do not use it outside of the `constriction` library.
#[derive(Debug, Clone, Copy)]
pub struct NonContiguousSymbolTable<Table>(Table);

impl<Symbol, Probability, Table> SymbolTable<Symbol, Probability> for ContiguousSymbolTable<Table>
where
    Probability: BitArray,
    Table: AsRef<[Probability]>,
    Symbol: BitArray + Into<usize>,
    usize: AsPrimitive<Symbol>,
{
    #[inline(always)]
    fn left_cumulative(&self, index: usize) -> Option<Probability> {
        self.0.as_ref().get(index).copied()
    }

    #[inline(always)]
    unsafe fn left_cumulative_unchecked(&self, index: usize) -> Probability {
        *self.0.as_ref().get_unchecked(index)
    }

    #[inline(always)]
    unsafe fn symbol_unchecked(&self, index: usize) -> Symbol {
        index.as_()
    }

    #[inline(always)]
    fn support_size(&self) -> usize {
        self.0.as_ref().len() - 1
    }
}

impl<Symbol, Probability, Table> SymbolTable<Symbol, Probability>
    for NonContiguousSymbolTable<Table>
where
    Probability: BitArray,
    Symbol: Clone,
    Table: AsRef<[(Probability, Symbol)]>,
{
    #[inline(always)]
    fn left_cumulative(&self, index: usize) -> Option<Probability> {
        self.0
            .as_ref()
            .get(index)
            .map(|(probability, _)| *probability)
    }

    #[inline(always)]
    unsafe fn left_cumulative_unchecked(&self, index: usize) -> Probability {
        self.0.as_ref().get_unchecked(index).0
    }

    #[inline(always)]
    unsafe fn symbol_unchecked(&self, index: usize) -> Symbol {
        self.0.as_ref().get_unchecked(index).1.clone()
    }

    #[inline(always)]
    fn support_size(&self) -> usize {
        self.0.as_ref().len() - 1
    }
}

/// Iterator over the [`symbol_table`] of various categorical distributions.
///
/// This type will become private once anonymous return types are allowed in trait methods.
///
/// [`symbol_table`]: IterableEntropyModel::symbol_table
#[derive(Debug)]
pub struct SymbolTableIter<Symbol, Probability, Table> {
    table: Table,
    index: usize,
    phantom: PhantomData<(Symbol, Probability)>,
}

impl<Symbol, Probability, Table> SymbolTableIter<Symbol, Probability, Table> {
    fn new(table: Table) -> Self {
        Self {
            table,
            index: 0,
            phantom: PhantomData,
        }
    }
}

impl<Symbol, Probability, Table> Iterator for SymbolTableIter<Symbol, Probability, Table>
where
    Probability: BitArray,
    Table: SymbolTable<Symbol, Probability>,
{
    type Item = (Symbol, Probability, Probability::NonZero);

    fn next(&mut self) -> Option<Self::Item> {
        let old_index = self.index;
        if old_index == self.table.support_size() {
            None
        } else {
            let new_index = old_index + 1;
            self.index = new_index;
            unsafe {
                // SAFETY: TODO
                let left_cumulative = self.table.left_cumulative_unchecked(old_index);
                let symbol = self.table.symbol_unchecked(old_index);
                let right_cumulative = self.table.left_cumulative_unchecked(new_index);
                let probability = right_cumulative
                    .wrapping_sub(&left_cumulative)
                    .into_nonzero_unchecked();
                Some((symbol, left_cumulative, probability))
            }
        }
    }

    #[inline(always)]
    fn size_hint(&self) -> (usize, Option<usize>) {
        let len = self.table.support_size() - self.index;
        (len, Some(len))
    }
}

/// An entropy model for a categorical probability distribution over a contiguous range of
/// integers starting at zero.
///
/// You will usually want to use this type through one of its type aliases,
/// [`DefaultContiguousCategoricalEntropyModel`] or
/// [`SmallContiguousCategoricalEntropyModel`], see [discussion of presets](super#presets).
///
/// This entropy model implements both [`EncoderModel`] and [`DecoderModel`], which means
/// that it can be used for both encoding and decoding with any of the stream coders
/// provided by the `constriction` crate.
///
/// # Example
///
/// ```
/// use constriction::{
///     stream::{stack::DefaultAnsCoder, model::DefaultContiguousCategoricalEntropyModel, Decode},
///     UnwrapInfallible,
/// };
///
/// // Create a `ContiguousCategoricalEntropyModel` that approximates floating point probabilities.
/// let probabilities = [0.3, 0.0, 0.4, 0.1, 0.2]; // Note that `probabilities[1] == 0.0`.
/// let model = DefaultContiguousCategoricalEntropyModel::from_floating_point_probabilities(
///     &probabilities
/// ).unwrap();
/// assert_eq!(model.support_size(), 5); // `model` supports the symbols `0..5usize`.
///
/// // Use `model` for entropy coding.
/// let message = vec![2, 0, 3, 1, 2, 4, 3, 2, 0];
/// let mut ans_coder = DefaultAnsCoder::new();
///
/// // We could pass `model` by reference but passing `model.as_view()` is slightly more efficient.
/// ans_coder.encode_iid_symbols_reverse(message.iter().cloned(), model.as_view()).unwrap();
/// // Note that `message` contains the symbol `1`, and that `probabilities[1] == 0.0`. However, we
/// // can still encode the symbol because the `ContiguousCategoricalEntropyModel` is "leaky", i.e.,
/// // it assigns a nonzero probability to all symbols in the range `0..model.support_size()`.
///
/// // Decode the encoded message and verify correctness.
/// let decoded = ans_coder
///     .decode_iid_symbols(9, model.as_view())
///     .collect::<Result<Vec<_>, _>>()
///     .unwrap_infallible();
/// assert_eq!(decoded, message);
/// assert!(ans_coder.is_empty());
///
/// // The `model` assigns zero probability to any symbols that are not in the support
/// // `0..model.support_size()`, so trying to encode a message that contains such a symbol fails.
/// assert!(ans_coder.encode_iid_symbols_reverse(&[2, 0, 5, 1], model.as_view()).is_err())
/// // ERROR: symbol `5` is not in the support of `model`.
/// ```
///
/// # When Should I Use This Type of Entropy Model?
///
/// Use a `ContiguousCategoricalEntropyModel` for probabilistic models that can *only* be
/// represented as an explicit probability table, and not by some more compact analytic
/// expression. If you have a probability model that can be expressed by some analytical
/// expression (e.g., a [`Binomial`](probability::distribution::Binomial) distribution),
/// then use [`LeakyQuantizer`] instead (unless you want to encode lots of symbols with the
/// same entropy model, in which case the explicitly tabulated representation of a
/// categorical entropy model could improve runtime performance).
///
/// Further, a `ContiguousCategoricalEntropyModel` can only represent probability
/// distribution whose support (i.e., the set of symbols to which the model assigns a
/// non-zero probability) is a contiguous range of integers starting at zero. If the support
/// of your probability distribution has a more complicated structure (or if the `Symbol`
/// type is not an integer type), then you can use a
/// [`NonContiguousCategoricalEncoderModel`] or a [`NonContiguousCategoricalDecoderModel`],
/// which are strictly more general than a `ContiguousCategoricalEntropyModel` but which
/// have a larger memory footprint and slightly worse runtime performance.
///
/// If you want to *decode* lots of symbols with the same entropy model, and if reducing the
/// `PRECISION` to a moderate value is acceptable to you, then you may want to consider
/// using a [`LookupDecoderModel`] instead for even better runtime performance (at the cost
/// of a larger memory footprint and worse compression efficiency due to lower `PRECISION`).
///
/// # Computational Efficiency
///
/// For a probability distribution with a support of `N` symbols, a
/// `ContiguousCategoricalEntropyModel` has the following asymptotic costs:
///
/// - creation:
///   - runtime cost: `Θ(N)` when creating from fixed point probabilities, `Θ(N log(N))`
///     when creating from floating point probabilities;
///   - memory footprint: `Θ(N)`;
///   - both are cheaper by a constant factor than for a
///     [`NonContiguousCategoricalEncoderModel`] or a
///     [`NonContiguousCategoricalDecoderModel`].
/// - encoding a symbol (calling [`EncoderModel::left_cumulative_and_probability`]):
///   - runtime cost: `Θ(1)` (cheaper than for [`NonContiguousCategoricalEncoderModel`]
///     since it compiles to a simiple array lookup rather than a `HashMap` lookup)
///   - memory footprint: no heap allocations, constant stack space.
/// - decoding a symbol (calling [`DecoderModel::quantile_function`]):
///   - runtime cost: `Θ(log(N))` (both expected and worst-case; probably slightly cheaper
///     than for [`NonContiguousCategoricalDecoderModel`] due to better memory locality)
///   - memory footprint: no heap allocations, constant stack space.
///
/// [`EntropyModel`]: trait.EntropyModel.html
/// [`Encode`]: crate::Encode
/// [`Decode`]: crate::Decode
/// [`HashMap`]: std::hash::HashMap
#[derive(Debug, Clone, Copy)]
pub struct ContiguousCategoricalEntropyModel<Probability, Table, const PRECISION: usize> {
    /// Invariants:
    /// - `cdf.len() >= 2` (actually, we currently even guarantee `cdf.len() >= 3` but
    ///   this may be relaxed in the future)
    /// - `cdf[0] == 0`
    /// - `cdf` is monotonically increasing except that it may wrap around only at
    ///   the very last entry (this happens iff `PRECISION == Probability::BITS`).
    ///   Thus, all probabilities within range are guaranteed to be nonzero.
    cdf: ContiguousSymbolTable<Table>,

    phantom: PhantomData<Probability>,
}

/// An entropy model for a categorical probability distribution over arbitrary symbols, for
/// decoding only.
///
/// You will usually want to use this type through one of its type aliases,
/// [`DefaultNonContiguousCategoricalDecoderModel`] or
/// [`SmallNonContiguousCategoricalDecoderModel`], see [discussion of
/// presets](super#presets).
///
/// This type implements the trait [`DecoderModel`] but not the trait [`EncoderModel`].
/// Thus, you can use a `NonContiguousCategoricalDecoderModel` for *decoding* with any of
/// the stream decoders provided by the `constriction` crate, but not for encoding. If you
/// want to encode data, use a [`NonContiguousCategoricalEncoderModel`] instead. You can
/// convert a `NonContiguousCategoricalDecoderModel` to a
/// `NonContiguousCategoricalEncoderModel` by calling
/// [`to_generic_encoder_model`](IterableEntropyModel::to_generic_encoder_model) on it
/// (you'll have to bring the trait [`IterableEntropyModel`] into scope to do so: `use
/// constriction::stream::model::IterableEntropyModel`).
///
/// # Example
///
/// See [example for
/// `NonContiguousCategoricalEncoderModel`](NonContiguousCategoricalEncoderModel#example).
///
/// # When Should I Use This Type of Entropy Model?
///
/// Use a `NonContiguousCategoricalDecoderModel` for probabilistic models that can *only* be
/// represented as an explicit probability table, and not by some more compact analytic
/// expression. If you have a probability model that can be expressed by some analytical
/// expression (e.g., a [`Binomial`](probability::distribution::Binomial) distribution),
/// then use [`LeakyQuantizer`] instead (unless you want to encode lots of symbols with the
/// same entropy model, in which case the explicitly tabulated representation of a
/// categorical entropy model could improve runtime performance).
///
/// Further, if the *support* of your probabilistic model (i.e., the set of symbols to which
/// the model assigns a non-zero probability) is a contiguous range of integers starting at
/// zero, then it is better to use a [`ContiguousCategoricalEntropyModel`]. It has better
/// computational efficiency and it is easier to use since it supports both encoding and
/// decoding with a single type.
///
/// If you want to *decode* lots of symbols with the same entropy model, and if reducing the
/// `PRECISION` to a moderate value is acceptable to you, then you may want to consider
/// using a [`LookupDecoderModel`] instead for even better runtime performance (at the cost
/// of a larger memory footprint and worse compression efficiency due to lower `PRECISION`).
///
/// # Computational Efficiency
///
/// For a probability distribution with a support of `N` symbols, a
/// `NonContiguousCategoricalDecoderModel` has the following asymptotic costs:
///
/// - creation:
///   - runtime cost: `Θ(N)` when creating from fixed point probabilities, `Θ(N log(N))`
///     when creating from floating point probabilities;
///   - memory footprint: `Θ(N)`;
///   - both are more expensive by a constant factor than for a
///     [`ContiguousCategoricalEntropyModel`].
/// - encoding a symbol: not supported; use a [`NonContiguousCategoricalEncoderModel`].
/// - decoding a symbol (calling [`DecoderModel::quantile_function`]):
///   - runtime cost: `Θ(log(N))` (both expected and worst-case)
///   - memory footprint: no heap allocations, constant stack space.
///
/// [`EntropyModel`]: trait.EntropyModel.html
/// [`Encode`]: crate::Encode
/// [`Decode`]: crate::Decode
/// [`HashMap`]: std::hash::HashMap
#[derive(Debug, Clone, Copy)]
pub struct NonContiguousCategoricalDecoderModel<Symbol, Probability, Table, const PRECISION: usize>
{
    /// Invariants:
    /// - `cdf.len() >= 2` (actually, we currently even guarantee `cdf.len() >= 3` but
    ///   this may be relaxed in the future)
    /// - `cdf[0] == 0`
    /// - `cdf` is monotonically increasing except that it may wrap around only at
    ///   the very last entry (this happens iff `PRECISION == Probability::BITS`).
    ///   Thus, all probabilities within range are guaranteed to be nonzero.
    cdf: NonContiguousSymbolTable<Table>,

    phantom: PhantomData<(Symbol, Probability)>,
}

/// Type alias for a typical [`ContiguousCategoricalEntropyModel`].
///
/// See:
/// - [`ContiguousCategoricalEntropyModel`]
/// - [discussion of presets](super#presets)
pub type DefaultContiguousCategoricalEntropyModel<Table = Vec<u32>> =
    ContiguousCategoricalEntropyModel<u32, Table, 24>;

