1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
//! Sources and sinks of compressed data
//!
//! This module declares traits for reading and writing sequences of bits in small chunks
//! ("words") of fixed size. When entropy coders provided by `constriction` read in or write
//! out a word of compressed data they do this through a generic type, typically called
//! `Backend`, that implements one or more of the traits from this module. Declaring traits
//! for entropy coder backends allows us to make entropy coders generic over the specific
//! backends they use used rather than forcing a single choice of backend implementation on
//! all users of a given entropy coder. This gives users with specialized needs fine grained
//! control over the behaviour of entropy coders without sacrificing ergonomics or
//! computational efficiency in the common use cases.
//!
//! # This module is meant for advanced use cases
//!
//! Most users of `constriction` don't have to worry much about backends since all entropy
//! coders default (at compile time) to reasonable backends based on what you use them for.
//! You will usually end up using a `Vec` backend for encoding, and you may use either a
//! `Vec` or a [`Cursor`] backend for decoding depending on whether your entropyc coder has
//! stack or queue semantics and whether you want to consume or retain the compressed data
//! after decoding. However, these automatically inferred default backends may not be
//! suitable for certain advanced use cases. For example, you may want to decode data
//! directly from a network socket, or you may be implementing a container format that
//! performs some additional operation like multiplexing directly after entropy coding. In
//! such a case, you may want to declare your own type for the source or sink of compressed
//! data and implement the relevant traits from this module for it so that you can use it as
//! a backend for an entropy coder.
//!
//! # Module Overview
//!
//! The main traits in this module are [`ReadWords`] and [`WriteWords`]. They express the
//! capability of a backend to be a source and/or sink of compressed data, respectively.
//! Both traits are generic over a type `Word`, which is usually a [`BitArray`], and which
//! represents the smallest unit of compressed data that an entropy coder will read and/or
//! write at a time (all provided entropy coders in `constriction` are generic over the
//! `Word` and default to `Word = u32`). Types that implement one of the backend traits
//! often also implement [`Pos`] and/or [`Seek`] from the parent module. The remaining
//! traits in this module specify further properties of the backend (see
//! [`BoundedReadWords`] and [`BoundedWriteWords`]) and provide permanent or temporary
//! conversions into backends with different capabilities (see [`IntoReadWords`],
//! [`IntoSeekReadWords`], [`AsReadWords`], and [`AsSeekReadWords`]).
//!
//! The backend traits are implemented for the standard library type `Vec` where applicable
//! and for a few new types defined in this module. The most important type defined in this
//! module is a [`Cursor`], which wraps a generic buffer of an in-memory slice of words
//! together with an index into the buffer (`constriction::backends::Cursor` is to the
//! backend traits roughly what [`std::io::Cursor`] is to the `std::io::{Read, Write}`
//! traits). A [`Cursor`] can hold either owned or borrowed data and can be used for reading
//! and/or writing (if the buffer is mutable) with both [`Queue`] and [`Stack`] read/write
//! semantics.
//!
//! # Read/Write Semantics
//!
//! The [`ReadWords`] trait has a second type parameter with trait bound [`Semantics`].
//! `Semantics` are (typically zero sized) marker types that indicate how reads from a
//! backend behave in relation to writes to the backend. This issue is moot for backends
//! that support only one of reading or writing but not both. Therefore, any backend that
//! does not implement `WriteWords` may implement `ReadWords` for multiple `Semantics`.
//! However, backends that implement both `ReadWords` and `WriteWords` must make sure to
//! implement `ReadWords` only for the one or more appropriate semantics. There are two
//! predefined `Semantics`: [`Queue`], which indicates that reads and writes operate in the
//! same linear direction ("first in first out") and [`Stack`], which is also a linear
//! sequence of words but one where reads and writes operate in opposite directions ("last
//! in first out"). You may define your own `Semantics` if you want to implement a backend
//! based on a more fancy abstract data type.
//!
//! For example, we implement `WriteWords<Word>` and `ReadWords<Word, Stack>` but not
//! `ReadWords<Word, Queue>` for the type `Vec<Word>` from the standard library because
//! [`Vec::push`] and [`Vec::pop`] have `Stack` semantics. By contrast, the type [`Cursor`]
//! declared in this module, which wraps a memory buffer and an index into the buffer,
//! implements `ReadWords` for both `Stack` and `Queue` semantics. The `Queue`
//! implementation increases the index after reading and the `Stack` implementation
//! decreases the index before reading (if you want the opposite interpretation then you can
//! wrap the `Cursor` in a [`Reverse`]). Thus, a `Cursor` can be used by entropy coders
//! with both stack and queue semantics, and both can use the `Cursor` in the way that is
//! correct for them. By contrast, while a stack-based entropy coder (like [`AnsCoder`]) can
//! use a `Vec<Word>` for both encoding and decoding, an entropy coder with queue semantics
//! (like a Range Coder) can use a `Vec` only for encoding but it has to wrap the `Vec` in a
//! `Cursor` for decoding, thus preventing accidental misuse.
//!
//! # Example of Entropy Coding With a Non-Standard Backend
//!
//! The following example encodes and decodes data to and from a file. It uses custom
//! backends that directly write each `Word` to, and read each `Word` from the file. This is
//! not a very practical example—if you encode all data at once then it's simpler and
//! possibly even more efficient to use the default backend, which writes to an in-memory
//! buffer, call `.get_compressed()` when you're done, and then flush the buffer to the file
//! in one go. But custom backends similar to the ones used in this example could also be
//! used to add additional processing to the compressed data, such as multiplexing or
//! demultiplexing for some container format.
//!
//! ```
//! use constriction::{
//!     backends::{FallibleCallbackWriteWords, FallibleIteratorReadWords},
//!     stream::{
//!         model::DefaultLeakyQuantizer,
//!         queue::{DefaultRangeDecoder, DefaultRangeEncoder},
//!         Decode, Encode,
//!     },
//! };
//! use byteorder::{LittleEndian, ReadBytesExt, WriteBytesExt};
//! use probability::distribution::Gaussian;
//! use std::{fs::File, io::{BufReader, BufWriter}};
//!
//! fn encode_to_file_on_the_fly(amt: u32) {
//!     // Some simple entropy model, just for demonstration purpose.
//!     let quantizer = DefaultLeakyQuantizer::new(-256..=255);
//!     let model = quantizer.quantize(Gaussian::new(0.0, 100.0));
//!
//!     // Some long-ish sequence of test symbols, made up in a reproducible way.
//!     let symbols = (0..amt).map(|i| {
//!         let cheap_hash = i.wrapping_mul(0x6979_E2F3).wrapping_add(0x0059_0E91);
//!         (cheap_hash >> (32 - 9)) as i32 - 256
//!     });
//!
//!     // Open a file and build a backend that writes to this file one word at a time.
//!     // (Wrapping the `File` in a `BufWriter` isn't strictly necessary here,
//!     // it's just good practice when writing to a file.)
//!     let mut file = BufWriter::new(File::create("backend_queue_example.tmp").unwrap());
//!     let backend =
//!         FallibleCallbackWriteWords::new(move |word| file.write_u32::<LittleEndian>(word));
//!
//!     // Wrap the backend in a `RangeEncoder` and encode (i.e., compress) the symbols.
//!     let mut encoder = DefaultRangeEncoder::with_backend(backend);
//!     encoder.encode_iid_symbols(symbols, &model).unwrap();
//!
//!     // Dropping the encoder doesn't automatically seal the compressed bit string because that
//!     // could fail. We explicitly have to seal it by calling `.into_compressed()`, which returns
//!     // the backend since that's what logically "holds" the compressed data, and then drop that.
//!     std::mem::drop(encoder.into_compressed().unwrap());
//! }
//!
//! fn decode_from_file_on_the_fly(amt: u32) {
//!     // Same toy entropy model that we used for encoding.
//!     let quantizer = DefaultLeakyQuantizer::new(-256..=255);
//!     let model = quantizer.quantize(Gaussian::new(0.0, 100.0));
//!
//!     // Open the file and iterate over its contents in `u32` words (wrapping it in a `BufReader`
//!     // is again just for good practice). We're deliberately being pedantic about the errors
//!     // here in order to show how backend errors can be reported to the encoder.
//!     let mut file = BufReader::new(File::open("backend_queue_example.tmp").unwrap());
//!     let word_iterator = std::iter::from_fn(move || match file.read_u32::<LittleEndian>() {
//!         Ok(word) => Some(Ok(word)),
//!         Err(err) => {
//!             if err.kind() == std::io::ErrorKind::UnexpectedEof {
//!                 None // Reached end of file, end iteration.
//!             } else {
//!                 Some(Err(err)) // Some other I/O error occurred. Propagate it up.
//!             }
//!         }
//!     });
//!
//!     // Create a decoder that decodes on the fly from our iterator.
//!     let backend = FallibleIteratorReadWords::new(word_iterator);
//!     let mut decoder = DefaultRangeDecoder::with_backend(backend).unwrap();
//!
//!     // Decode the symbols and verify their correctness.
//!     for (i, symbol) in decoder.decode_iid_symbols(amt as usize, &model).enumerate() {
//!         let cheap_hash = (i as u32).wrapping_mul(0x6979_E2F3).wrapping_add(0x0059_0E91);
//!         let expected = (cheap_hash >> (32 - 9)) as i32 - 256;
//!         assert_eq!(symbol.unwrap(), expected);
//!     }
//!
//!     // Recover the original iterator over compressed words and verify that it's been exhausted.
//!     let mut word_iterator = decoder.into_raw_parts().0.into_iter();
//!     assert!(word_iterator.next().is_none());
//!
//!     // `word_iterator` owns the file since we used a `move` clausure above to construct it.
//!     // So dropping it calls `std::fs::File`'s destructor, which releases the file handle.
//!     std::mem::drop(word_iterator);
//!     std::fs::remove_file("backend_queue_example.tmp").unwrap();
//! }
//!
//! encode_to_file_on_the_fly(1000);
//! decode_from_file_on_the_fly(1000);
//! ```
//!
//! [`BitArray`]: crate::BitArray
//! [`ChainCoder`]: crate::stream::chain::ChainCoder
//! [`AnsCoder`]: crate::stream::stack::AnsCoder