/// Type alias for a [`ContiguousCategoricalEntropyModel`] optimized for compatibility with
/// lookup decoder models.
///
/// See:
/// - [`ContiguousCategoricalEntropyModel`]
/// - [discussion of presets](super#presets)
pub type SmallContiguousCategoricalEntropyModel<Table = Vec<u16>> =
    ContiguousCategoricalEntropyModel<u16, Table, 12>;

/// Type alias for a typical [`NonContiguousCategoricalDecoderModel`].
///
/// See:
/// - [`NonContiguousCategoricalDecoderModel`]
/// - [discussion of presets](super#presets)
pub type DefaultNonContiguousCategoricalDecoderModel<Symbol, Table = Vec<(u32, Symbol)>> =
    NonContiguousCategoricalDecoderModel<Symbol, u32, Table, 24>;

/// Type alias for a [`NonContiguousCategoricalDecoderModel`] optimized for compatibility
/// with lookup decoder models.
///
/// See:
/// - [`NonContiguousCategoricalDecoderModel`]
/// - [discussion of presets](super#presets)
pub type SmallNonContiguousCategoricalDecoderModel<Symbol, Table = Vec<(u16, Symbol)>> =
    NonContiguousCategoricalDecoderModel<Symbol, u16, Table, 12>;

impl<Probability: BitArray, const PRECISION: usize>
    ContiguousCategoricalEntropyModel<Probability, Vec<Probability>, PRECISION>
{
    /// Constructs a leaky distribution whose PMF approximates given probabilities.
    ///
    /// The returned distribution will be defined for symbols of type `usize` from
    /// the range `0..probabilities.len()`.
    ///
    /// The argument `probabilities` is a slice of floating point values (`F` is
    /// typically `f64` or `f32`). All entries must be nonnegative and at least one
    /// entry has to be nonzero. The entries do not necessarily need to add up to
    /// one (the resulting distribution will automatically get normalized and an
    /// overall scaling of all entries of `probabilities` does not affect the
    /// result, up to effects due to rounding errors).
    ///
    /// The probability mass function of the returned distribution will approximate
    /// the provided probabilities as well as possible, subject to the following
    /// constraints:
    /// - probabilities are represented in fixed point arithmetic, where the const
    ///   generic parameter `PRECISION` controls the number of bits of precision.
    ///   This typically introduces rounding errors;
    /// - despite the possibility of rounding errors, the returned probability
    ///   distribution will be exactly normalized; and
    /// - each symbol in the support `0..probabilities.len()` gets assigned a strictly
    ///   nonzero probability, even if the provided probability for the symbol is zero or
    ///   below the threshold that can be resolved in fixed point arithmetic with
    ///   `PRECISION` bits. We refer to this property as the resulting distribution being
    ///   "leaky". The leakiness guarantees that all symbols within the support can be
    ///   encoded when this distribution is used as an entropy model.
    ///
    /// More precisely, the resulting probability distribution minimizes the cross
    /// entropy from the provided (floating point) to the resulting (fixed point)
    /// probabilities subject to the above three constraints.
    ///
    /// # Error Handling
    ///
    /// Returns an error if the provided probability distribution cannot be
    /// normalized, either because `probabilities` is of length zero, or because one
    /// of its entries is negative with a nonzero magnitude, or because the sum of
    /// its elements is zero, infinite, or NaN.
    ///
    /// Also returns an error if the probability distribution is degenerate, i.e.,
    /// if `probabilities` has only a single element, because degenerate probability
    /// distributions currently cannot be represented.
    ///
    /// TODO: should also return an error if support is too large to support leaky
    /// distribution
    #[allow(clippy::result_unit_err)]
    pub fn from_floating_point_probabilities<F>(probabilities: &[F]) -> Result<Self, ()>
    where
        F: FloatCore + core::iter::Sum<F> + Into<f64>,
        Probability: Into<f64> + AsPrimitive<usize>,
        f64: AsPrimitive<Probability>,
        usize: AsPrimitive<Probability>,
    {
        let slots = optimize_leaky_categorical::<_, _, PRECISION>(probabilities)?;
        Self::from_nonzero_fixed_point_probabilities(
            slots.into_iter().map(|slot| slot.weight),
            false,
        )
    }

    /// Constructs a distribution with a PMF given in fixed point arithmetic.
    ///
    /// This is a low level method that allows, e.g,. reconstructing a probability
    /// distribution previously exported with [`symbol_table`]. The more common way to
    /// construct a `LeakyCategorical` distribution is via
    /// [`from_floating_point_probabilities`].
    ///
    /// The items of `probabilities` have to be nonzero and smaller than `1 << PRECISION`,
    /// where `PRECISION` is a const generic parameter on the
    /// `ContiguousCategoricalEntropyModel`.
    ///
    /// If `infer_last_probability` is `false` then the items yielded by `probabilities`
    /// have to (logically) sum up to `1 << PRECISION`. If `infer_last_probability` is
    /// `true` then they must sum up to a value strictly smaller than `1 << PRECISION`, and
    /// the method will add an additional symbol at the end that takes the remaining
    /// probability mass.
    ///
    /// # Examples
    ///
    /// If `infer_last_probability` is `false`, the provided probabilities have to sum up to
    /// `1 << PRECISION`:
    ///
    /// ```
    /// use constriction::stream::model::{
    ///     DefaultContiguousCategoricalEntropyModel, IterableEntropyModel
    /// };
    ///
    /// let probabilities = vec![1u32 << 21, 1 << 22, 1 << 22, 1 << 22, 1 << 21];
    /// // `probabilities` sums up to `1 << PRECISION` as required:
    /// assert_eq!(probabilities.iter().sum::<u32>(), 1 << 24);
    ///
    /// let model = DefaultContiguousCategoricalEntropyModel
    ///     ::from_nonzero_fixed_point_probabilities(&probabilities, false).unwrap();
    /// let symbol_table = model.floating_point_symbol_table::<f64>().collect::<Vec<_>>();
    /// assert_eq!(
    ///     symbol_table,
    ///     vec![
    ///         (0, 0.0, 0.125),
    ///         (1, 0.125, 0.25),
    ///         (2, 0.375, 0.25),
    ///         (3, 0.625, 0.25),
    ///         (4, 0.875, 0.125),
    ///     ]
    /// );
    /// ```
    ///
    /// If `PRECISION` is set to the maximum value supported by the type `Probability`, then
    /// the provided probabilities still have to *logically* sum up to `1 << PRECISION`
    /// (i.e., the summation has to wrap around exactly once):
    ///
    /// ```
    /// use constriction::stream::model::{
    ///     ContiguousCategoricalEntropyModel, IterableEntropyModel
    /// };
    ///
    /// let probabilities = vec![1u32 << 29, 1 << 30, 1 << 30, 1 << 30, 1 << 29];
    /// // `probabilities` sums up to `1 << 32` (logically), i.e., it wraps around once.
    /// assert_eq!(probabilities.iter().fold(0u32, |accum, &x| accum.wrapping_add(x)), 0);
    ///
    /// let model = ContiguousCategoricalEntropyModel::<u32, Vec<u32>, 32>
    ///     ::from_nonzero_fixed_point_probabilities(&probabilities, false).unwrap();
    /// let symbol_table = model.floating_point_symbol_table::<f64>().collect::<Vec<_>>();
    /// assert_eq!(
    ///     symbol_table,
    ///     vec![
    ///         (0, 0.0, 0.125),
    ///         (1, 0.125, 0.25),
    ///         (2, 0.375, 0.25),
    ///         (3, 0.625, 0.25),
    ///         (4, 0.875, 0.125)
    ///     ]
    /// );
    /// ```
    ///
    /// Wrapping around twice fails:
    ///
    /// ```
    /// use constriction::stream::model::ContiguousCategoricalEntropyModel;
    /// let probabilities = vec![1u32 << 30, 1 << 31, 1 << 31, 1 << 31, 1 << 30];
    /// // `probabilities` sums up to `1 << 33` (logically), i.e., it would wrap around twice.
    /// assert!(
    ///     ContiguousCategoricalEntropyModel::<u32, Vec<u32>, 32>
    ///         ::from_nonzero_fixed_point_probabilities(&probabilities, false).is_err()
    /// );
    /// ```
    ///
    /// So does providing probabilities that just don't sum up to `1 << FREQUENCY`:
    ///
    /// ```
    /// use constriction::stream::model::ContiguousCategoricalEntropyModel;
    /// let probabilities = vec![1u32 << 21, 5 << 8, 1 << 22, 1 << 21];
    /// // `probabilities` sums up to `1 << 33` (logically), i.e., it would wrap around twice.
    /// assert!(
    ///     ContiguousCategoricalEntropyModel::<u32, Vec<u32>, 32>
    ///         ::from_nonzero_fixed_point_probabilities(&probabilities, false).is_err()
    /// );
    /// ```
    ///
    /// [`symbol_table`]: IterableEntropyModel::symbol_table
    /// [`fixed_point_probabilities`]: #method.fixed_point_probabilities
    /// [`from_floating_point_probabilities`]: #method.from_floating_point_probabilities
    #[allow(clippy::result_unit_err)]
    pub fn from_nonzero_fixed_point_probabilities<I>(
        probabilities: I,
        infer_last_probability: bool,
    ) -> Result<Self, ()>
    where
        I: IntoIterator,
        I::Item: Borrow<Probability>,
    {
        let probabilities = probabilities.into_iter();
        let mut cdf =
            Vec::with_capacity(probabilities.size_hint().0 + 1 + infer_last_probability as usize);
        accumulate_nonzero_probabilities::<_, _, _, _, _, PRECISION>(
            core::iter::repeat(()),
            probabilities,
            |(), left_sided_cumulative, _| {
                cdf.push(left_sided_cumulative);
                Ok(())
            },
            infer_last_probability,
        )?;
        cdf.push(wrapping_pow2(PRECISION));