use alloc::{boxed::Box, vec::Vec};
use core::{
    convert::Infallible,
    fmt::{Debug, Display},
    marker::PhantomData,
};
use smallvec::SmallVec;

use crate::{Pos, PosSeek, Queue, Seek, Semantics, Stack};

// MAIN TRAITS FOR CAPABILITIES OF BACKENDS ===================================

/// A trait for sources of compressed data (mainly used by decoders).
///
/// See the [module-level documentation](self) for more information, in particular regarding
/// the type parameter `S: Semantics`.
pub trait ReadWords<Word, S: Semantics> {
    /// The error type that can occur when reading from the data source, or [`Infallible`].
    ///
    /// Note that "end of file" / "out of data" is *not* considered an error. The [`read`]
    /// method indicates "end of file" by returning `Ok(None)`, not `Err(...)`. If reading
    /// the data source cannot fail (except for "end of file") then `ReadError` should be
    /// [`Infallible`] so that the compiler can optimize out any error checks (see also
    /// [`UnwrapInfallible`]).
    ///
    /// [`read`]: Self::read
    /// [`UnwrapInfallible`]: crate::UnwrapInfallible
    type ReadError: Debug;

    /// Reads a single `Word` from the data source and advances the state of the data source
    /// accordingly (i.e., so that the next `read` won't read the same `Word` again).
    ///
    /// Returns
    /// - `Ok(Some(word))` if the read succeeded;
    /// - `Ok(None)` if the backend is exhausted (i.e., there's no more data left); or
    /// - `Err(err)` if an error `err` *other than "end of file"* occurred during reading
    ///   (e.g., a file system error)
    ///
    /// Note that `ReadWords::read` has stricter requirements than the standard library's
    /// [`Iterator::next`]. Once `ReadWords::read` indicates end of file by returning
    /// `Ok(None)`, it must never return `Ok(Some(_))` when called again (i.e., types that
    /// implement `ReadWords` have to be "fused", in iterator terminology). Entropy coders
    /// may rely on this contract for correctness of the encoded and decoded data but not
    /// for memory safety.
    fn read(&mut self) -> Result<Option<Word>, Self::ReadError>;

    /// Returns `true` if the data source *could* be out of data.
    ///
    /// The default implementation always returns `true` since returning `true` makes no
    /// statement. Overwrite the default implementation if you may in some cases be able to
    /// say with certainty that there is still data left to be read, and return `false` in
    /// these cases.
    ///
    /// If `maybe_exhausted()` returns `false` then the next call to `read` must return
    /// either `Ok(Some(_))` or `Err(_)` but not `Ok(None)`.
    #[inline(always)]
    fn maybe_exhausted(&self) -> bool {
        true
    }
}

/// A trait for sinks of compressed data (mainly used by encoders).
///
/// See the [module-level documentation](self) for more information.
pub trait WriteWords<Word> {
    /// The error type that can occur when writing to the data sink, or [`Infallible`].
    ///
    /// This type should be [`Infallible`] if writing cannot fail, so that the compiler can
    /// optimize out any error checks (see also [`UnwrapInfallible`]).
    ///
    /// An example error could be that the data sink is "full", if that's a state that the
    /// data sink can be in. Note the asymmetry compared to [`ReadWords`]: while we consider
    /// an attempt to write to a "full" `WriteWords` as an error, we consider an attempt to
    /// read from an "empty" `ReadWords` as a normal operation (that returns `Ok(None)`).
    /// This is because it is a common task to read all data from a data source until it is
    /// empty (and attempting to read past the "empty" state is often the only way to detect
    /// emptyness) whereas it is not a common task to intentionally write to a data sink
    /// until it is full (and therefore attempting to write to a full data sink is typically
    /// an error).
    ///
    /// [`UnwrapInfallible`]: crate::UnwrapInfallible
    type WriteError: Debug;

    /// Writes a single `Word` to the data sink and advances the state of the data sink
    /// accordingly (i.e., so that the next `write` won't overwrite the current `Word`).
    fn write(&mut self, word: Word) -> Result<(), Self::WriteError>;

    /// Writes a sequence of `Word`s to the data sink, short-circuiting on error.
    ///
    /// The default implementation calls [`write`] for each word. You may want to overwrite
    /// this if your data sink can perform additional optimizations (e.g., by utilizing the
    /// provided iterator's `size_hint`).
    fn extend_from_iter(
        &mut self,
        iter: impl Iterator<Item = Word>,
    ) -> Result<(), Self::WriteError> {
        for word in iter {
            self.write(word)?;
        }
        Ok(())
    }

    /// Returns `true` if the data sink *could* be full
    ///
    /// It is always correct to return `true` from this method, even if the concept of being
    /// "full" doesn't apply to the data sink. The default implementation always returns
    /// `true`. The precise meaning of "full" may vary between data sinks. A data sink
    /// that's "not full" (i.e., where this method returns `false`) may still return an
    /// error when trying to [`write`] to it.
    ///
    /// [`write`]: Self::write
    #[inline(always)]
    fn maybe_full(&self) -> bool {
        true
    }
}

/// A trait for data sources that know how much data is left.
pub trait BoundedReadWords<Word, S: Semantics>: ReadWords<Word, S> {
    /// Returns the number of `Word`s that are left for reading.
    ///
    /// If `remaining()` returns `n` then the next `n` calls to [`read`] must not return
    /// `Ok(None)`, and any subsequent `read`s must not return `Ok(Some(_))`.
    ///
    /// [`read`]: ReadWords::read
    fn remaining(&self) -> usize;

    /// Whether or not there is no data left to read.
    ///
    /// You'll usually want to overwrite the default implementation of
    /// [`ReadWords::maybe_exhausted`] to call `is_exhausted`, although the only strict
    /// requirement is that `maybe_exhausted` must not return `false` if `is_exhausted`
    /// returns `true`.
    #[inline(always)]
    fn is_exhausted(&self) -> bool {
        self.remaining() == 0
    }
}
/// A trait for data sinks with a known finite capacity.
pub trait BoundedWriteWords<Word>: WriteWords<Word> {
    /// Returns the number of `Word`s that one can expect to still be able to write to the
    /// data sink.
    ///
    /// The precise interpretation of the return value depends on the specific data sink.
    /// Calling [`write`] may still fail even if `space_left` returns a nonzero value (since
    /// we want to allow for unpredictable I/O errors).
    ///
    /// [`write`]: WriteWords::write
    fn space_left(&self) -> usize;

    /// Whether or not there is expected to still be some space left to write.
    ///
    /// You'll usually want to overwrite the default implementation of
    /// [`WriteWords::maybe_full`] to call `is_full`, although the only strict requirement
    /// is that `maybe_full` must not return `false` if `is_full` returns `true`.
    #[inline(always)]
    fn is_full(&self) -> bool {
        self.space_left() == 0
    }
}

// TRAITS FOR CONVERSIONS BETWEEN BACKENDS WITH DIFFERENT CAPABILITIES ========

/// A trait for types that can be turned into a source of compressed data (for decoders).
///
/// This trait is roughly analogous to the standard library trait [`IntoIterator`], except
/// that it is generic over `Word` rather than having `Word` as an associated type. This
/// makes it possible to convert a single type into data sources of varying word sizes (for
/// example, one could imagine implementing both `IntoReadWords<u32>` and
/// `IntoReadWords<u16>` for `Vec<u8>` using the `byteorder` crate).
///
/// # See also
///
/// - [module level documentation](self) for more information on the concept of sources and
///   sinks of compressed data;
/// - [`AsReadWords`] for a simliar conversion that does not take ownership of the data;
/// - [`IntoSeekReadWords`] for a conversion with stronger guarantees.
pub trait IntoReadWords<Word, S: Semantics> {
    /// The type of the data source that will result from the conversion.
    type IntoReadWords: ReadWords<Word, S>;

    /// Performs the conversion.
    fn into_read_words(self) -> Self::IntoReadWords;
}