        Ok(Self {
            cdf: ContiguousSymbolTable(cdf),
            phantom: PhantomData,
        })
    }
}

impl<Symbol, Probability: BitArray, const PRECISION: usize>
    NonContiguousCategoricalDecoderModel<Symbol, Probability, Vec<(Probability, Symbol)>, PRECISION>
where
    Symbol: Clone,
{
    /// Constructs a leaky distribution over the provided `symbols` whose PMF approximates
    /// given `probabilities`.
    ///
    /// The argument `probabilities` is a slice of floating point values (`F` is
    /// typically `f64` or `f32`). All entries must be nonnegative and at least one
    /// entry has to be nonzero. The entries do not necessarily need to add up to
    /// one (the resulting distribution will automatically get normalized and an
    /// overall scaling of all entries of `probabilities` does not affect the
    /// result, up to effects due to rounding errors).
    ///
    /// The probability mass function of the returned distribution will approximate
    /// the provided probabilities as well as possible, subject to the following
    /// constraints:
    /// - probabilities are represented in fixed point arithmetic, where the const
    ///   generic parameter `PRECISION` controls the number of bits of precision.
    ///   This typically introduces rounding errors;
    /// - despite the possibility of rounding errors, the returned probability
    ///   distribution will be exactly normalized; and
    /// - each symbol gets assigned a strictly nonzero probability, even if the provided
    ///   probability for the symbol is zero or below the threshold that can be resolved in
    ///   fixed point arithmetic with `PRECISION` bits. We refer to this property as the
    ///   resulting distribution being "leaky". The leakiness guarantees that a decoder can
    ///   in principle decode any of the provided symbols (if given appropriate compressed
    ///   data).
    ///
    /// More precisely, the resulting probability distribution minimizes the cross
    /// entropy from the provided (floating point) to the resulting (fixed point)
    /// probabilities subject to the above three constraints.
    ///
    /// # Error Handling
    ///
    /// Returns an error if `symbols.len() != probabilities.len()`.
    ///
    /// Also returns an error if the provided probability distribution cannot be normalized,
    /// either because `probabilities` is of length zero, or because one of its entries is
    /// negative with a nonzero magnitude, or because the sum of its elements is zero,
    /// infinite, or NaN.
    ///
    /// Also returns an error if the probability distribution is degenerate, i.e.,
    /// if `probabilities` has only a single element, because degenerate probability
    /// distributions currently cannot be represented.
    ///
    /// TODO: should also return an error if support is too large to support leaky
    /// distribution
    #[allow(clippy::result_unit_err)]
    pub fn from_symbols_and_floating_point_probabilities<F>(
        symbols: &[Symbol],
        probabilities: &[F],
    ) -> Result<Self, ()>
    where
        F: FloatCore + core::iter::Sum<F> + Into<f64>,
        Probability: Into<f64> + AsPrimitive<usize>,
        f64: AsPrimitive<Probability>,
        usize: AsPrimitive<Probability>,
    {
        if symbols.len() != probabilities.len() {
            return Err(());
        };

        let slots = optimize_leaky_categorical::<_, _, PRECISION>(probabilities)?;
        Self::from_symbols_and_nonzero_fixed_point_probabilities(
            symbols.iter().cloned(),
            slots.into_iter().map(|slot| slot.weight),
            false,
        )
    }

    /// Constructs a distribution with a PMF given in fixed point arithmetic.
    ///
    /// This is a low level method that allows, e.g,. reconstructing a probability
    /// distribution previously exported with [`symbol_table`]. The more common way to
    /// construct a `NonContiguousCategoricalDecoderModel` distribution is via
    /// [`from_symbols_and_floating_point_probabilities`].
    ///
    /// The items of `probabilities` have to be nonzero and smaller than `1 << PRECISION`,
    /// where `PRECISION` is a const generic parameter on the
    /// `NonContiguousCategoricalDecoderModel`.
    ///
    /// If `infer_last_probability` is `false` then `probabilities` must yield the same
    /// number of items as `symbols` does and the items yielded by `probabilities` have to
    /// to (logically) sum up to `1 << PRECISION`. If `infer_last_probability` is `true`
    /// then `probabilities` must yield one fewer item than `symbols`, they items must sum
    /// up to a value strictly smaller than `1 << PRECISION`, and the method will assign the
    /// (nonzero) remaining probability to the last symbol.
    ///
    /// # Example
    ///
    /// Creating a `NonContiguousCategoricalDecoderModel` with inferred probability of the
    /// last symbol:
    ///
    /// ```
    /// use constriction::stream::model::{
    ///     DefaultNonContiguousCategoricalDecoderModel, IterableEntropyModel
    /// };
    ///
    /// let partial_probabilities = vec![1u32 << 21, 1 << 22, 1 << 22, 1 << 22];
    /// // `partial_probabilities` sums up to strictly less than `1 << PRECISION` as required:
    /// assert!(partial_probabilities.iter().sum::<u32>() < 1 << 24);
    ///
    /// let symbols = "abcde"; // Has one more entry than `probabilities`
    ///
    /// let model = DefaultNonContiguousCategoricalDecoderModel
    ///     ::from_symbols_and_nonzero_fixed_point_probabilities(
    ///         symbols.chars(), &partial_probabilities, true).unwrap();
    /// let symbol_table = model.floating_point_symbol_table::<f64>().collect::<Vec<_>>();
    /// assert_eq!(
    ///     symbol_table,
    ///     vec![
    ///         ('a', 0.0, 0.125),
    ///         ('b', 0.125, 0.25),
    ///         ('c', 0.375, 0.25),
    ///         ('d', 0.625, 0.25),
    ///         ('e', 0.875, 0.125), // Inferred last probability.
    ///     ]
    /// );
    /// ```
    ///
    /// For more related examples, see
    /// [`ContiguousCategoricalEntropyModel::from_nonzero_fixed_point_probabilities`].
    ///
    /// [`symbol_table`]: IterableEntropyModel::symbol_table
    /// [`fixed_point_probabilities`]: Self::fixed_point_probabilities
    /// [`from_symbols_and_floating_point_probabilities`]:
    ///     Self::from_symbols_and_floating_point_probabilities
    #[allow(clippy::result_unit_err)]
    pub fn from_symbols_and_nonzero_fixed_point_probabilities<S, P>(
        symbols: S,
        probabilities: P,
        infer_last_probability: bool,
    ) -> Result<Self, ()>
    where
        S: IntoIterator<Item = Symbol>,
        P: IntoIterator,
        P::Item: Borrow<Probability>,
    {
        let symbols = symbols.into_iter();
        let mut cdf = Vec::with_capacity(symbols.size_hint().0 + 1);
        let mut symbols = accumulate_nonzero_probabilities::<_, _, _, _, _, PRECISION>(
            symbols,
            probabilities.into_iter(),
            |symbol, left_sided_cumulative, _| {
                cdf.push((left_sided_cumulative, symbol));
                Ok(())
            },
            infer_last_probability,
        )?;
        cdf.push((
            wrapping_pow2(PRECISION),
            cdf.last().expect("`symbols` is not empty").1.clone(),
        ));

        if symbols.next().is_some() {
            Err(())
        } else {
            Ok(Self {
                cdf: NonContiguousSymbolTable(cdf),
                phantom: PhantomData,
            })
        }
    }

    /// Creates a `NonContiguousCategoricalDecoderModel` from any entropy model that
    /// implements [`IterableEntropyModel`].
    ///
    /// Calling `NonContiguousCategoricalDecoderModel::from_iterable_entropy_model(&model)`
    /// is equivalent to calling `model.to_generic_decoder_model()`, where the latter
    /// requires bringing [`IterableEntropyModel`] into scope.
    ///
    /// TODO: test
    pub fn from_iterable_entropy_model<'m, M>(model: &'m M) -> Self
    where
        M: IterableEntropyModel<'m, PRECISION, Symbol = Symbol, Probability = Probability> + ?Sized,
    {
        let symbol_table = model.symbol_table();
        let mut cdf = Vec::with_capacity(symbol_table.size_hint().0);
        for (symbol, left_sided_cumulative, _) in symbol_table {
            cdf.push((left_sided_cumulative, symbol));
        }
        cdf.push((
            wrapping_pow2(PRECISION),
            cdf.last().expect("`symbol_table` is not empty").1.clone(),
        ));

        Self {
            cdf: NonContiguousSymbolTable(cdf),
            phantom: PhantomData,
        }
    }
}

impl<Probability, Table, const PRECISION: usize>
    ContiguousCategoricalEntropyModel<Probability, Table, PRECISION>
where
    Probability: BitArray,
    Table: AsRef<[Probability]>,
{
    /// Returns the number of symbols supported by the model.
    ///
    /// The distribution is defined on the contiguous range of symbols from zero
    /// (inclusively) to `support_size()` (exclusively). All symbols within this range are
    /// guaranteed to have a nonzero probability, while all symbols outside of this range
    /// have a zero probability.
    #[inline(always)]
    pub fn support_size(&self) -> usize {
        SymbolTable::<usize, Probability>::support_size(&self.cdf)
    }

    /// Makes a very cheap shallow copy of the model that can be used much like a shared
    /// reference.
    ///
    /// The returned `ContiguousCategoricalEntropyModel` implements `Copy`, which is a
    /// requirement for some methods, such as [`Encode::encode_iid_symbols`] or
    /// [`Decode::decode_iid_symbols`]. These methods could also accept a shared reference
    /// to a `ContiguousCategoricalEntropyModel` (since all references to entropy models are
    /// also entropy models, and all shared references implement `Copy`), but passing a
    /// *view* instead may be slightly more efficient because it avoids one level of
    /// dereferencing.
    ///
    /// [`Encode::encode_iid_symbols`]: super::Encode::encode_iid_symbols
    /// [`Decode::decode_iid_symbols`]: super::Decode::decode_iid_symbols
    #[inline]
    pub fn as_view(
        &self,
    ) -> ContiguousCategoricalEntropyModel<Probability, &[Probability], PRECISION> {
        ContiguousCategoricalEntropyModel {
            cdf: ContiguousSymbolTable(self.cdf.0.as_ref()),
            phantom: PhantomData,
        }
    }

    /// Creates a [`LookupDecoderModel`] for efficient decoding of i.i.d. data
    ///
    /// While a `ContiguousCategoricalEntropyModel` can already be used for decoding (since
    /// it implements [`DecoderModel`]), you may prefer converting it to a
    /// `LookupDecoderModel` first for improved efficiency. Logically, the two will be
    /// equivalent.
    ///
    /// # Warning
    ///
    /// You should only call this method if both of the following conditions are satisfied:
    ///
    /// - `PRECISION` is relatively small (typically `PRECISION == 12`, as in the "Small"
    ///   [preset]) because the memory footprint of a `LookupDecoderModel` grows
    ///   exponentially in `PRECISION`; and
    /// - you're about to decode a relatively large number of symbols with the resulting
    ///   model; the conversion to a `LookupDecoderModel` bears a significant runtime and
    ///   memory overhead, so if you're going to use the resulting model only for a single
    ///   or a handful of symbols then you'll end up paying more than you gain.
    ///
    /// [preset]: super#presets
    #[inline(always)]
    pub fn to_lookup_decoder_model(
        &self,
    ) -> LookupDecoderModel<
        Probability,
        Probability,
        ContiguousSymbolTable<Vec<Probability>>,
        Box<[Probability]>,
        PRECISION,
    >
    where
        Probability: Into<usize>,
        usize: AsPrimitive<Probability>,
    {
        self.into()
    }
}

impl<Symbol, Probability, Table, const PRECISION: usize>
    NonContiguousCategoricalDecoderModel<Symbol, Probability, Table, PRECISION>
where
    Symbol: Clone,
    Probability: BitArray,
    Table: AsRef<[(Probability, Symbol)]>,
{
    /// Returns the number of symbols supported by the model, i.e., the number of symbols to
    /// which the model assigns a nonzero probability.
    #[inline(always)]
    pub fn support_size(&self) -> usize {
        self.cdf.support_size()
    }

    /// Makes a very cheap shallow copy of the model that can be used much like a shared
    /// reference.
    ///
    /// The returned `NonContiguousCategoricalDecoderModel` implements `Copy`, which is a
    /// requirement for some methods, such as [`Decode::decode_iid_symbols`]. These methods
    /// could also accept a shared reference to a `NonContiguousCategoricalDecoderModel`
    /// (since all references to entropy models are also entropy models, and all shared
    /// references implement `Copy`), but passing a *view* instead may be slightly more
    /// efficient because it avoids one level of dereferencing.
    ///
    /// [`Decode::decode_iid_symbols`]: super::Decode::decode_iid_symbols
    #[inline]
    pub fn as_view(
        &self,
    ) -> NonContiguousCategoricalDecoderModel<
        Symbol,
        Probability,
        &[(Probability, Symbol)],
        PRECISION,
    > {
        NonContiguousCategoricalDecoderModel {
            cdf: NonContiguousSymbolTable(self.cdf.0.as_ref()),
            phantom: PhantomData,
        }
    }
}

impl<Probability, Table, const PRECISION: usize> EntropyModel<PRECISION>
    for ContiguousCategoricalEntropyModel<Probability, Table, PRECISION>
where
    Probability: BitArray,
{
    type Symbol = usize;
    type Probability = Probability;
}

impl<Symbol, Probability, Table, const PRECISION: usize> EntropyModel<PRECISION>
    for NonContiguousCategoricalDecoderModel<Symbol, Probability, Table, PRECISION>
where
    Probability: BitArray,
{
    type Symbol = Symbol;
    type Probability = Probability;
}

impl<'m, Probability, Table, const PRECISION: usize> IterableEntropyModel<'m, PRECISION>
    for ContiguousCategoricalEntropyModel<Probability, Table, PRECISION>
where
    Probability: BitArray,
    Table: AsRef<[Probability]>,
{
    type Iter = SymbolTableIter<usize, Probability, ContiguousSymbolTable<&'m [Probability]>>;

    #[inline(always)]
    fn symbol_table(&'m self) -> Self::Iter {
        SymbolTableIter::new(self.as_view().cdf)
    }
}

impl<'m, Symbol, Probability, Table, const PRECISION: usize> IterableEntropyModel<'m, PRECISION>
    for NonContiguousCategoricalDecoderModel<Symbol, Probability, Table, PRECISION>
where
    Symbol: Clone + 'm,
    Probability: BitArray,
    Table: AsRef<[(Probability, Symbol)]>,
{
    type Iter =
        SymbolTableIter<Symbol, Probability, NonContiguousSymbolTable<&'m [(Probability, Symbol)]>>;

    #[inline(always)]
    fn symbol_table(&'m self) -> Self::Iter {
        SymbolTableIter::new(self.as_view().cdf)
    }
}

impl<Probability, Table, const PRECISION: usize> DecoderModel<PRECISION>
    for ContiguousCategoricalEntropyModel<Probability, Table, PRECISION>
where
    Probability: BitArray,
    Table: AsRef<[Probability]>,
{
    #[inline(always)]
    fn quantile_function(
        &self,
        quantile: Self::Probability,
    ) -> (usize, Probability, Probability::NonZero) {
        self.cdf.quantile_function::<PRECISION>(quantile)
    }
}

impl<Symbol, Probability, Table, const PRECISION: usize> DecoderModel<PRECISION>
    for NonContiguousCategoricalDecoderModel<Symbol, Probability, Table, PRECISION>
where
    Symbol: Clone,
    Probability: BitArray,
    Table: AsRef<[(Probability, Symbol)]>,
{
    #[inline(always)]
    fn quantile_function(
        &self,
        quantile: Self::Probability,
    ) -> (Symbol, Probability, Probability::NonZero) {
        self.cdf.quantile_function::<PRECISION>(quantile)
    }
}

/// `EncoderModel` is only implemented for *contiguous* generic categorical models. To
/// decode encode symbols from a non-contiguous support, use an
/// `NonContiguousCategoricalEncoderModel`.
impl<Probability, Table, const PRECISION: usize> EncoderModel<PRECISION>
    for ContiguousCategoricalEntropyModel<Probability, Table, PRECISION>
where
    Probability: BitArray,
    Table: AsRef<[Probability]>,
{
    fn left_cumulative_and_probability(
        &self,
        symbol: impl Borrow<usize>,
    ) -> Option<(Probability, Probability::NonZero)> {
        let index = *symbol.borrow();

        let (cdf, next_cdf) = unsafe {
            // SAFETY: we perform a single check if index is within bounds (we compare
            // `index >= len - 1` here and not `index + 1 >= len` because the latter could
            // overflow/wrap but `len` is guaranteed to be nonzero; once the check passes,
            // we know that `index + 1` doesn't wrap because `cdf.len()` can't be
            // `usize::max_value()` since that would mean that there's no space left even
            // for the call stack).
            if index >= self.support_size() {
                return None;
            }
            (
                SymbolTable::<usize, Probability>::left_cumulative_unchecked(&self.cdf, index),
                SymbolTable::<usize, Probability>::left_cumulative_unchecked(&self.cdf, index + 1),
            )
        };

        let probability = unsafe {
            // SAFETY: The constructors ensure that all probabilities within bounds are nonzero.
            next_cdf.wrapping_sub(&cdf).into_nonzero_unchecked()
        };

        Some((cdf, probability))
    }
}

impl<'m, Symbol, Probability, M, const PRECISION: usize> From<&'m M>
    for NonContiguousCategoricalDecoderModel<
        Symbol,
        Probability,
        Vec<(Probability, Symbol)>,
        PRECISION,
    >
where
    Symbol: Clone,
    Probability: BitArray,
    M: IterableEntropyModel<'m, PRECISION, Symbol = Symbol, Probability = Probability> + ?Sized,
{
    #[inline(always)]
    fn from(model: &'m M) -> Self {
        Self::from_iterable_entropy_model(model)
    }
}

/// An entropy model for a categorical probability distribution over arbitrary symbols, for
/// encoding only.
///
/// You will usually want to use this type through one of its type aliases,
/// [`DefaultNonContiguousCategoricalEncoderModel`] or
/// [`SmallNonContiguousCategoricalEncoderModel`], see [discussion of
/// presets](super#presets).
///
/// This type implements the trait [`EncoderModel`] but not the trait [`DecoderModel`].
/// Thus, you can use a `NonContiguousCategoricalEncoderModel` for *encoding* with any of
/// the stream encoders provided by the `constriction` crate, but not for decoding. If you
/// want to decode data, use a [`NonContiguousCategoricalDecoderModel`] instead.
///
/// # Example
///
/// ```
/// use constriction::{
///     stream::{stack::DefaultAnsCoder, Decode},
///     stream::model::DefaultNonContiguousCategoricalEncoderModel,
///     stream::model::DefaultNonContiguousCategoricalDecoderModel,
///     UnwrapInfallible,
/// };
///
/// // Create a `ContiguousCategoricalEntropyModel` that approximates floating point probabilities.
/// let alphabet = ['M', 'i', 's', 'p', '!'];
/// let probabilities = [0.09, 0.36, 0.36, 0.18, 0.0];
/// let encoder_model = DefaultNonContiguousCategoricalEncoderModel
///     ::from_symbols_and_floating_point_probabilities(alphabet.iter().cloned(), &probabilities)
///     .unwrap();
/// assert_eq!(encoder_model.support_size(), 5); // `encoder_model` supports 4 symbols.
///
/// // Use `encoder_model` for entropy coding.
/// let message = "Mississippi!";
/// let mut ans_coder = DefaultAnsCoder::new();
/// ans_coder.encode_iid_symbols_reverse(message.chars(), &encoder_model).unwrap();
/// // Note that `message` contains the symbol '!', which has zero probability under our
/// // floating-point model. However, we can still encode the symbol because the
/// // `NonContiguousCategoricalEntropyModel` is "leaky", i.e., it assigns a nonzero
/// // probability to all symbols that we provided to the constructor.
///
/// // Create a matching `decoder_model`, decode the encoded message, and verify correctness.
/// let decoder_model = DefaultNonContiguousCategoricalDecoderModel
///     ::from_symbols_and_floating_point_probabilities(&alphabet, &probabilities)
///     .unwrap();
///
/// // We could pass `decoder_model` by reference (like we did for `encoder_model` above) but
/// // passing `decoder_model.as_view()` is slightly more efficient.
/// let decoded = ans_coder
///     .decode_iid_symbols(12, decoder_model.as_view())
///     .collect::<Result<String, _>>()
///     .unwrap_infallible();
/// assert_eq!(decoded, message);
/// assert!(ans_coder.is_empty());
///
/// // The `encoder_model` assigns zero probability to any symbols that were not provided to its
/// // constructor, so trying to encode a message that contains such a symbol will fail.
/// assert!(ans_coder.encode_iid_symbols_reverse("Mix".chars(), &encoder_model).is_err())
/// // ERROR: symbol 'x' is not in the support of `encoder_model`.
/// ```
///
/// # When Should I Use This Type of Entropy Model?
///
/// Use a `NonContiguousCategoricalEncoderModel` for probabilistic models that can *only* be
/// represented as an explicit probability table, and not by some more compact analytic
/// expression. If you have a probability model that can be expressed by some analytical
/// expression (e.g., a [`Binomial`](probability::distribution::Binomial) distribution),
/// then use [`LeakyQuantizer`] instead (unless you want to encode lots of symbols with the
/// same entropy model, in which case the explicitly tabulated representation of a
/// categorical entropy model could improve runtime performance).
///
/// Further, if the *support* of your probabilistic model (i.e., the set of symbols to which
/// the model assigns a non-zero probability) is a contiguous range of integers starting at
/// zero, then it is better to use a [`ContiguousCategoricalEntropyModel`]. It has better
/// computational efficiency and it is easier to use since it supports both encoding and
/// decoding with a single type.
///
/// # Computational Efficiency
///
/// For a probability distribution with a support of `N` symbols, a
/// `NonContiguousCategoricalEncoderModel` has the following asymptotic costs:
///
/// - creation:
///   - runtime cost: `Θ(N)` when creating from fixed point probabilities, `Θ(N log(N))`
///     when creating from floating point probabilities;
///   - memory footprint: `Θ(N)`;
///   - both are more expensive by a constant factor than for a
///     [`ContiguousCategoricalEntropyModel`].
/// - encoding a symbol (calling [`EncoderModel::left_cumulative_and_probability`]):
///   - expected runtime cost: `Θ(1)` (worst case can be more expensive, uses a `HashMap`
///     under the hood).
///   - memory footprint: no heap allocations, constant stack space.
/// - decoding a symbol: not supported; use a [`NonContiguousCategoricalDecoderModel`].
///
/// [`EntropyModel`]: trait.EntropyModel.html
/// [`Encode`]: crate::Encode
/// [`Decode`]: crate::Decode
/// [`HashMap`]: std::hash::HashMap
#[derive(Debug, Clone)]
pub struct NonContiguousCategoricalEncoderModel<Symbol, Probability, const PRECISION: usize>
where
    Symbol: Hash,
    Probability: BitArray,
{
    table: HashMap<Symbol, (Probability, Probability::NonZero)>,
}

/// Type alias for a typical [`NonContiguousCategoricalEncoderModel`].
///
/// See:
/// - [`NonContiguousCategoricalEncoderModel`]
/// - [discussion of presets](super#presets)
pub type DefaultNonContiguousCategoricalEncoderModel<Symbol> =
    NonContiguousCategoricalEncoderModel<Symbol, u32, 24>;

/// Type alias for a [`NonContiguousCategoricalEncoderModel`] optimized for compatibility
/// with lookup decoder models.
///
/// See:
/// - [`NonContiguousCategoricalEncoderModel`]
/// - [discussion of presets](super#presets)
pub type SmallNonContiguousCategoricalEncoderModel<Symbol> =
    NonContiguousCategoricalEncoderModel<Symbol, u16, 12>;

impl<Symbol, Probability, const PRECISION: usize>
    NonContiguousCategoricalEncoderModel<Symbol, Probability, PRECISION>
where
    Symbol: Hash + Eq,
    Probability: BitArray,
{
    /// Constructs a leaky distribution over the provided `symbols` whose PMF approximates
    /// given `probabilities`.
    ///
    /// This method operates logically identically to
    /// [`NonContiguousCategoricalDecoderModel::from_symbols_and_floating_point_probabilities`]
    /// except that it constructs an [`EncoderModel`] rather than a [`DecoderModel`].
    #[allow(clippy::result_unit_err)]
    pub fn from_symbols_and_floating_point_probabilities<F>(
        symbols: impl IntoIterator<Item = Symbol>,
        probabilities: &[F],
    ) -> Result<Self, ()>
    where
        F: FloatCore + core::iter::Sum<F> + Into<f64>,
        Probability: Into<f64> + AsPrimitive<usize>,
        f64: AsPrimitive<Probability>,
        usize: AsPrimitive<Probability>,
    {
        let slots = optimize_leaky_categorical::<_, _, PRECISION>(probabilities)?;
        Self::from_symbols_and_nonzero_fixed_point_probabilities(
            symbols,
            slots.into_iter().map(|slot| slot.weight),
            false,
        )
    }

    /// Constructs a distribution with a PMF given in fixed point arithmetic.
    ///
    /// This method operates logically identically to
    /// [`NonContiguousCategoricalDecoderModel::from_symbols_and_nonzero_fixed_point_probabilities`]
    /// except that it constructs an [`EncoderModel`] rather than a [`DecoderModel`].
    #[allow(clippy::result_unit_err)]
    pub fn from_symbols_and_nonzero_fixed_point_probabilities<S, P>(
        symbols: S,
        probabilities: P,
        infer_last_probability: bool,
    ) -> Result<Self, ()>
    where
        S: IntoIterator<Item = Symbol>,
        P: IntoIterator,
        P::Item: Borrow<Probability>,
    {
        let symbols = symbols.into_iter();
        let mut table = HashMap::with_capacity(symbols.size_hint().0 + 1);
        let mut symbols = accumulate_nonzero_probabilities::<_, _, _, _, _, PRECISION>(
            symbols,
            probabilities.into_iter(),
            |symbol, left_sided_cumulative, probability| match table.entry(symbol) {
                Occupied(_) => Err(()),
                Vacant(slot) => {
                    let probability = probability.into_nonzero().ok_or(())?;
                    slot.insert((left_sided_cumulative, probability));
                    Ok(())
                }
            },
            infer_last_probability,
        )?;

        if symbols.next().is_some() {
            Err(())
        } else {
            Ok(Self { table })
        }
    }