/// A trait for types that can be temporarily used by decoders as a source of compressed
/// data.
///
/// This trait is meant for situations where you want to use some data as a source of
/// `Word`s without consuming it. This allows you to decode the same compressed data several
/// times but it means that you typically won't be allowed to return the resulting data
/// source or any entropy coder that wraps it from the current function because it doesn't
/// take ownership of the data. If you want to take ownership of the data, use
/// [`IntoReadWords`] instead.
///
/// Note that, if you want to decode the same compressed data several times then you'll
/// probably want to decode *different parts* of that data each time. In this case, it's
/// likely you'll rather want to use [`AsSeekReadWords`].
///
/// # See also
///
/// - [module level documentation](self) for more information on the concept of sources and
///   sinks of compressed data;
/// - [`IntoReadWords`] for a simliar conversion that takes ownership of the data;
/// - [`AsSeekReadWords`] for a conversion with stronger guarantees.
pub trait AsReadWords<'a, Word, S: Semantics>: 'a {
    /// The type of the data source as which the original type can be used.
    type AsReadWords: ReadWords<Word, S>;

    /// Performs the (temporary) conversion.
    fn as_read_words(&'a self) -> Self::AsReadWords;
}

/// A trait for types that can be turned into a randomly accessible source of compressed
/// data (for decoders).
///
/// This trait is similar to [`IntoReadWords`] but it adds the additional guarantee that the
/// resulting data source implements [`Seek`], i.e., that it can be used by decoders that
/// support random access.
///
/// # See also
///
/// - [module level documentation](self) for more information on the concept of sources and
///   sinks of compressed data;
/// - [`AsSeekReadWords`] for a simliar conversion that does not take ownership of the data;
pub trait IntoSeekReadWords<Word, S: Semantics> {
    /// The type of the random-access data source that will result from the conversion.
    type IntoSeekReadWords: Seek + ReadWords<Word, S>;

    /// Performs the conversion.
    fn into_seek_read_words(self) -> Self::IntoSeekReadWords;
}

/// A trait for types that can be temporarily used by random-access decoders as a source of
/// compressed data.
///
/// This trait is meant for situations where you want to use some data as a source of
/// `Word`s without consuming it. This allows you to decode the same compressed data several
/// times but it means that you typically won't be allowed to return the resulting data
/// source or any entropy coder that wraps it from the current function because it doesn't
/// take ownership of the data. If you want to take ownership of the data, use
/// [`IntoReadWords`] instead.
///
/// This trait is similar to [`AsReadWords`] but it adds the additional guarantee that the
/// resulting data source implements [`Seek`], i.e., that it can be used by decoders that
/// support random access. This is likely what you want if you're going to construct several
/// decoders for the same compressed data because why would you want decode the *whole* data
/// several times?
///
/// # See also
///
/// - [module level documentation](self) for more information on the concept of sources and
///   sinks of compressed data;
/// - [`IntoSeekReadWords`] for a simliar conversion that takes ownership of the data;
pub trait AsSeekReadWords<'a, Word, S: Semantics>: 'a {
    /// The type of the random-access data source as which the original type can be used.
    type AsSeekReadWords: Seek + ReadWords<Word, S>;

    /// Performs the (temporary) conversion.
    fn as_seek_read_words(&'a self) -> Self::AsSeekReadWords;
}

// IMPLEMENTATIONS FOR `Vec<Word>` ============================================

impl<Word> WriteWords<Word> for Vec<Word> {
    /// The only way how writing to a `Vec<Word>` can fail is if a memory allocation fails,
    /// which is typically treated as a fatal error (i.e., aborts) in Rust.
    type WriteError = Infallible;

    /// Appends the word to the end of the vector (= top of the stack)
    #[inline(always)]
    fn write(&mut self, word: Word) -> Result<(), Self::WriteError> {
        self.push(word);
        Ok(())
    }

    fn extend_from_iter(
        &mut self,
        iter: impl Iterator<Item = Word>,
    ) -> Result<(), Self::WriteError> {
        self.extend(iter);
        Ok(())
    }

    fn maybe_full(&self) -> bool {
        false
    }
}

impl<Word> ReadWords<Word, Stack> for Vec<Word> {
    /// The only way how reading from a vector can fail is if the vector is empty, but
    /// that's not considered an error (it returns `Ok(None)` instead).
    type ReadError = Infallible;

    /// Pops the word off the end of the vector (= top of the stack). If you instead want to
    /// keep the data unchanged (e.g., because you want to reuse it later) then wrap either
    /// the vector `v` or or the slice `&v[..]` in a [`Cursor`].
    #[inline(always)]
    fn read(&mut self) -> Result<Option<Word>, Self::ReadError> {
        Ok(self.pop())
    }

    #[inline(always)]
    fn maybe_exhausted(&self) -> bool {
        self.is_empty()
    }
}

impl<Word> BoundedReadWords<Word, Stack> for Vec<Word> {
    #[inline(always)]
    fn remaining(&self) -> usize {
        self.len()
    }
}

impl<Word> PosSeek for Vec<Word> {
    type Position = usize;
}

impl<Word> Pos for Vec<Word> {
    /// Returns the length of the vector since that's the current read and write position
    /// (vectors have [`Stack`] semantics).
    ///
    /// If you have a `Vec` with name `v` and your intention is to read to or write from it
    /// at arbitrary positions rather than just at the end then you probably want to wrap
    /// either `v` or the slice `&v[..]` in a [`Cursor`].
    fn pos(&self) -> usize {
        self.len()
    }
}

impl<Word> Seek for Vec<Word> {
    /// Seeking in a `Vec<Word>` only succeeds if the provided position `pos` is smaller
    /// than or equal to the vector's current length. In this case, seeking will truncate
    /// the vector to length `pos`. This is because vectors have [`Stack`] semantics, and
    /// the current read/write position (i.e., the head of the stack) is always at the end
    /// of the vector.
    ///
    /// If you have a `Vec` with name `v` and your intention is to read to or write from it
    /// at arbitrary positions rather than just at the end then you probably want to wrap
    /// either `v` or the slice `&v[..]` in a [`Cursor`].
    fn seek(&mut self, pos: usize) -> Result<(), ()> {
        if pos <= self.len() {
            self.truncate(pos);
            Ok(())
        } else {
            Err(())
        }
    }
}

// IMPLEMENTATIONS FOR `SmallVec<Word>` =======================================

impl<Array> WriteWords<Array::Item> for SmallVec<Array>
where
    Array: smallvec::Array,
{
    /// The only way how writing to a `Vec<Word>` can fail is if a memory allocation fails,
    /// which is typically treated as a fatal error (i.e., aborts) in Rust.
    type WriteError = Infallible;

    /// Appends the word to the end of the vector (= top of the stack)
    #[inline(always)]
    fn write(&mut self, word: Array::Item) -> Result<(), Self::WriteError> {
        self.push(word);
        Ok(())
    }

    fn extend_from_iter(
        &mut self,
        iter: impl Iterator<Item = Array::Item>,
    ) -> Result<(), Self::WriteError> {
        self.extend(iter);
        Ok(())
    }

    fn maybe_full(&self) -> bool {
        false
    }
}

impl<Array> ReadWords<Array::Item, Stack> for SmallVec<Array>
where
    Array: smallvec::Array,
{
    /// The only way how reading from a vector can fail is if the vector is empty, but
    /// that's not considered an error (it returns `Ok(None)` instead).
    type ReadError = Infallible;

    /// Pops the word off the end of the vector (= top of the stack). If you instead want to
    /// keep the data unchanged (e.g., because you want to reuse it later) then wrap either
    /// the vector `v` or or the slice `&v[..]` in a [`Cursor`].
    #[inline(always)]
    fn read(&mut self) -> Result<Option<Array::Item>, Self::ReadError> {
        Ok(self.pop())
    }

    #[inline(always)]
    fn maybe_exhausted(&self) -> bool {
        self.is_empty()
    }
}

impl<Array> BoundedReadWords<Array::Item, Stack> for SmallVec<Array>
where
    Array: smallvec::Array,
{
    #[inline(always)]
    fn remaining(&self) -> usize {
        self.len()
    }
}

impl<Array> PosSeek for SmallVec<Array>
where
    Array: smallvec::Array,
{
    type Position = usize;
}

impl<Array> Pos for SmallVec<Array>
where
    Array: smallvec::Array,
{
    /// Returns the length of the `SmallVec` since that's the current read and write
    /// position (`SmallVec`s, like `Vec`s, have [`Stack`] semantics).
    ///
    /// If you have a `Vec` or `SmallVec` with name `v` and your intention is to read to or
    /// write from it at arbitrary positions rather than just at the end then you probably
    /// want to wrap either `v` or the slice `&v[..]` in a [`Cursor`].
    fn pos(&self) -> usize {
        self.len()
    }
}

impl<Array> Seek for SmallVec<Array>
where
    Array: smallvec::Array,
{
    /// Seeking in a `SmallVec` only succeeds if the provided position `pos` is smaller than
    /// or equal to the `SmallVec`'s current length. In this case, seeking will truncate the
    /// `SmallVec` to length `pos`. This is because `SmallVec`s, like `Vec`s, have [`Stack`]
    /// semantics, and the current read/write position (i.e., the head of the stack) is
    /// always at the end of the `SmallVec`.
    ///
    /// If you have a `Vec` or `SmallVec` with name `v` and your intention is to read to or
    /// write from it at arbitrary positions rather than just at the end then you probably
    /// want to wrap either `v` or the slice `&v[..]` in a [`Cursor`].
    fn seek(&mut self, pos: usize) -> Result<(), ()> {
        if pos <= self.len() {
            self.truncate(pos);
            Ok(())
        } else {
            Err(())
        }
    }
}

// ADAPTER FOR (SEMANTIC) REVERSING OF READING DIRECTION ======================

/// Wrapper that inverts the read/write directions of a data source and/or data sink.
///
/// # Motivation
///
/// This wrapper is usually used for a [`Cursor`]. The `Cursor` type implements
/// `ReadWords<Word, S>` for both semantics `S = Queue` and `S = Stack`, so you can read
/// `Word`s from a cursor in either forward or backward direction.
///
/// Reading from a `Cursor` with `Queue` semantics reads from the underlying slice `[Word]`
/// in the normal direction (from index `0` to index `.len() - 1`), which is useful for
/// decoding data from an entropy coder that has queue semantics (like [`RangeEncoder`]). By
/// contrast, reading from a `Cursor` with `Stack` semantics reads in the reverse direction.
/// This is usually a good thing: it is consistent with how `Vec<Word>` (necessarily)
/// implements reading with `Stack` semantics, so if you have a `Vec<Word>` of data that was
/// compressed with a stack entropy coder (like [`AnsCoder`]) then you are free to choose
/// whether you want to decode the data either directly from the `Vec` or from a `Cursor`
/// that wraps the `Vec` (if you don't want to consume the compressed data). Both approaches
/// will achieve the same result, as you can see in the following example:
///
/// ```
/// use constriction::{
///     backends::Cursor, stream::{model::DefaultLeakyQuantizer, stack::DefaultAnsCoder, Decode},
///     UnwrapInfallible,
/// };
///
/// // Some simple entropy model, just for demonstration purpose.
/// let quantizer = DefaultLeakyQuantizer::new(-100..=100);
/// let model = quantizer.quantize(probability::distribution::Gaussian::new(25.0, 10.0));
///
/// // Encode the symbols `0..50` using a stack entropy coder and get the compressed data.
/// let mut coder = DefaultAnsCoder::new();
/// coder.encode_iid_symbols_reverse(0..50, &model).unwrap();
/// # // Test the claims we make in the comments below, but don't document them since that
/// # // would distract from the point we're trying to make here.
/// # let mut d = coder.as_decoder();
/// # assert!(d.decode_iid_symbols(50, &model).map(UnwrapInfallible::unwrap_infallible).eq(0..50));
/// # let mut d = coder.clone().into_decoder();
/// # assert!(d.decode_iid_symbols(50, &model).map(UnwrapInfallible::unwrap_infallible).eq(0..50));
/// let compressed = coder.into_compressed().unwrap_infallible(); // `compressed` is a `Vec<u32>`.
/// dbg!(compressed.len()); // Prints "compressed.len() = 11".
///
/// // You can either decode directly from the `Vec` (could also just have used `coder` for that).
/// let mut c2 = DefaultAnsCoder::from_compressed(compressed.clone()).unwrap();
/// assert!(c2.decode_iid_symbols(50, &model).map(UnwrapInfallible::unwrap_infallible).eq(0..50));
/// # assert!(c2.is_empty());
///
/// // Or you can wrap the slice `[u32]` in a `Cursor` (could have used `coder.as_decoder()`).
/// let borrowing_cursor = Cursor::new_at_write_end(&compressed[..]);
/// let mut c3 = DefaultAnsCoder::from_compressed(borrowing_cursor).unwrap();
/// assert!(c3.decode_iid_symbols(50, &model).map(UnwrapInfallible::unwrap_infallible).eq(0..50));
/// # assert!(c3.is_empty());
///
/// // You can also wrap the `Vec<u32>` in a `Cursor` (could have used `coder.into_decoder()`).
/// let owning_cursor = Cursor::new_at_write_end(compressed);
/// let mut c4 = DefaultAnsCoder::from_compressed(owning_cursor).unwrap();
/// assert!(c4.decode_iid_symbols(50, &model).map(UnwrapInfallible::unwrap_infallible).eq(0..50));
/// # assert!(c4.is_empty());
/// ```
///
/// However, it can sometimes be awkward to read data in reverse direction, e.g., if you're
/// reading it from a file or socket. In these situations you may prefer to reverse the
/// entire sequence of `Word`s after encoding so that the decoder can read them in forward
/// direction. You can then still wrap the reversed sequence of `Words` in a `Cursor`, but
/// if you pass this cursor to an `AnsCoder` then the `AnsCoder` has to know somehow that
/// the top of this stack is at the beginning of the slice, i.e., that reading with `Stack`
/// semantics means reading in the forward direction. To express this, wrap the `Cursor` in
/// a `Reverse`, otherwise you'll get garbled data:
///
/// ```
/// # use constriction::{
/// #     backends::Cursor, stream::{model::DefaultLeakyQuantizer, stack::DefaultAnsCoder, Decode},
/// #     UnwrapInfallible,
/// # };
/// # let quantizer = DefaultLeakyQuantizer::new(-100..=100);
/// # let model = quantizer.quantize(probability::distribution::Gaussian::new(25.0, 10.0));
/// # let mut coder = DefaultAnsCoder::new();
/// # coder.encode_iid_symbols_reverse(0..50, &model).unwrap();
/// # let mut compressed = coder.into_compressed().unwrap_infallible(); // `compressed` is a `Vec<u32>`.
/// use constriction::backends::Reverse;
///
/// // ... obtain same `model` and `compressed` as in the above example ...
///
/// compressed.reverse(); // Reverses the sequence of `u32` words in place (mutates `compressed`).
///
/// // Naively decoding the reversed compressed data leads to garbled symbols.
/// let wrong_cursor = Cursor::new_at_write_end(&compressed[..]);
/// let mut c5 = DefaultAnsCoder::from_compressed(wrong_cursor).unwrap();
/// let bug = c5.decode_iid_symbols(50, &model).collect::<Result<Vec<_>, _>>().unwrap_infallible();
/// dbg!(bug); // Prints "bug = [39, 47, 40, ...]", not what we had encoded.
///
/// // We must set the initial cursor position "at_write_beginning" and wrap it in a `Reverse`.
/// let reversed_cursor = Reverse(Cursor::new_at_write_beginning(&compressed[..]));
/// let mut c6 = DefaultAnsCoder::from_compressed(reversed_cursor).unwrap();
/// assert!(c6.decode_iid_symbols(50, &model).map(UnwrapInfallible::unwrap_infallible).eq(0..50));
/// # assert!(c6.is_empty());
/// ```
///
/// Wrapping a `Cursor` (or any `ReadWords`) in a `Reverse` with the statement `let
/// reversed_cursor = Reverse(original_cursor);` is a no-op. It changes neither the order of
/// the underlying sequence of `Word`s nor the current cursor position, but it will reverse
/// the direction in which the cursor position moves when you read data from
/// `reversed_cursor`. Therefore you should already have reversed the the underlying
/// sequence of `Word`s before you wrap the cursor in `Reverse`, and you should have
/// initialitze the `Cursor` position at the beginning of the reversed sequence of `Word`s
/// rather than the end.
///
/// # Shortcut
///
/// The method [`Cursor::into_reversed`] does everything at once:
/// - it reverses the underlying sequence of `Word`s;
/// - it moves the current read position to its mirrored position (thus following where the
///   value that it originally pointed to moved upon reversing the sequence of `Word`s); and
/// - it wraps the thus modified `Cursor` in a `Reverse`.
///
/// ```
/// # use constriction::{
/// #     backends::Cursor, stream::{model::DefaultLeakyQuantizer, stack::DefaultAnsCoder, Decode},
/// #     UnwrapInfallible,
/// # };
/// # let quantizer = DefaultLeakyQuantizer::new(-100..=100);
/// # let model = quantizer.quantize(probability::distribution::Gaussian::new(25.0, 10.0));
/// # let mut coder = DefaultAnsCoder::new();
/// # coder.encode_iid_symbols_reverse(0..50, &model).unwrap();
/// # let compressed = coder.into_compressed().unwrap_infallible(); // `compressed` is a `Vec<u32>`.
/// # let mut compressed_clone = compressed.clone();
/// # let mutably_borrowing_cursor = Cursor::new_at_write_end(&mut compressed_clone[..]);
/// # let mut c = DefaultAnsCoder::from_compressed(mutably_borrowing_cursor.into_reversed()).unwrap();
/// # assert!(c.decode_iid_symbols(50, &model).map(UnwrapInfallible::unwrap_infallible).eq(0..50));
/// # assert!(c.is_empty());
/// # let owning_cursor = Cursor::new_at_write_end(compressed);
/// // ... obtain same `model` and `owning_cursor` as in the `c4` example above ...
/// // (could also use a mutably borrowing cursor instead)
///
/// let mut c7 = DefaultAnsCoder::from_compressed(owning_cursor.into_reversed()).unwrap();
/// assert!(c7.decode_iid_symbols(50, &model).map(UnwrapInfallible::unwrap_infallible).eq(0..50));
/// # assert!(c7.is_empty());
/// ```
///
/// [`RangeEncoder`]: crate::stream::queue::RangeEncoder
/// [`AnsCoder`]: crate::stream::stack::AnsCoder
#[derive(Debug)]
pub struct Reverse<Backend>(pub Backend);

impl<Word, B: ReadWords<Word, Stack>> ReadWords<Word, Queue> for Reverse<B> {
    type ReadError = B::ReadError;