    /// Creates a `NonContiguousCategoricalEncoderModel` from any entropy model that
    /// implements [`IterableEntropyModel`].
    ///
    /// Calling `NonContiguousCategoricalEncoderModel::from_iterable_entropy_model(&model)`
    /// is equivalent to calling `model.to_generic_encoder_model()`, where the latter
    /// requires bringing [`IterableEntropyModel`] into scope.
    ///
    /// TODO: test
    pub fn from_iterable_entropy_model<'m, M>(model: &'m M) -> Self
    where
        M: IterableEntropyModel<'m, PRECISION, Symbol = Symbol, Probability = Probability> + ?Sized,
    {
        let table = model
            .symbol_table()
            .map(|(symbol, left_sided_cumulative, probability)| {
                (symbol, (left_sided_cumulative, probability))
            })
            .collect::<HashMap<_, _>>();
        Self { table }
    }

    /// Returns the number of symbols in the support of the model.
    ///
    /// The support of the model is the set of all symbols that have nonzero probability.
    pub fn support_size(&self) -> usize {
        self.table.len()
    }

    /// Returns the entropy in units of bits (i.e., base 2).
    ///
    /// Similar to [`IterableEntropyModel::entropy_base2`], except that
    /// - this type doesn't implement `IterableEntropyModel` because it doesn't store
    ///   entries in a stable expected order;
    /// - because the order in which entries are stored will generally be different on each
    ///   program execution, rounding errors will be slightly different across multiple
    ///   program executions.
    pub fn entropy_base2<F>(&self) -> F
    where
        F: num_traits::Float + core::iter::Sum,
        Probability: Into<F>,
    {
        let entropy_scaled = self
            .table
            .values()
            .map(|&(_, probability)| {
                let probability = probability.get().into();
                probability * probability.log2() // probability is guaranteed to be nonzero.
            })
            .sum::<F>();

        let whole = (F::one() + F::one()) * (Probability::one() << (PRECISION - 1)).into();
        F::from(PRECISION).unwrap() - entropy_scaled / whole
    }
}

impl<'m, Symbol, Probability, M, const PRECISION: usize> From<&'m M>
    for NonContiguousCategoricalEncoderModel<Symbol, Probability, PRECISION>
where
    Symbol: Hash + Eq,
    Probability: BitArray,
    M: IterableEntropyModel<'m, PRECISION, Symbol = Symbol, Probability = Probability> + ?Sized,
{
    #[inline(always)]
    fn from(model: &'m M) -> Self {
        Self::from_iterable_entropy_model(model)
    }
}

impl<Symbol, Probability: BitArray, const PRECISION: usize> EntropyModel<PRECISION>
    for NonContiguousCategoricalEncoderModel<Symbol, Probability, PRECISION>
where
    Symbol: Hash,
    Probability: BitArray,
{
    type Probability = Probability;
    type Symbol = Symbol;
}

impl<Symbol, Probability: BitArray, const PRECISION: usize> EncoderModel<PRECISION>
    for NonContiguousCategoricalEncoderModel<Symbol, Probability, PRECISION>
where
    Symbol: Hash + Eq,
    Probability: BitArray,
{
    #[inline(always)]
    fn left_cumulative_and_probability(
        &self,
        symbol: impl Borrow<Self::Symbol>,
    ) -> Option<(Self::Probability, Probability::NonZero)> {
        self.table.get(symbol.borrow()).cloned()
    }
}

struct Slot<Probability> {
    original_index: usize,
    prob: f64,
    weight: Probability,
    win: f64,
    loss: f64,
}

/// Note: does not check if `symbols` is exhausted (this is so that you one can provide an
/// infinite iterator for `symbols` to optimize out the bounds check on it).
fn accumulate_nonzero_probabilities<Symbol, Probability, S, P, Op, const PRECISION: usize>(
    mut symbols: S,
    probabilities: P,
    mut operation: Op,
    infer_last_probability: bool,
) -> Result<S, ()>
where
    Probability: BitArray,
    S: Iterator<Item = Symbol>,
    P: Iterator,
    P::Item: Borrow<Probability>,
    Op: FnMut(Symbol, Probability, Probability) -> Result<(), ()>,
{
    assert!(PRECISION > 0);
    assert!(PRECISION <= Probability::BITS);

    // We accumulate all validity checks into single branches at the end in order to
    // keep the loop itself branchless.
    let mut laps_or_zeros = 0usize;
    let mut accum = Probability::zero();

    for probability in probabilities {
        let old_accum = accum;
        accum = accum.wrapping_add(probability.borrow());
        laps_or_zeros += (accum <= old_accum) as usize;
        let symbol = symbols.next().ok_or(())?;
        operation(symbol, old_accum, *probability.borrow())?;
    }

    let total = wrapping_pow2::<Probability>(PRECISION);

    if infer_last_probability {
        if accum >= total || laps_or_zeros != 0 {
            return Err(());
        }
        let symbol = symbols.next().ok_or(())?;
        let probability = total.wrapping_sub(&accum);
        operation(symbol, accum, probability)?;
    } else if accum != total || laps_or_zeros != (PRECISION == Probability::BITS) as usize {
        return Err(());
    }

    Ok(symbols)
}

fn optimize_leaky_categorical<Probability, F, const PRECISION: usize>(
    probabilities: &[F],
) -> Result<Vec<Slot<Probability>>, ()>
where
    F: FloatCore + core::iter::Sum<F> + Into<f64>,
    Probability: BitArray + Into<f64> + AsPrimitive<usize>,
    f64: AsPrimitive<Probability>,
    usize: AsPrimitive<Probability>,
{
    assert!(PRECISION > 0 && PRECISION <= Probability::BITS);

    if probabilities.len() < 2 || probabilities.len() > Probability::max_value().as_() {
        return Err(());
    }

    // Start by assigning each symbol weight 1 and then distributing no more than
    // the remaining weight approximately evenly across all symbols.
    let mut remaining_free_weight =
        wrapping_pow2::<Probability>(PRECISION).wrapping_sub(&probabilities.len().as_());
    let normalization = probabilities.iter().map(|&x| x.into()).sum::<f64>();
    if !normalization.is_normal() || !normalization.is_sign_positive() {
        return Err(());
    }
    let scale = remaining_free_weight.into() / normalization;

    let mut slots = probabilities
        .iter()
        .enumerate()
        .map(|(original_index, &prob)| {
            if prob < F::zero() {
                return Err(());
            }
            let prob: f64 = prob.into();
            let current_free_weight = (prob * scale).as_();
            remaining_free_weight = remaining_free_weight - current_free_weight;
            let weight = current_free_weight + Probability::one();

            // How much the cross entropy would decrease when increasing the weight by one.
            let win = prob * log1p(1.0f64 / weight.into());

            // How much the cross entropy would increase when decreasing the weight by one.
            let loss = if weight == Probability::one() {
                f64::infinity()
            } else {
                -prob * log1p(-1.0f64 / weight.into())
            };

            Ok(Slot {
                original_index,
                prob,
                weight,
                win,
                loss,
            })
        })
        .collect::<Result<Vec<_>, _>>()?;

    // Distribute remaining weight evenly among symbols with highest wins.
    while remaining_free_weight != Probability::zero() {
        // We can't use `sort_unstable_by` here because we want the result to be reproducible
        // even across updates of the standard library.
        slots.sort_by(|a, b| b.win.partial_cmp(&a.win).unwrap());
        let batch_size = core::cmp::min(remaining_free_weight.as_(), slots.len());
        for slot in &mut slots[..batch_size] {
            slot.weight = slot.weight + Probability::one(); // Cannot end up in `max_weight` because win would otherwise be -infinity.
            slot.win = slot.prob * log1p(1.0f64 / slot.weight.into());
            slot.loss = -slot.prob * log1p(-1.0f64 / slot.weight.into());
        }
        remaining_free_weight = remaining_free_weight - batch_size.as_();
    }

    loop {
        // Find slot where increasing its weight by one would incur the biggest win.
        let (buyer_index, &Slot { win: buyer_win, .. }) = slots
            .iter()
            .enumerate()
            .max_by(|(_, a), (_, b)| a.win.partial_cmp(&b.win).unwrap())
            .unwrap();
        // Find slot where decreasing its weight by one would incur the smallest loss.
        let (seller_index, seller) = slots
            .iter_mut()
            .enumerate()
            .min_by(|(_, a), (_, b)| a.loss.partial_cmp(&b.loss).unwrap())
            .unwrap();

        if buyer_index == seller_index {
            // This can only happen due to rounding errors. In this case, we can't expect
            // to be able to improve further.
            break;
        }

        if buyer_win <= seller.loss {
            // We've found the optimal solution.
            break;
        }

        // Setting `seller.win = -infinity` and `buyer.loss = infinity` below ensures that the
        // iteration converges even in the presence of rounding errors because each weight can
        // only be continuously increased or continuously decreased, and the range of allowed
        // weights is bounded from both above and below. See unit test `categorical_converges`.
        seller.weight = seller.weight - Probability::one();
        seller.win = f64::neg_infinity(); // Once a weight gets reduced it may never be increased again.
        seller.loss = if seller.weight == Probability::one() {
            f64::infinity()
        } else {
            -seller.prob * log1p(-1.0f64 / seller.weight.into())
        };

        let buyer = &mut slots[buyer_index];
        buyer.weight = buyer.weight + Probability::one();
        buyer.loss = f64::infinity(); // Once a weight gets increased it may never be decreased again.
        buyer.win = buyer.prob * log1p(1.0f64 / buyer.weight.into());
    }

    slots.sort_unstable_by_key(|slot| slot.original_index);
    Ok(slots)
}

// LOOKUP TABLE ENTROPY MODELS (FOR FAST DECODING) ================================================

/// A tabularized [`DecoderModel`] that is optimized for fast decoding of i.i.d. symbols
///
/// You will usually want to use this type through one of the type aliases
/// [`SmallContiguousLookupDecoderModel`] or [`SmallNonContiguousLookupDecoderModel`]. See
/// these types for extended documentation and examples.
#[derive(Debug, Clone, Copy)]
pub struct LookupDecoderModel<Symbol, Probability, SymbolTable, LookupTable, const PRECISION: usize>
where
    Probability: BitArray,
{
    /// Satisfies invariant:
    /// `lookup_table.as_ref().len() == 1 << PRECISION`
    lookup_table: LookupTable,

    /// Satisfies invariant:
    /// `left_sided_cumulative_and_symbol.as_ref().len()
    /// == *lookup_table.as_ref().iter().max() as usize + 2`
    cdf: SymbolTable,

    phantom: PhantomData<(Probability, Symbol)>,
}

/// Type alias for a [`LookupDecoderModel`] over arbitrary symbols.
///
/// # Examples
///
/// TODO
///
/// # See also
///
/// - [`SmallNonContiguousLookupDecoderModel`]
pub type SmallNonContiguousLookupDecoderModel<
    Symbol,
    SymbolTable = Vec<(u16, Symbol)>,
    LookupTable = Box<[u16]>,
> = LookupDecoderModel<Symbol, u16, NonContiguousSymbolTable<SymbolTable>, LookupTable, 12>;