    #[inline(always)]
    fn read(&mut self) -> Result<Option<Word>, Self::ReadError> {
        self.0.read()
    }

    #[inline(always)]
    fn maybe_exhausted(&self) -> bool {
        self.0.maybe_exhausted()
    }
}

impl<Word, B: ReadWords<Word, Queue>> ReadWords<Word, Stack> for Reverse<B> {
    type ReadError = B::ReadError;

    #[inline(always)]
    fn read(&mut self) -> Result<Option<Word>, Self::ReadError> {
        self.0.read()
    }

    #[inline(always)]
    fn maybe_exhausted(&self) -> bool {
        self.0.maybe_exhausted()
    }
}

impl<Word, B: BoundedReadWords<Word, Stack>> BoundedReadWords<Word, Queue> for Reverse<B> {
    #[inline(always)]
    fn remaining(&self) -> usize {
        self.0.remaining()
    }

    #[inline(always)]
    fn is_exhausted(&self) -> bool {
        self.0.is_exhausted()
    }
}

impl<Word, B: BoundedReadWords<Word, Queue>> BoundedReadWords<Word, Stack> for Reverse<B> {
    #[inline(always)]
    fn remaining(&self) -> usize {
        self.0.remaining()
    }

    #[inline(always)]
    fn is_exhausted(&self) -> bool {
        self.0.is_exhausted()
    }
}

impl<B: PosSeek> PosSeek for Reverse<B> {
    type Position = B::Position;
}

impl<B: Pos> Pos for Reverse<B> {
    /// Delegates the call to the wrapped backend and returns its result without doing any
    /// conversion. This is consistent with the implementaiton of `Seek::sek` for
    /// `Reverse`.
    #[inline(always)]
    fn pos(&self) -> B::Position {
        self.0.pos()
    }
}

impl<B: Seek> Seek for Reverse<B> {
    /// Passes `pos` through to the wrapped backend, i.e., doesn't do any conversion. This
    /// is consistent with the implementation of `Pos::pos` for `Reverse`.
    #[inline(always)]
    fn seek(&mut self, pos: B::Position) -> Result<(), ()> {
        self.0.seek(pos)
    }
}

// ADAPTER FOR IN-MEMORY BUFFERS ==============================================

/// Adapter that turns an in-memory buffer into an `impl ReadWords` and/or an `impl
/// WriteWords`.
///
/// A `Cursor<Word, Buf>` allows you to use an in-memory buffer `Buf` of a slice of `Word`s
/// as a source and/or sink of compressed data in an entropy coder. The type `Buf` must
/// implement `AsRef<[Word]>` to be used as a data source (i.e., an implementation of
/// [`ReadWords`]) and it must implement `AsMut<[Word]>` to be used as a data sink (i.e., an
/// implementation of [`WriteWords`]). In the most typical use cases, `Buf` is either a
/// `Vec<Word>` (if the entropy coder should own the compressed data) or a reference to a
/// slice of `Word`s, i.e., `&[Word]` (if the entropy coder should only have shared access
/// to the compressed data, e.g., because you want to keep the compressed data alive even
/// after the entropy coder gets dropped).
///
/// A `Cursor<Word, Buf>` implements `ReadWords` for both [`Queue`] and [`Stack`] semantics.
/// By convention, reading with `Queue` semantics incremenets the `Cursor`'s index into the
/// slice returned by `.as_ref()` whereas reading with `Stack` semantics decrements the
/// index. Whether `Queue` or `Stack` semantics will be used is usually decided by the
/// implementation of the entropy coder that uses the `Cursor` as its backend. If you want
/// to read in the opposite direction than what's the convention for your use case (e.g.,
/// because you've already manually reversed the order of the `Word`s in the buffer) then
/// wrap the `Cursor` in a [`Reverse`]. The implementation of `WriteWords<Word>` (if `Buf`
/// implements `AsMut<[Word]>`) always writes in the same direction in which
/// `ReadWords<Word, Queue>` reads.
///
/// # Examples
///
/// ## Sharing and Owning Cursors
///
/// The following example shows how a `Cursor` can be used to decode both shared and owned
/// compressed data with a [`RangeDecoder`]:
///
/// ```
/// use constriction::{
///     stream::{
///         model::DefaultLeakyQuantizer, queue::{DefaultRangeEncoder, DefaultRangeDecoder},
///         Encode, Decode
///     },
///     UnwrapInfallible,
/// };
///
/// // Some simple entropy model, just for demonstration purpose.
/// let quantizer = DefaultLeakyQuantizer::new(-100..=100);
/// let model = quantizer.quantize(probability::distribution::Gaussian::new(25.0, 10.0));
///
/// // Encode the symbols `0..100` using a `RangeEncoder` (uses the default `Vec` backend because
/// // we don't know the size of the compressed data upfront).
/// let mut encoder = DefaultRangeEncoder::new();
/// encoder.encode_iid_symbols(0..100, &model);
/// let compressed = encoder.into_compressed().unwrap_infallible(); // `compressed` is a `Vec<u32>`.
/// dbg!(compressed.len()); // Prints "compressed.len() = 40".
///
/// // Create a `RangeDecoder` with shared access to the compressed data. This constructs a
/// // `Cursor<u32, &[u32]>` that points to the beginning of the data and loads it in the decoder.
/// let mut sharing_decoder
///     = DefaultRangeDecoder::from_compressed(&compressed[..]).unwrap_infallible();
/// // `sharing_decoder` has type `RangeDecoder<u32, u64, Cursor<u32, &'a [u32]>`.
///
/// // Decode the data and verify correctness.
/// assert!(sharing_decoder.decode_iid_symbols(100, &model).map(Result::unwrap).eq(0..100));
/// assert!(sharing_decoder.maybe_exhausted());
///
/// // We can still use `compressed` because we gave the decoder only shared access to it. Thus,
/// // `sharing_decoder` contains a reference into `compressed`, so we couldn't return it from the
/// // current function. If we want to return a decoder, we have to give it ownership of the data:
/// let mut owning_decoder = DefaultRangeDecoder::from_compressed(compressed).unwrap_infallible();
/// // `owning_decoder` has type `RangeDecoder<u32, u64, Cursor<u32, Vec<u32>>`.
///
/// // Verify that we can decode the data again.
/// assert!(owning_decoder.decode_iid_symbols(100, &model).map(Result::unwrap).eq(0..100));
/// assert!(owning_decoder.maybe_exhausted());
/// ```
///
/// ## `Cursor`s automatically use the correct `Semantics`
///
/// You can use a `Cursor` also as a stack, e.g., for an [`AnsCoder`]. The `Cursor` will
/// automatically read data in the correct (i.e., reverse) direction when it is invoked with
/// `Stack` semantics. Note, however, that using a `Cursor` is not always necessary when you
/// decode with an `AnsCoder` because the `AnsCoder` can also decode directly from a `Vec`
/// (see last example below). However, you'll need a `Cursor` if you don't own the
/// compressed data:
///
/// ```
/// # use constriction::{
/// #     stream::{model::DefaultLeakyQuantizer, stack::DefaultAnsCoder, Decode},
/// #     CoderError, UnwrapInfallible,
/// # };
/// #
/// fn decode_shared_data(amt: usize, compressed: &[u32]) -> Vec<i32> {
///     // Some simple entropy model, just for demonstration purpose.
///     let quantizer = DefaultLeakyQuantizer::new(-100..=100);
///     let model = quantizer.quantize(probability::distribution::Gaussian::new(25.0, 10.0));
///
///     // `AnsCoder::from_compressed_slice` wraps the provided compressed data in a `Cursor` and
///     // initializes the cursor position at the end (= top of the stack; see documentation of
///     // `Reverse` if you want to read the data from the beginning instead).
///     let mut decoder = DefaultAnsCoder::from_compressed_slice(compressed).unwrap();
///     decoder.decode_iid_symbols(amt, &model).collect::<Result<Vec<_>, _>>().unwrap_infallible()
/// }
/// #
/// # let quantizer = DefaultLeakyQuantizer::new(-100..=100);
/// # let model = quantizer.quantize(probability::distribution::Gaussian::new(25.0, 10.0));
/// # let mut coder = DefaultAnsCoder::new();
/// # coder.encode_iid_symbols_reverse(0..100, &model).unwrap();
/// # let compressed = coder.into_compressed().unwrap_infallible();
/// # assert!(decode_shared_data(100, &compressed).iter().cloned().eq(0..100));
/// ```
///
/// ## Owning `Cursor`s vs `Vec`s
///
/// If you have ownership of the compressed data, then decoding it with an `AnsCoder`
/// doesn't always require a `Cursor`. An `AnsCoder` can also directly decode from a
/// `Vec<Word>` backend. The difference between `Vec<Word>` and an owning cursor
/// `Cursor<Word, Vec<Word>>` is that decoding from a `Vec` *consumes* the compressed data
/// (so you can interleave multiple encoding/decoding steps arbitrarily) whereas a `Cursor`
/// (whether it be sharing or owning) does not consume the compressed data that is read from
/// it. You can still interleave multiple encoding/decoding steps with an `AnsCoder` that
/// uses a `Cursor` instead of a `Vec` backend, but since a `Cursor` doesn't grow or shrink
/// the wrapped buffer you will typically either run out of buffer space at some point or
/// the final buffer will be padded to its original size with some partially overwritten
/// left-over compressed data (for older readers like myself: think of a `Cursor` as a
/// cassette recorder).
///
/// ```
/// use constriction::{
///     backends::Cursor, stream::{model::DefaultLeakyQuantizer, stack::DefaultAnsCoder, Decode},
///     CoderError, UnwrapInfallible,
/// };
///
/// // Some simple entropy model, just for demonstration purpose.
/// let quantizer = DefaultLeakyQuantizer::new(-100..=100);
/// let model = quantizer.quantize(probability::distribution::Gaussian::new(25.0, 10.0));
///
/// // Encode the symbols `0..50` using a stack entropy coder and get the compressed data.
/// let mut coder = DefaultAnsCoder::new();
/// coder.encode_iid_symbols_reverse(0..50, &model).unwrap();
/// let compressed = coder.into_compressed().unwrap_infallible(); // `compressed` is a `Vec<u32>`.
/// dbg!(compressed.len()); // Prints "compressed.len() = 11".
///
/// // We can either reconstruct (a clone of) the original `coder` with `Vec` backend and decode
/// // data and/or encode some more data, or even do both in any order.
/// let mut vec_coder = DefaultAnsCoder::from_compressed(compressed.clone()).unwrap();
/// // Decode the top half of the symbols off the stack and verify correctness.
/// assert!(
///     vec_coder.decode_iid_symbols(25, &model)
///         .map(UnwrapInfallible::unwrap_infallible)
///         .eq(0..25)
/// );
/// // Then encode some more symbols onto it.
/// vec_coder.encode_iid_symbols_reverse(50..75, &model).unwrap();
/// let compressed2 = vec_coder.into_compressed().unwrap_infallible();
/// dbg!(compressed2.len()); // Prints "compressed2.len() = 17"
/// // `compressed2` is longer than `compressed1` because the symbols we poped off had lower
/// // information content under the `model` than the symbols we replaced them with.
///
/// // In principle, we could have done the same with an `AnsCoder` that uses a `Cursor` backend.
/// let cursor = Cursor::new_at_write_end(compressed); // Could also use `&mut compressed[..]`.
/// let mut cursor_coder = DefaultAnsCoder::from_compressed(cursor).unwrap();
/// // Decode the top half of the symbols off the stack and verify correctness.
/// assert!(
///     cursor_coder.decode_iid_symbols(25, &model)
///         .map(UnwrapInfallible::unwrap_infallible)
///         .eq(0..25)
/// );
/// // Encoding *a few* more symbols works ...
/// cursor_coder.encode_iid_symbols_reverse(65..75, &model).unwrap();
/// // ... but at some point we'll run out of buffer space.
/// assert_eq!(
///     cursor_coder.encode_iid_symbols_reverse(50..65, &model),
///     Err(CoderError::Backend(constriction::backends::BoundedWriteError::OutOfSpace))
/// );
/// ```
///
/// [`RangeDecoder`]: crate::stream::queue::RangeDecoder
/// [`AnsCoder`]: crate::stream::stack::AnsCoder
#[derive(Clone, Debug)]
pub struct Cursor<Word, Buf> {
    buf: Buf,