/// Type alias for a [`LookupDecoderModel`] over symbols `{0, 1, ..., n-1}` with sane settings.
///
/// This array lookup table can be used with a [`SmallAnsCoder`] or a [`SmallRangeDecoder`]
/// (as well as with a [`DefaultAnsCoder`] or a [`DefaultRangeDecoder`], since you can
/// always use a "bigger" coder on a "smaller" model).
///
/// # Example
///
/// Decoding a sequence of symbols with a [`SmallAnsCoder`], a [`DefaultAnsCoder`], a
/// [`SmallRangeDecoder`], and a [`DefaultRangeDecoder`], all using the same
/// `SmallContiguousLookupDecoderModel`.
///
/// ```
/// use constriction::stream::{
///     model::SmallContiguousLookupDecoderModel,
///     stack::{SmallAnsCoder, DefaultAnsCoder},
///     queue::{SmallRangeDecoder, DefaultRangeDecoder},
///     Decode, Code,
/// };
///
/// // Create a `SmallContiguousLookupDecoderModel` from a probability distribution that's already
/// // available in fixed point representation (e.g., because it was deserialized from a file).
/// // Alternatively, we could use `from_floating_point_probabilities_contiguous`.
/// let probabilities = [1489, 745, 1489, 373];
/// let decoder_model = SmallContiguousLookupDecoderModel
///     ::from_nonzero_fixed_point_probabilities_contiguous(&probabilities, false).unwrap();
///
/// let expected = [2, 1, 3, 0, 0, 2, 0, 2, 1, 0, 2];
///
/// let mut small_ans_coder = SmallAnsCoder::from_compressed(vec![0xDA86, 0x2949]).unwrap();
/// let reconstructed = small_ans_coder
///     .decode_iid_symbols(11, &decoder_model).collect::<Result<Vec<_>, _>>().unwrap();
/// assert!(small_ans_coder.is_empty());
/// assert_eq!(reconstructed, expected);
///
/// let mut default_ans_decoder = DefaultAnsCoder::from_compressed(vec![0x2949DA86]).unwrap();
/// let reconstructed = default_ans_decoder
///     .decode_iid_symbols(11, &decoder_model).collect::<Result<Vec<_>, _>>().unwrap();
/// assert!(default_ans_decoder.is_empty());
/// assert_eq!(reconstructed, expected);
///
/// let mut small_range_decoder = SmallRangeDecoder::from_compressed(vec![0xBCF8, 0x3ECA]).unwrap();
/// let reconstructed = small_range_decoder
///     .decode_iid_symbols(11, &decoder_model).collect::<Result<Vec<_>, _>>().unwrap();
/// assert!(small_range_decoder.maybe_exhausted());
/// assert_eq!(reconstructed, expected);
///
/// let mut default_range_decoder = DefaultRangeDecoder::from_compressed(vec![0xBCF8733B]).unwrap();
/// let reconstructed = default_range_decoder
///     .decode_iid_symbols(11, &decoder_model).collect::<Result<Vec<_>, _>>().unwrap();
/// assert!(default_range_decoder.maybe_exhausted());
/// assert_eq!(reconstructed, expected);
/// ```
///
/// # See also
///
/// - [`SmallNonContiguousLookupDecoderModel`]
///
/// [`SmallAnsCoder`]: super::stack::SmallAnsCoder
/// [`SmallRangeDecoder`]: super::queue::SmallRangeDecoder
/// [`DefaultAnsCoder`]: super::stack::DefaultAnsCoder
/// [`DefaultRangeDecoder`]: super::queue::DefaultRangeDecoder
pub type SmallContiguousLookupDecoderModel<SymbolTable = Vec<u16>, LookupTable = Box<[u16]>> =
    LookupDecoderModel<usize, u16, ContiguousSymbolTable<SymbolTable>, LookupTable, 12>;

impl<Symbol, Probability, const PRECISION: usize>
    LookupDecoderModel<
        Symbol,
        Probability,
        NonContiguousSymbolTable<Vec<(Probability, Symbol)>>,
        Box<[Probability]>,
        PRECISION,
    >
where
    Probability: BitArray + Into<usize>,
    usize: AsPrimitive<Probability>,
    Symbol: Copy + Default,
{
    /// Create a `LookupDecoderModel` over arbitrary symbols.
    ///
    /// TODO: example
    #[allow(clippy::result_unit_err)]
    pub fn from_symbols_and_floating_point_probabilities<F>(
        symbols: &[Symbol],
        probabilities: &[F],
    ) -> Result<Self, ()>
    where
        F: FloatCore + core::iter::Sum<F> + Into<f64>,
        Probability: Into<f64> + AsPrimitive<usize>,
        f64: AsPrimitive<Probability>,
        usize: AsPrimitive<Probability>,
    {
        if symbols.len() != probabilities.len() {
            return Err(());
        };

        let slots = optimize_leaky_categorical::<_, _, PRECISION>(probabilities)?;
        Self::from_symbols_and_nonzero_fixed_point_probabilities(
            symbols.iter().cloned(),
            slots.into_iter().map(|slot| slot.weight),
            false,
        )
    }

    /// Create a `LookupDecoderModel` over arbitrary symbols.
    ///
    /// TODO: example
    #[allow(clippy::result_unit_err)]
    pub fn from_symbols_and_nonzero_fixed_point_probabilities<S, P>(
        symbols: S,
        probabilities: P,
        infer_last_probability: bool,
    ) -> Result<Self, ()>
    where
        S: IntoIterator<Item = Symbol>,
        P: IntoIterator,
        P::Item: Borrow<Probability>,
    {
        assert!(PRECISION > 0);
        assert!(PRECISION <= Probability::BITS);
        assert!(PRECISION < <usize as BitArray>::BITS);

        let mut lookup_table = Vec::with_capacity(1 << PRECISION);
        let symbols = symbols.into_iter();
        let mut cdf =
            Vec::with_capacity(symbols.size_hint().0 + 1 + infer_last_probability as usize);
        let mut symbols = accumulate_nonzero_probabilities::<_, _, _, _, _, PRECISION>(
            symbols,
            probabilities.into_iter(),
            |symbol, _, probability| {
                let index = cdf.len().as_();
                cdf.push((lookup_table.len().as_(), symbol));
                lookup_table.resize(lookup_table.len() + probability.into(), index);
                Ok(())
            },
            infer_last_probability,
        )?;

        cdf.push((wrapping_pow2(PRECISION), Symbol::default()));

        if symbols.next().is_some() {
            Err(())
        } else {
            Ok(Self {
                lookup_table: lookup_table.into_boxed_slice(),
                cdf: NonContiguousSymbolTable(cdf),
                phantom: PhantomData,
            })
        }
    }

    /// TODO: test
    pub fn from_iterable_entropy_model<'m, M>(model: &'m M) -> Self
    where
        M: IterableEntropyModel<'m, PRECISION, Symbol = Symbol, Probability = Probability> + ?Sized,
    {
        assert!(PRECISION > 0);
        assert!(PRECISION <= Probability::BITS);
        assert!(PRECISION < <usize as BitArray>::BITS);

        let mut lookup_table = Vec::with_capacity(1 << PRECISION);
        let symbol_table = model.symbol_table();
        let mut cdf = Vec::with_capacity(symbol_table.size_hint().0 + 1);
        for (symbol, left_sided_cumulative, probability) in symbol_table {
            let index = cdf.len().as_();
            debug_assert_eq!(left_sided_cumulative, lookup_table.len().as_());
            cdf.push((lookup_table.len().as_(), symbol));
            lookup_table.resize(lookup_table.len() + probability.get().into(), index);
        }
        cdf.push((wrapping_pow2(PRECISION), Symbol::default()));

        Self {
            lookup_table: lookup_table.into_boxed_slice(),
            cdf: NonContiguousSymbolTable(cdf),
            phantom: PhantomData,
        }
    }
}

impl<Symbol, Probability, const PRECISION: usize>
    LookupDecoderModel<
        Symbol,
        Probability,
        ContiguousSymbolTable<Vec<Probability>>,
        Box<[Probability]>,
        PRECISION,
    >
where
    Probability: BitArray + Into<usize>,
    usize: AsPrimitive<Probability>,
    Symbol: Copy + Default,
{
    /// Create a `LookupDecoderModel` over a contiguous range of symbols.
    ///
    /// TODO: example
    #[allow(clippy::result_unit_err)]
    pub fn from_floating_point_probabilities_contiguous<F>(probabilities: &[F]) -> Result<Self, ()>
    where
        F: FloatCore + core::iter::Sum<F> + Into<f64>,
        Probability: Into<f64> + AsPrimitive<usize>,
        f64: AsPrimitive<Probability>,
        usize: AsPrimitive<Probability>,
    {
        let slots = optimize_leaky_categorical::<_, _, PRECISION>(probabilities)?;
        Self::from_nonzero_fixed_point_probabilities_contiguous(
            slots.into_iter().map(|slot| slot.weight),
            false,
        )
    }

    /// Create a `LookupDecoderModel` over a contiguous range of symbols using fixed point arighmetic.
    ///
    /// # Example
    ///
    /// See [`SmallContiguousLookupDecoderModel`].
    #[allow(clippy::result_unit_err)]
    pub fn from_nonzero_fixed_point_probabilities_contiguous<I>(
        probabilities: I,
        infer_last_probability: bool,
    ) -> Result<Self, ()>
    where
        I: IntoIterator,
        I::Item: Borrow<Probability>,
    {
        assert!(PRECISION > 0);
        assert!(PRECISION <= Probability::BITS);
        assert!(PRECISION < <usize as BitArray>::BITS);

        let mut lookup_table = Vec::with_capacity(1 << PRECISION);
        let probabilities = probabilities.into_iter();
        let mut cdf =
            Vec::with_capacity(probabilities.size_hint().0 + 1 + infer_last_probability as usize);
        accumulate_nonzero_probabilities::<_, _, _, _, _, PRECISION>(
            core::iter::repeat(()),
            probabilities,
            |(), _, probability| {
                let index = cdf.len().as_();
                cdf.push(lookup_table.len().as_());
                lookup_table.resize(lookup_table.len() + probability.into(), index);
                Ok(())
            },
            infer_last_probability,
        )?;
        cdf.push(wrapping_pow2(PRECISION));

        Ok(Self {
            lookup_table: lookup_table.into_boxed_slice(),
            cdf: ContiguousSymbolTable(cdf),
            phantom: PhantomData,
        })
    }
}

impl<Probability, Table, LookupTable, const PRECISION: usize>
    LookupDecoderModel<
        Probability,
        Probability,
        ContiguousSymbolTable<Table>,
        LookupTable,
        PRECISION,
    >
where
    Probability: BitArray + Into<usize>,
    usize: AsPrimitive<Probability>,
    Table: AsRef<[Probability]>,
    LookupTable: AsRef<[Probability]>,
{
    /// Makes a very cheap shallow copy of the model that can be used much like a shared
    /// reference.
    ///
    /// The returned `LookupDecoderModel` implements `Copy`, which is a requirement for some
    /// methods, such as [`Decode::decode_iid_symbols`]. These methods could also accept a
    /// shared reference to a `NonContiguousCategoricalDecoderModel` (since all references
    /// to entropy models are also entropy models, and all shared references implement
    /// `Copy`), but passing a *view* instead may be slightly more efficient because it
    /// avoids one level of dereferencing.
    ///
    /// [`Decode::decode_iid_symbols`]: super::Decode::decode_iid_symbols
    pub fn as_view(
        &self,
    ) -> LookupDecoderModel<
        Probability,
        Probability,
        ContiguousSymbolTable<&[Probability]>,
        &[Probability],
        PRECISION,
    > {
        LookupDecoderModel {
            lookup_table: self.lookup_table.as_ref(),
            cdf: ContiguousSymbolTable(self.cdf.0.as_ref()),
            phantom: PhantomData,
        }
    }

    /// TODO: documentation
    pub fn as_contiguous_categorical(
        &self,
    ) -> ContiguousCategoricalEntropyModel<Probability, &[Probability], PRECISION> {
        ContiguousCategoricalEntropyModel {
            cdf: ContiguousSymbolTable(self.cdf.0.as_ref()),
            phantom: PhantomData,
        }
    }

    /// TODO: documentation
    pub fn into_contiguous_categorical(
        self,
    ) -> ContiguousCategoricalEntropyModel<Probability, Table, PRECISION> {
        ContiguousCategoricalEntropyModel {
            cdf: self.cdf,
            phantom: PhantomData,
        }
    }
}

impl<Symbol, Probability, Table, LookupTable, const PRECISION: usize>
    LookupDecoderModel<Symbol, Probability, NonContiguousSymbolTable<Table>, LookupTable, PRECISION>
where
    Probability: BitArray + Into<usize>,
    usize: AsPrimitive<Probability>,
    Table: AsRef<[(Probability, Symbol)]>,
    LookupTable: AsRef<[Probability]>,
{
    /// Makes a very cheap shallow copy of the model that can be used much like a shared
    /// reference.
    ///
    /// The returned `LookupDecoderModel` implements `Copy`, which is a requirement for some
    /// methods, such as [`Decode::decode_iid_symbols`]. These methods could also accept a
    /// shared reference to a `NonContiguousCategoricalDecoderModel` (since all references
    /// to entropy models are also entropy models, and all shared references implement
    /// `Copy`), but passing a *view* instead may be slightly more efficient because it
    /// avoids one level of dereferencing.
    ///
    /// [`Decode::decode_iid_symbols`]: super::Decode::decode_iid_symbols
    pub fn as_view(
        &self,
    ) -> LookupDecoderModel<
        Symbol,
        Probability,
        NonContiguousSymbolTable<&[(Probability, Symbol)]>,
        &[Probability],
        PRECISION,
    > {
        LookupDecoderModel {
            lookup_table: self.lookup_table.as_ref(),
            cdf: NonContiguousSymbolTable(self.cdf.0.as_ref()),
            phantom: PhantomData,
        }
    }
}

impl<Symbol, Probability, Table, LookupTable, const PRECISION: usize> EntropyModel<PRECISION>
    for LookupDecoderModel<Symbol, Probability, Table, LookupTable, PRECISION>
where
    Probability: BitArray + Into<usize>,
{
    type Symbol = Symbol;
    type Probability = Probability;
}

impl<Symbol, Probability, Table, LookupTable, const PRECISION: usize> DecoderModel<PRECISION>
    for LookupDecoderModel<Symbol, Probability, Table, LookupTable, PRECISION>
where
    Probability: BitArray + Into<usize>,
    Table: SymbolTable<Symbol, Probability>,
    LookupTable: AsRef<[Probability]>,
    Symbol: Clone,
{
    #[inline(always)]
    fn quantile_function(
        &self,
        quantile: Probability,
    ) -> (Symbol, Probability, Probability::NonZero) {
        if Probability::BITS != PRECISION {
            // It would be nice if we could avoid this but we currently don't statically enforce
            // `quantile` to fit into `PRECISION` bits.
            assert!(PRECISION == Probability::BITS || quantile < Probability::one() << PRECISION);
        }

        let (left_sided_cumulative, symbol, next_cumulative) = unsafe {
            // SAFETY:
            // - `quantile_to_index` has length `1 << PRECISION` and we verified that
            //   `quantile` fits into `PRECISION` bits above.
            // - `left_sided_cumulative_and_symbol` has length
            //   `*quantile_to_index.as_ref().iter().max() as usize + 2`, so we can always
            //   access it at `index + 1` for `index` coming from `quantile_to_index`.
            let index = *self.lookup_table.as_ref().get_unchecked(quantile.into());
            let index = index.into();

            (
                self.cdf.left_cumulative_unchecked(index),
                self.cdf.symbol_unchecked(index),
                self.cdf.left_cumulative_unchecked(index + 1),
            )
        };

        let probability = unsafe {
            // SAFETY: The constructors ensure that `cdf` is strictly increasing (in
            // wrapping arithmetic) except at indices that can't be reached from
            // `quantile_to_index`).
            next_cumulative
                .wrapping_sub(&left_sided_cumulative)
                .into_nonzero_unchecked()
        };

        (symbol, left_sided_cumulative, probability)
    }
}

impl<'m, Symbol, Probability, M, const PRECISION: usize> From<&'m M>
    for LookupDecoderModel<
        Symbol,
        Probability,
        NonContiguousSymbolTable<Vec<(Probability, Symbol)>>,
        Box<[Probability]>,
        PRECISION,
    >
where
    Probability: BitArray + Into<usize>,
    Symbol: Copy + Default,
    usize: AsPrimitive<Probability>,
    M: IterableEntropyModel<'m, PRECISION, Symbol = Symbol, Probability = Probability> + ?Sized,
{
    #[inline(always)]
    fn from(model: &'m M) -> Self {
        Self::from_iterable_entropy_model(model)
    }
}

impl<'m, Probability, Table, const PRECISION: usize>
    From<&'m ContiguousCategoricalEntropyModel<Probability, Table, PRECISION>>
    for LookupDecoderModel<
        Probability,
        Probability,
        ContiguousSymbolTable<Vec<Probability>>,
        Box<[Probability]>,
        PRECISION,
    >
where
    Probability: BitArray + Into<usize>,
    usize: AsPrimitive<Probability>,
    Table: AsRef<[Probability]>,
{
    fn from(model: &'m ContiguousCategoricalEntropyModel<Probability, Table, PRECISION>) -> Self {
        let cdf = model.cdf.0.as_ref().to_vec();
        let mut lookup_table = Vec::with_capacity(1 << PRECISION);
        for (symbol, &cumulative) in model.cdf.0.as_ref()[1..model.cdf.0.as_ref().len() - 1]
            .iter()
            .enumerate()
        {
            lookup_table.resize(cumulative.into(), symbol.as_());
        }
        lookup_table.resize(1 << PRECISION, (model.cdf.0.as_ref().len() - 2).as_());

        Self {
            lookup_table: lookup_table.into_boxed_slice(),
            cdf: ContiguousSymbolTable(cdf),
            phantom: PhantomData,
        }
    }
}

impl<'m, Probability, Table, LookupTable, const PRECISION: usize>
    IterableEntropyModel<'m, PRECISION>
    for LookupDecoderModel<
        Probability,
        Probability,
        ContiguousSymbolTable<Table>,
        LookupTable,
        PRECISION,
    >
where
    Probability: BitArray + Into<usize>,
    usize: AsPrimitive<Probability>,
    Table: AsRef<[Probability]>,
    LookupTable: AsRef<[Probability]>,
{
    type Iter = SymbolTableIter<Probability, Probability, ContiguousSymbolTable<&'m [Probability]>>;

    #[inline(always)]
    fn symbol_table(&'m self) -> Self::Iter {
        SymbolTableIter::new(self.as_view().cdf)
    }
}

impl<'m, Symbol, Probability, Table, LookupTable, const PRECISION: usize>
    IterableEntropyModel<'m, PRECISION>
    for LookupDecoderModel<
        Symbol,
        Probability,
        NonContiguousSymbolTable<Table>,
        LookupTable,
        PRECISION,
    >
where
    Symbol: Clone + 'm,
    Probability: BitArray + Into<usize>,
    usize: AsPrimitive<Probability>,
    Table: AsRef<[(Probability, Symbol)]>,
    LookupTable: AsRef<[Probability]>,
{
    type Iter =
        SymbolTableIter<Symbol, Probability, NonContiguousSymbolTable<&'m [(Probability, Symbol)]>>;

    #[inline(always)]
    fn symbol_table(&'m self) -> Self::Iter {
        SymbolTableIter::new(self.as_view().cdf)
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    use super::super::{stack::DefaultAnsCoder, Decode};

    use alloc::{string::String, vec};
    use probability::distribution::{Binomial, Cauchy, Gaussian, Laplace};

    #[test]
    fn split_almost_delta_distribution() {
        fn inner(distribution: impl Distribution<Value = f64>) {
            let quantizer = DefaultLeakyQuantizer::new(-10..=10);
            let model = quantizer.quantize(distribution);
            let (left_cdf, left_prob) = model.left_cumulative_and_probability(2).unwrap();
            let (right_cdf, right_prob) = model.left_cumulative_and_probability(3).unwrap();

            assert_eq!(
                left_prob.get(),
                right_prob.get() - 1,
                "Peak not split evenly."
            );
            assert_eq!(
                (1u32 << 24) - left_prob.get() - right_prob.get(),
                19,
                "Peak has wrong probability mass."
            );
            assert_eq!(left_cdf + left_prob.get(), right_cdf);
            // More thorough generic consistency checks of the CDF are done in `test_quantized_*()`.
        }

        inner(Gaussian::new(2.5, 1e-40));
        inner(Cauchy::new(2.5, 1e-40));
        inner(Laplace::new(2.5, 1e-40));
    }

    #[test]
    fn leakily_quantized_normal() {
        #[cfg(not(miri))]
        let (support, std_devs, means) = (
            -127..=127,
            [1e-40, 0.0001, 0.1, 3.5, 123.45, 1234.56],
            [
                -300.6, -127.5, -100.2, -4.5, 0.0, 50.3, 127.5, 180.2, 2000.0,
            ],
        );

        // We use different settings when testing on miri so that the test time stays reasonable.
        #[cfg(miri)]
        let (support, std_devs, means) = (
            -20..=20,
            [1e-40, 0.0001, 3.5, 1234.56],
            [-300.6, -20.5, -5.2, 8.5, 20.5, 2000.0],
        );

        let quantizer = LeakyQuantizer::<_, _, u32, 24>::new(support.clone());
        for &std_dev in &std_devs {
            for &mean in &means {
                let distribution = Gaussian::new(mean, std_dev);
                test_entropy_model(
                    &quantizer.quantize(distribution),
                    *support.start()..*support.end() + 1,
                );
            }
        }
    }

    #[test]
    fn leakily_quantized_cauchy() {
        #[cfg(not(miri))]
        let (support, gammas, means) = (
            -127..=127,
            [1e-40, 0.0001, 0.1, 3.5, 123.45, 1234.56],
            [
                -300.6, -127.5, -100.2, -4.5, 0.0, 50.3, 127.5, 180.2, 2000.0,
            ],
        );

        // We use different settings when testing on miri so that the test time stays reasonable.
        #[cfg(miri)]
        let (support, gammas, means) = (
            -20..=20,
            [1e-40, 0.0001, 3.5, 1234.56],
            [-300.6, -20.5, -5.2, 8.5, 20.5, 2000.0],
        );
        let quantizer = LeakyQuantizer::<_, _, u32, 24>::new(support.clone());
        for &gamma in &gammas {
            for &mean in &means {
                let distribution = Cauchy::new(mean, gamma);
                test_entropy_model(
                    &quantizer.quantize(distribution),
                    *support.start()..*support.end() + 1,
                );
            }
        }
    }

    #[test]
    fn leakily_quantized_laplace() {
        #[cfg(not(miri))]
        let (support, bs, means) = (
            -127..=127,
            [1e-40, 0.0001, 0.1, 3.5, 123.45, 1234.56],
            [
                -300.6, -127.5, -100.2, -4.5, 0.0, 50.3, 127.5, 180.2, 2000.0,
            ],
        );

        // We use different settings when testing on miri so that the test time stays reasonable.
        #[cfg(miri)]
        let (support, bs, means) = (
            -20..=20,
            [1e-40, 0.0001, 3.5, 1234.56],
            [-300.6, -20.5, -5.2, 8.5, 20.5, 2000.0],
        );
        let quantizer = LeakyQuantizer::<_, _, u32, 24>::new(support.clone());
        for &b in &bs {
            for &mean in &means {
                let distribution = Laplace::new(mean, b);
                test_entropy_model(
                    &quantizer.quantize(distribution),
                    *support.start()..*support.end() + 1,
                );
            }
        }
    }

    #[test]
    fn leakily_quantized_binomial() {
        #[cfg(not(miri))]
        let (ns, ps) = (
            [1, 2, 10, 100, 1000, 10_000],
            [1e-30, 1e-20, 1e-10, 0.1, 0.4, 0.9],
        );

        // We use different settings when testing on miri so that the test time stays reasonable.
        #[cfg(miri)]
        let (ns, ps) = ([1, 2, 100], [1e-30, 0.1, 0.4]);

        for &n in &ns {
            for &p in &ps {
                if n < 1000 || p >= 0.1 {
                    // In the excluded situations, `<Binomial as Inverse>::inverse` currently doesn't terminate.
                    // TODO: file issue to `probability` repo.
                    let quantizer = LeakyQuantizer::<_, _, u32, 24>::new(0..=n as u32);
                    let distribution = Binomial::new(n, p);
                    test_entropy_model(&quantizer.quantize(distribution), 0..(n as u32 + 1));
                }
            }
        }
    }

    #[test]
    fn uniform() {
        for range in [2, 3, 4, 5, 6, 7, 8, 9, 62, 63, 64, 254, 255, 256] {
            test_entropy_model(&UniformModel::<u32, 24>::new(range as u32), 0..range as u32);
            test_entropy_model(&UniformModel::<u32, 32>::new(range as u32), 0..range as u32);
            test_entropy_model(&UniformModel::<u16, 12>::new(range as u16), 0..range as u16);
            test_entropy_model(&UniformModel::<u16, 16>::new(range as u16), 0..range as u16);
            if range < 255 {
                test_entropy_model(&UniformModel::<u8, 8>::new(range as u8), 0..range as u8);
            }
            if range <= 64 {
                test_entropy_model(&UniformModel::<u8, 6>::new(range as u8), 0..range as u8);
            }
        }
    }

    #[test]
    fn entropy() {
        #[cfg(not(miri))]
        let (support, std_devs, means) = (-1000..=1000, [100., 200., 300.], [-10., 2.3, 50.1]);

        // We use different settings when testing on miri so that the test time stays reasonable.
        #[cfg(miri)]
        let (support, std_devs, means) = (-100..=100, [10., 20., 30.], [-1., 0.23, 5.01]);

        let quantizer = LeakyQuantizer::<_, _, u32, 24>::new(support);
        for &std_dev in &std_devs {
            for &mean in &means {
                let distribution = Gaussian::new(mean, std_dev);
                let model = quantizer.quantize(distribution);
                let entropy = model.entropy_base2::<f64>();
                let expected_entropy = 2.047095585180641 + std_dev.log2();
                assert!((entropy - expected_entropy).abs() < 0.01);
            }
        }
    }