    /// The index of the next word to be read with a `ReadWords<Word, Queue>` or written
    /// with a `WriteWords<Word>, and one plus the index of the next word to read with
    /// `ReadWords<Word, Stack>.
    ///
    /// Satisfies the invariant `pos <= buf.as_ref().len()` if `Buf: AsRef<[Word]>` (see
    /// unsafe trait `SafeBuf`).
    pos: usize,

    phantom: PhantomData<Word>,
}

/// Unsafe marker trait indicating sane implementation of `AsRef` (and possibly `AsMut`).
///
/// By implementing `SafeBuf<Word>` for a type `T`, you guarantee that
/// - calling `x.as_ref()` for some `x: T` several times in a row (with no other method
///   calls on `x` in-between) never returns slices of decreasing length; and
/// - if `T` implements `AsMut<[Word]>` then the above property must also hold for any
///   sequence of calls of `x.as_ref()` and `x.as_mut()`, and the lengths of slices returned
///   by either of these calls must not decrease.
///
/// This is very likely the behaviour you would expect anyway for `AsRef` and `AsMut`. This
/// guarantee allows the implementation of `ReadWords<Word, Stack>` for [`Cursor`] to elide
/// an additional pedantic bounds check by maintaining an in-bounds invariant on its index
/// into the buffer.
///
/// # Safety
///
/// If `SafeBuf` is implemented for a type `Buf` that violates the above contract then the
/// implementations of `ReadWords<Word, Stack>::read` for `Cursor<Word, Buf>` and of
/// `WriteWords<Word>` for `Reverse<Cursor<Word, Buf>>` may attempt to access the buffer out
/// of bounds without bounds checks.
pub unsafe trait SafeBuf<Word>: AsRef<[Word]> {}

unsafe impl<'a, Word> SafeBuf<Word> for &'a [Word] {}
unsafe impl<'a, Word> SafeBuf<Word> for &'a mut [Word] {}
unsafe impl<Word> SafeBuf<Word> for Vec<Word> {}
unsafe impl<Word> SafeBuf<Word> for Box<[Word]> {}

impl<Word, Buf> Cursor<Word, Buf> {
    /// Creates a `Cursor` for the buffer `buf` and initializes the cursor position to point
    /// at the beginning (i.e., index zero) of the buffer.
    ///
    /// You can use the resulting cursor, for decoding compressed data with `Queue`
    /// semantics (for example, calling [`RangeDecoder::from_compressed`] with a vector or
    /// slice of `Word`s will result in a call to `Cursor::new_at_write_beginning`).
    ///
    /// If you want to read from the resulting buffer with `Stack` semantics then you'll
    /// have to wrap it in a [`Reverse`], i.e., `let reversed_cursor =
    /// Reverse(Cursor::new_at_write_beginning(buf))`. This usually only makes sense if
    /// you've already manually reversed the order of `Word`s in `buf`. See documentation of
    /// [`Reverse`] for an example.
    ///
    /// This method is called `new_at_write_beginning` rather than simply `new_at_beginning`
    /// just to avoid confusion around the meaning of the word "beginning". This doesn't
    /// mean that you must (or even can, necessarily) use the resulting `Cursor` for
    /// writing. But the unqualified word "beginning" would be ambiguous since reading from
    /// a `Cursor` could start (i.e., "begin") at either boundary of the buffer (depending
    /// on the `Semantics`). By contrast, writing to a `Cursor` always "begins" at index
    /// zero, so "write_beginning" is unambiguous.
    ///
    /// [`RangeDecoder::from_compressed`]:
    /// crate::stream::queue::RangeDecoder::from_compressed
    #[inline(always)]
    pub fn new_at_write_beginning(buf: Buf) -> Self {
        Self {
            buf,
            pos: 0,
            phantom: PhantomData,
        }
    }

    /// Creates a `Cursor` for the buffer `buf` and initializes the cursor position to point
    /// at the end of the buffer.
    ///
    /// You can use the resulting cursor, for decoding compressed data with `Stack`
    /// semantics (for example, [`AnsCoder::from_compressed_slice`] calls
    /// `Cursor::new_at_write_end` internally).
    ///
    /// This method is called `new_at_write_end` rather than simply `new_at_end` just to
    /// avoid confusion around the meaning of the word "end". This doesn't mean that you
    /// must (or even can, necessarily) use the resulting `Cursor` for writing. But the
    /// unqualified word "end" would be ambiguous since reading from a `Cursor` could
    /// terminate (i.e., "end") at either boundary of the buffer (depending on the
    /// `Semantics`). By contrast, writing to a `Cursor` always "ends" at index
    /// `.as_ref().len()`, so "write_end" is unambiguous.
    ///
    /// [`AnsCoder::from_compressed_slice`]:
    /// crate::stream::stack::AnsCoder::from_compressed_slice
    #[inline(always)]
    pub fn new_at_write_end(buf: Buf) -> Self
    where
        Buf: AsRef<[Word]>,
    {
        let pos = buf.as_ref().len();
        Self {
            buf,
            pos,
            phantom: PhantomData,
        }
    }

    /// Same as [`new_at_write_end`] but for `Buf`s that implement `AsMut` but don't
    /// implement `AsRef`.
    ///
    /// You can usually just call `new_at_write_end`, it will still give you mutable access
    /// (i.e., implement `WriteWords`) if `Buf` implements `AsMut`.
    ///
    /// [`new_at_write_end`]: Self::new_at_write_end
    #[inline(always)]
    pub fn new_at_write_end_mut(mut buf: Buf) -> Self
    where
        Buf: AsMut<[Word]>,
    {
        let pos = buf.as_mut().len();
        Self {
            buf,
            pos,
            phantom: PhantomData,
        }
    }

    /// Creates a `Cursor` for the buffer `buf` and initializes the cursor position to point
    /// at the given index `pos`.
    ///
    /// You can use the resulting cursor for reading compressed data with both `Queue` and
    /// `Stack` semantics, or for writing data (if `Buf` implements `AsMut`). Reading will
    /// automatically advance the cursor position in the correct direction depending on
    /// whether the read uses `Queue` or `Stack` semantics.
    ///
    /// This method is only useful if you want to point the cursor somewhere in the middle
    /// of the buffer. If you want to initalize the cursor position at either end of the
    /// buffer then calling [`new_at_write_beginning`] or [`new_at_write_end`] expresses
    /// your intent more clearly.
    ///
    /// [`new_at_write_beginning`]: Self::new_at_write_beginning
    /// [`new_at_write_end`]: Self::new_at_write_end
    #[allow(clippy::result_unit_err)]
    pub fn new_at_pos(buf: Buf, pos: usize) -> Result<Self, ()>
    where
        Buf: AsRef<[Word]>,
    {
        if pos > buf.as_ref().len() {
            Err(())
        } else {
            Ok(Self {
                buf,
                pos,
                phantom: PhantomData,
            })
        }
    }

    /// Same as [`new_at_pos`] but for `Buf`s that implement `AsMut` but don't implement
    /// `AsRef`.
    ///
    /// You can usually just call `new_at_pos`, it will still give you mutable access (i.e.,
    /// implement `WriteWords`) if `Buf` implements `AsMut`.
    ///
    /// [`new_at_pos`]: Self::new_at_pos
    #[allow(clippy::result_unit_err)]
    pub fn new_at_pos_mut(mut buf: Buf, pos: usize) -> Result<Self, ()>
    where
        Buf: AsMut<[Word]>,
    {
        if pos > buf.as_mut().len() {
            Err(())
        } else {
            Ok(Self {
                buf,
                pos,
                phantom: PhantomData,
            })
        }
    }

    /// Returns a new (read-only) `Cursor` that shares its buffer with the current `Cursor`.
    ///
    /// The new `Cursor` is initialized to point at the same position where the current
    /// `Cursor` currently points to, but it can move around independently from the current
    /// `Cursor`. This is a cheaper variant of [`cloned`] since it doesn't copy the data in
    /// the buffer.
    ///
    /// Note that the lifetime of the new `Cursor` is tied to the liefetime of `&self`, so
    /// you won't be able to mutably access the current `Cursor` while the new `Cursor` is
    /// alive. Unfortunately, this excludes both reading and writing from the current
    /// `Cursor` (since reading and writing mutates the `Cursor` as it advances its
    /// position). If you want to create multiple cursors with the same buffer without
    /// copying the buffer, then create a `Cursor` for a slice `&[Word]` (e.g., by calling
    /// `.as_view()` once) and then `.clone()` that `Cursor` (which won't clone the contents
    /// of the buffer, only the pointer to it):
    ///
    /// ```
    /// use constriction::{backends::{Cursor, ReadWords}, Queue};
    /// let data = vec![1, 2, 3, 4];
    ///
    /// // Either directly create a `Cursor` for a slice and clone that ...
    /// let mut cursor = Cursor::new_at_write_beginning(&data[..]);
    /// assert_eq!(<_ as ReadWords<u32, Queue>>::read(&mut cursor), Ok(Some(1)));
    /// let mut cursor_clone = cursor.clone(); // Doesn't clone the data, only the pointer to it.
    /// // `cursor_clone` initially points to the same position as `cursor` but their positions
    /// // advance independently from each other:
    /// assert_eq!(<_ as ReadWords<u32, Queue>>::read(&mut cursor), Ok(Some(2)));
    /// assert_eq!(<_ as ReadWords<u32, Queue>>::read(&mut cursor), Ok(Some(3)));
    /// assert_eq!(<_ as ReadWords<u32, Queue>>::read(&mut cursor_clone), Ok(Some(2)));
    /// assert_eq!(<_ as ReadWords<u32, Queue>>::read(&mut cursor_clone), Ok(Some(3)));
    ///
    /// // ... or, if someone gave you a `Cursor` that owns its buffer, then you can call `.as_view()`
    /// // on it once to get a `Cursor` to a slice, which you can then clone cheaply again.
    /// let mut original = Cursor::new_at_write_beginning(data);
    /// assert_eq!(<_ as ReadWords<u32, Queue>>::read(&mut original), Ok(Some(1)));
    /// // let mut clone = original.clone(); // <-- This would clone the data, which could be expensive.
    /// let mut view = original.as_view();   // `view` is a `Cursor<u32, &[u32]>`
    /// let mut view_clone = view.clone();   // Doesn't clone the data, only the pointer to it.
    /// assert_eq!(<_ as ReadWords<u32, Queue>>::read(&mut view), Ok(Some(2)));
    /// assert_eq!(<_ as ReadWords<u32, Queue>>::read(&mut view_clone), Ok(Some(2)));
    /// ```
    ///
    /// If we had instead used `original` while `view` was still alive then the borrow
    /// checker would have complained:
    ///
    /// ```compile_fail
    /// use constriction::{backends::{Cursor, ReadWords}, Queue};
    /// let data = vec![1, 2, 3, 4];
    /// let mut original = Cursor::new_at_write_beginning(data);
    /// let mut view = original.as_view();
    ///
    /// <_ as ReadWords<u32, Queue>>::read(&mut original); // Error: mutable borrow occurs here
    /// <_ as ReadWords<u32, Queue>>::read(&mut view);     // immutable borrow later used here
    /// ```
    ///
    /// [`cloned`]: Self::cloned
    pub fn as_view(&self) -> Cursor<Word, &[Word]>
    where
        Buf: AsRef<[Word]>,
    {
        Cursor {
            buf: self.buf.as_ref(),
            pos: self.pos,
            phantom: PhantomData,
        }
    }

    /// Same as [`as_view`] except that the returned view also implements [`WriteWords`].
    ///
    /// [`as_view`]: Self::as_view
    pub fn as_mut_view(&mut self) -> Cursor<Word, &mut [Word]>
    where
        Buf: AsMut<[Word]>,
    {
        Cursor {
            buf: self.buf.as_mut(),
            pos: self.pos,
            phantom: PhantomData,
        }
    }

    /// Makes a deep copy of the Cursor, copying the data to a new, owned buffer.
    ///
    /// If you don't need ownership over the data then use [`as_view`] instead as it is
    /// cheaper.
    ///
    /// This method is different from [`Clone::clone`] because the return type isn't
    /// necessarily identical to `Self`. If you have a `Cursor` that doesn't own its data
    /// (for example, a `Cursor<Word, &[Word]>`), then calling `.clone()` on it is cheap
    /// since it doesn't copy the data (only the pointer to it), but calling `.cloned()` is
    /// expensive if the buffer is large.
    ///
    /// [`as_view`]: Self::as_view
    pub fn cloned(&self) -> Cursor<Word, Vec<Word>>
    where
        Word: Clone,
        Buf: AsRef<[Word]>,
    {
        Cursor {
            buf: self.buf.as_ref().to_vec(),
            pos: self.pos,
            phantom: PhantomData,
        }
    }

    /// Returns a reference to the generic buffer that the `Cursor` reads from or writes to.
    ///
    /// To get the actual slice of `Word`s, call `cursor.buf().as_ref()`.
    pub fn buf(&self) -> &Buf {
        &self.buf
    }

    /// Returns a mutable reference to the generic buffer that the `Cursor` reads from or
    /// writes to.
    ///
    /// Same as [`buf`](Self::buf) except that it requires mutable access to `self` and
    /// returns a mutable reference.
    ///
    /// To get the actual mutable slice of `Word`s, call `cursor.buf().as_mut()` (if `Buf`
    /// implements `AsMut`).
    pub fn buf_mut(&mut self) -> &mut Buf {
        &mut self.buf
    }

    /// Consumes the `Cursor` and returns the buffer and the current position.
    ///
    /// If you don't want to consume the `Cursor` then call [`buf`](Self::buf) or
    /// [`buf_mut`](Self::buf_mut) and [`pos`](Pos::pos) instead. You'll have to bring the
    /// [`Pos`] trait into scope for the last one to work (`use constriction::Pos;`).
    pub fn into_buf_and_pos(self) -> (Buf, usize) {
        (self.buf, self.pos)
    }