    /// Test that `optimal_weights` reproduces the same distribution when fed with an
    /// already quantized model.
    #[test]
    fn trivial_optimal_weights() {
        let hist = [
            56319u32, 134860032, 47755520, 60775168, 75699200, 92529920, 111023616, 130420736,
            150257408, 169970176, 188869632, 424260864, 229548800, 236082432, 238252287, 234666240,
            1, 1, 227725568, 216746240, 202127104, 185095936, 166533632, 146508800, 126643712,
            107187968, 88985600, 72576000, 57896448, 45617664, 34893056, 26408448, 19666688,
            14218240, 10050048, 7164928, 13892864,
        ];
        assert_eq!(hist.iter().map(|&x| x as u64).sum::<u64>(), 1 << 32);

        let probabilities = hist.iter().map(|&x| x as f64).collect::<Vec<_>>();
        let categorical =
            ContiguousCategoricalEntropyModel::<u32, _, 32>::from_floating_point_probabilities(
                &probabilities,
            )
            .unwrap();
        let weights: Vec<_> = categorical
            .symbol_table()
            .map(|(_, _, probability)| probability.get())
            .collect();

        assert_eq!(&weights[..], &hist[..]);
    }

    #[test]
    fn nontrivial_optimal_weights() {
        let hist = [
            1u32, 186545, 237403, 295700, 361445, 433686, 509456, 586943, 663946, 737772, 1657269,
            896675, 922197, 930672, 916665, 0, 0, 0, 0, 0, 723031, 650522, 572300, 494702, 418703,
            347600, 1, 283500, 226158, 178194, 136301, 103158, 76823, 55540, 39258, 27988, 54269,
        ];
        assert_ne!(hist.iter().map(|&x| x as u64).sum::<u64>(), 1 << 32);

        let probabilities = hist.iter().map(|&x| x as f64).collect::<Vec<_>>();
        let categorical =
            ContiguousCategoricalEntropyModel::<u32, _, 32>::from_floating_point_probabilities(
                &probabilities,
            )
            .unwrap();
        let weights: Vec<_> = categorical
            .symbol_table()
            .map(|(_, _, probability)| probability.get())
            .collect();

        assert_eq!(weights.len(), hist.len());
        assert_eq!(weights.iter().map(|&x| x as u64).sum::<u64>(), 1 << 32);
        for &w in &weights {
            assert!(w > 0);
        }

        let mut weights_and_hist = weights
            .iter()
            .cloned()
            .zip(hist.iter().cloned())
            .collect::<Vec<_>>();

        // Check that sorting by weight is compatible with sorting by hist.
        weights_and_hist.sort_unstable();
        // TODO: replace the following with
        // `assert!(weights_and_hist.iter().map(|&(_, x)| x).is_sorted())`
        // when `is_sorted` becomes stable.
        let mut previous = 0;
        for (_, hist) in weights_and_hist {
            assert!(hist >= previous);
            previous = hist;
        }
    }

    /// Regression test for convergence of `optimize_leaky_categorical`.
    #[test]
    fn categorical_converges() {
        // Two example probability distributions that lead to an infinite loop in constriction 0.2.6
        // (see <https://github.com/bamler-lab/constriction/issues/20>).
        let example1 = [0.15, 0.69, 0.15];
        let example2 = [
            1.34673042e-04,
            6.52306480e-04,
            3.14999325e-03,
            1.49921896e-02,
            6.67127371e-02,
            2.26679876e-01,
            3.75356406e-01,
            2.26679876e-01,
            6.67127594e-02,
            1.49922138e-02,
            3.14990873e-03,
            6.52299321e-04,
            1.34715927e-04,
        ];

        let categorical =
            DefaultContiguousCategoricalEntropyModel::from_floating_point_probabilities(&example1)
                .unwrap();
        let prob0 = categorical.left_cumulative_and_probability(0).unwrap().1;
        let prob2 = categorical.left_cumulative_and_probability(2).unwrap().1;
        assert!((-1..=1).contains(&(prob0.get() as i64 - prob2.get() as i64)));

        let _ =
            DefaultContiguousCategoricalEntropyModel::from_floating_point_probabilities(&example2)
                .unwrap();
        // Nothing to test here. As long as the above line didn't cause an infinite loop we're good.
    }

    #[test]
    fn contiguous_categorical() {
        let hist = [
            1u32, 186545, 237403, 295700, 361445, 433686, 509456, 586943, 663946, 737772, 1657269,
            896675, 922197, 930672, 916665, 0, 0, 0, 0, 0, 723031, 650522, 572300, 494702, 418703,
            347600, 1, 283500, 226158, 178194, 136301, 103158, 76823, 55540, 39258, 27988, 54269,
        ];
        let probabilities = hist.iter().map(|&x| x as f64).collect::<Vec<_>>();

        let model =
            ContiguousCategoricalEntropyModel::<u32, _, 32>::from_floating_point_probabilities(
                &probabilities,
            )
            .unwrap();
        test_entropy_model(&model, 0..probabilities.len());
    }

    #[test]
    fn non_contiguous_categorical() {
        let hist = [
            1u32, 186545, 237403, 295700, 361445, 433686, 509456, 586943, 663946, 737772, 1657269,
            896675, 922197, 930672, 916665, 0, 0, 0, 0, 0, 723031, 650522, 572300, 494702, 418703,
            347600, 1, 283500, 226158, 178194, 136301, 103158, 76823, 55540, 39258, 27988, 54269,
        ];
        let probabilities = hist.iter().map(|&x| x as f64).collect::<Vec<_>>();
        let symbols = "QWERTYUIOPASDFGHJKLZXCVBNM 1234567890"
            .chars()
            .collect::<Vec<_>>();

        let model =
            NonContiguousCategoricalDecoderModel::<_,u32, _, 32>::from_symbols_and_floating_point_probabilities(
                &symbols,
                &probabilities,
            )
            .unwrap();
        test_iterable_entropy_model(&model, symbols.iter().cloned());
    }

    fn test_entropy_model<'m, D, const PRECISION: usize>(
        model: &'m D,
        support: impl Clone + Iterator<Item = D::Symbol>,
    ) where
        D: IterableEntropyModel<'m, PRECISION>
            + EncoderModel<PRECISION>
            + DecoderModel<PRECISION>
            + 'm,
        D::Symbol: Copy + core::fmt::Debug + PartialEq,
        D::Probability: Into<u64>,
        u64: AsPrimitive<D::Probability>,
    {
        let mut sum = 0;
        for symbol in support.clone() {
            let (left_cumulative, prob) = model.left_cumulative_and_probability(symbol).unwrap();
            assert_eq!(left_cumulative.into(), sum);
            sum += prob.get().into();

            let expected = (symbol, left_cumulative, prob);
            assert_eq!(model.quantile_function(left_cumulative), expected);
            assert_eq!(model.quantile_function((sum - 1).as_()), expected);
            assert_eq!(
                model.quantile_function((left_cumulative.into() + prob.get().into() / 2).as_()),
                expected
            );
        }
        assert_eq!(sum, 1 << PRECISION);

        test_iterable_entropy_model(model, support);
    }

    fn test_iterable_entropy_model<'m, D, const PRECISION: usize>(
        model: &'m D,
        support: impl Clone + Iterator<Item = D::Symbol>,
    ) where
        D: IterableEntropyModel<'m, PRECISION> + 'm,
        D::Symbol: Copy + core::fmt::Debug + PartialEq,
        D::Probability: Into<u64>,
        u64: AsPrimitive<D::Probability>,
    {
        let mut expected_cumulative = 0u64;
        let mut count = 0;
        for (expected_symbol, (symbol, left_sided_cumulative, probability)) in
            support.clone().zip(model.symbol_table())
        {
            assert_eq!(symbol, expected_symbol);
            assert_eq!(left_sided_cumulative.into(), expected_cumulative);
            expected_cumulative += probability.get().into();
            count += 1;
        }
        assert_eq!(count, support.size_hint().0);
        assert_eq!(expected_cumulative, 1 << PRECISION);
    }

    #[test]
    fn lookup_contiguous() {
        let probabilities = vec![3u8, 18, 1, 42];
        let model =
            ContiguousCategoricalEntropyModel::<_, _, 6>::from_nonzero_fixed_point_probabilities(
                probabilities,
                false,
            )
            .unwrap();
        let lookup_decoder_model = LookupDecoderModel::from_iterable_entropy_model(&model);

        // Verify that `decode(encode(x)) == x` and that `lookup_decode(encode(x)) == x`.
        for symbol in 0..4 {
            let (left_cumulative, probability) =
                model.left_cumulative_and_probability(symbol).unwrap();
            for quantile in left_cumulative..left_cumulative + probability.get() {
                assert_eq!(
                    model.quantile_function(quantile),
                    (symbol, left_cumulative, probability)
                );
                assert_eq!(
                    lookup_decoder_model.quantile_function(quantile),
                    (symbol, left_cumulative, probability)
                );
            }
        }

        // Verify that `encode(decode(x)) == x` and that `encode(lookup_decode(x)) == x`.
        for quantile in 0..1 << 6 {
            let (symbol, left_cumulative, probability) = model.quantile_function(quantile);
            assert_eq!(
                lookup_decoder_model.quantile_function(quantile),
                (symbol, left_cumulative, probability)
            );
            assert_eq!(
                model.left_cumulative_and_probability(symbol).unwrap(),
                (left_cumulative, probability)
            );
        }

        // Test encoding and decoding a few symbols.
        let symbols = vec![0, 3, 2, 3, 1, 3, 2, 0, 3];
        let mut ans = DefaultAnsCoder::new();
        ans.encode_iid_symbols_reverse(&symbols, &model).unwrap();
        assert!(!ans.is_empty());

        let mut ans2 = ans.clone();
        let decoded = ans
            .decode_iid_symbols(9, &model)
            .collect::<Result<Vec<_>, _>>()
            .unwrap();
        assert_eq!(decoded, symbols);
        assert!(ans.is_empty());

        let decoded = ans2
            .decode_iid_symbols(9, &lookup_decoder_model)
            .collect::<Result<Vec<_>, _>>()
            .unwrap();
        assert_eq!(decoded, symbols);
        assert!(ans2.is_empty());
    }

    #[test]
    fn lookup_noncontiguous() {
        let symbols = "axcy";
        let probabilities = [3u8, 18, 1, 42];
        let encoder_model = NonContiguousCategoricalEncoderModel::<_, u8, 6>::from_symbols_and_nonzero_fixed_point_probabilities(
            symbols.chars(),probabilities.iter(),false
        )
        .unwrap();
        let decoder_model = NonContiguousCategoricalDecoderModel::<_, _,_, 6>::from_symbols_and_nonzero_fixed_point_probabilities(
            symbols.chars(),probabilities.iter(),false
        )
        .unwrap();
        let lookup_decoder_model = LookupDecoderModel::from_iterable_entropy_model(&decoder_model);

        // Verify that `decode(encode(x)) == x` and that `lookup_decode(encode(x)) == x`.
        for symbol in symbols.chars() {
            let (left_cumulative, probability) = encoder_model
                .left_cumulative_and_probability(symbol)
                .unwrap();
            for quantile in left_cumulative..left_cumulative + probability.get() {
                assert_eq!(
                    decoder_model.quantile_function(quantile),
                    (symbol, left_cumulative, probability)
                );
                assert_eq!(
                    lookup_decoder_model.quantile_function(quantile),
                    (symbol, left_cumulative, probability)
                );
            }
        }

        // Verify that `encode(decode(x)) == x` and that `encode(lookup_decode(x)) == x`.
        for quantile in 0..1 << 6 {
            let (symbol, left_cumulative, probability) = decoder_model.quantile_function(quantile);
            assert_eq!(
                lookup_decoder_model.quantile_function(quantile),
                (symbol, left_cumulative, probability)
            );
            assert_eq!(
                encoder_model
                    .left_cumulative_and_probability(symbol)
                    .unwrap(),
                (left_cumulative, probability)
            );
        }

        // Test encoding and decoding a few symbols.
        let symbols = "axcxcyaac";
        let mut ans = DefaultAnsCoder::new();
        ans.encode_iid_symbols_reverse(symbols.chars(), &encoder_model)
            .unwrap();
        assert!(!ans.is_empty());
        let decoded = ans
            .decode_iid_symbols(9, &decoder_model)
            .collect::<Result<String, _>>()
            .unwrap();
        assert_eq!(decoded, symbols);
        assert!(ans.is_empty());
    }
}