    /// Reverses both the data and the reading direction.
    ///
    /// This method consumes the original `Cursor`, reverses the order of the `Word`s
    /// in-place, updates the cursor position accordingly, and returns a `Cursor`-like
    /// backend that progresses in the opposite direction for reads and/or writes. Reading
    /// from and writing to the returned backend will have identical behavior as in the
    /// original `Cursor` backend, but the flipped directions will be observable through
    /// [`Pos::pos`], [`Seek::seek`], and [`Self::buf`].
    ///
    /// See documentation of [`Reverse`] for more information and a usage example.
    pub fn into_reversed(mut self) -> Reverse<Self>
    where
        Buf: AsMut<[Word]>,
    {
        self.buf.as_mut().reverse();
        self.pos = self.buf.as_mut().len() - self.pos;
        Reverse(self)
    }
}

impl<Word, Buf> Reverse<Cursor<Word, Buf>> {
    /// Reverses both the data and the reading direction.
    ///
    /// This is essentially the same as [`Cursor::into_reversed`], except that, rather than
    /// wrapping yet another `Reverse` around the `Cursor`, the last step of this method
    /// just removes the existing `Reverse` wrapper, which has the same effect.
    ///
    /// See documentation of [`Reverse`] for more information and a usage example.
    #[inline(always)]
    pub fn into_reversed(self) -> Cursor<Word, Buf>
    where
        Buf: AsMut<[Word]>,
    {
        // Accessing `.0` twice removes *two* `Reverse`, resulting in no semantic change.
        self.0.into_reversed().0
    }
}

impl<Word, Buf: AsMut<[Word]>> WriteWords<Word> for Cursor<Word, Buf> {
    type WriteError = BoundedWriteError;

    #[inline(always)]
    fn write(&mut self, word: Word) -> Result<(), Self::WriteError> {
        if let Some(target) = self.buf.as_mut().get_mut(self.pos) {
            *target = word;
            self.pos += 1;
            Ok(())
        } else {
            Err(BoundedWriteError::OutOfSpace)
        }
    }
}

impl<Word, Buf: AsMut<[Word]> + AsRef<[Word]>> BoundedWriteWords<Word> for Cursor<Word, Buf> {
    #[inline(always)]
    fn space_left(&self) -> usize {
        self.buf.as_ref().len() - self.pos
    }
}

impl<Word, Buf: SafeBuf<Word> + AsMut<[Word]>> WriteWords<Word> for Reverse<Cursor<Word, Buf>> {
    type WriteError = BoundedWriteError;

    #[inline(always)]
    fn write(&mut self, word: Word) -> Result<(), Self::WriteError> {
        if self.0.pos == 0 {
            Err(BoundedWriteError::OutOfSpace)
        } else {
            self.0.pos -= 1;
            unsafe {
                // SAFETY: We maintain the invariant `self.0.pos <= self.0.buf.as_mut().len()`
                // and we just decreased `self.0.pos` (and made sure that didn't wrap around),
                // so we now have `self.0.pos < self.0.buf.as_mut().len()`.
                *self.0.buf.as_mut().get_unchecked_mut(self.0.pos) = word;
                Ok(())
            }
        }
    }
}

impl<Word, Buf: SafeBuf<Word> + AsMut<[Word]>> BoundedWriteWords<Word>
    for Reverse<Cursor<Word, Buf>>
{
    #[inline(always)]
    fn space_left(&self) -> usize {
        self.0.buf.as_ref().len()
    }
}

/// Error type for data sinks with a finite capacity.
///
/// This is currently used as the `WriteError` in the [implementation of `WriteWords` for
/// `Cursor`](struct.Cursor.html#impl-WriteWords<Word>) but it should also be used in the
/// implementation of [`WriteWords`] for custom types where appropriate.
///
/// If you use this error type for a data sink then you may also want to implement
/// [`BoundedWriteWords`] for it (if the capacity is known upfront).
#[derive(Debug, Clone, Eq, PartialEq)]
pub enum BoundedWriteError {
    /// Attempting to write compressed data failed because it would exceeded the finite
    /// capacity of the data sink.
    OutOfSpace,
}

impl Display for BoundedWriteError {
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        match self {
            Self::OutOfSpace => write!(f, "Out of space."),
        }
    }
}

#[cfg(feature = "std")]
impl std::error::Error for BoundedWriteError {}

impl<Word: Clone, Buf: SafeBuf<Word>> ReadWords<Word, Stack> for Cursor<Word, Buf> {
    type ReadError = Infallible;

    #[inline(always)]
    fn read(&mut self) -> Result<Option<Word>, Self::ReadError> {
        if self.pos == 0 {
            Ok(None)
        } else {
            self.pos -= 1;
            unsafe {
                // SAFETY: We maintain the invariant `self.pos <= self.buf.as_ref().len()`
                // and we just decreased `self.pos` (and made sure that didn't wrap around),
                // so we now have `self.pos < self.buf.as_ref().len()`.
                Ok(Some(self.buf.as_ref().get_unchecked(self.pos).clone()))
            }
        }
    }

    #[inline(always)]
    fn maybe_exhausted(&self) -> bool {
        BoundedReadWords::<Word, Stack>::is_exhausted(self)
    }
}

impl<Word: Clone, Buf: AsRef<[Word]>> ReadWords<Word, Queue> for Cursor<Word, Buf> {
    type ReadError = Infallible;

    #[inline(always)]
    fn read(&mut self) -> Result<Option<Word>, Self::ReadError> {
        let maybe_word = self.buf.as_ref().get(self.pos).cloned();
        if maybe_word.is_some() {
            self.pos += 1;
        }
        Ok(maybe_word)
    }

    #[inline(always)]
    fn maybe_exhausted(&self) -> bool {
        BoundedReadWords::<Word, Queue>::is_exhausted(self)
    }
}

impl<Word: Clone, Buf: SafeBuf<Word>> BoundedReadWords<Word, Stack> for Cursor<Word, Buf> {
    #[inline(always)]
    fn remaining(&self) -> usize {
        self.pos
    }
}

impl<Word: Clone, Buf: AsRef<[Word]>> BoundedReadWords<Word, Queue> for Cursor<Word, Buf> {
    #[inline(always)]
    fn remaining(&self) -> usize {
        self.buf.as_ref().len() - self.pos
    }
}

impl<Word, Buf> PosSeek for Cursor<Word, Buf> {
    type Position = usize;
}

impl<Word, Buf: AsRef<[Word]>> Pos for Cursor<Word, Buf> {
    #[inline(always)]
    fn pos(&self) -> usize {
        self.pos
    }
}

impl<Word, Buf: AsRef<[Word]>> Seek for Cursor<Word, Buf> {
    #[inline(always)]
    fn seek(&mut self, pos: usize) -> Result<(), ()> {
        if pos > self.buf.as_ref().len() {
            // Note that `pos == buf.len()` is still a valid position (EOF for queues and
            // beginning for stacks).
            Err(())
        } else {
            self.pos = pos;
            Ok(())
        }
    }
}

impl<Word: Clone, Buf: SafeBuf<Word>> IntoReadWords<Word, Stack> for Buf {
    type IntoReadWords = Cursor<Word, Buf>;

    fn into_read_words(self) -> Self::IntoReadWords {
        Cursor::new_at_write_end(self)
    }
}

impl<Word: Clone, Buf: AsRef<[Word]>> IntoReadWords<Word, Queue> for Buf {
    type IntoReadWords = Cursor<Word, Buf>;

    fn into_read_words(self) -> Self::IntoReadWords {
        Cursor::new_at_write_beginning(self)
    }
}

impl<'a, Word: Clone + 'a, Buf: SafeBuf<Word> + 'a> AsReadWords<'a, Word, Stack> for Buf {
    type AsReadWords = Cursor<Word, &'a [Word]>;

    fn as_read_words(&'a self) -> Self::AsReadWords {
        Cursor::new_at_write_end(self.as_ref())
    }
}

impl<'a, Word: Clone + 'a, Buf: AsRef<[Word]> + 'a> AsReadWords<'a, Word, Queue> for Buf {
    type AsReadWords = Cursor<Word, &'a [Word]>;

    fn as_read_words(&'a self) -> Self::AsReadWords {
        Cursor::new_at_write_beginning(self.as_ref())
    }
}

impl<Word, Buf, S: Semantics> IntoSeekReadWords<Word, S> for Buf
where
    Buf: AsRef<[Word]> + IntoReadWords<Word, S, IntoReadWords = Cursor<Word, Buf>>,
    Cursor<Word, Buf>: ReadWords<Word, S>,
{
    type IntoSeekReadWords = Cursor<Word, Buf>;

    fn into_seek_read_words(self) -> Self::IntoSeekReadWords {
        self.into_read_words()
    }
}

impl<'a, Word: 'a, Buf, S: Semantics> AsSeekReadWords<'a, Word, S> for Buf
where
    Buf: AsReadWords<'a, Word, S, AsReadWords = Cursor<Word, &'a [Word]>>,
    Cursor<Word, &'a [Word]>: ReadWords<Word, S>,
{
    type AsSeekReadWords = Cursor<Word, &'a [Word]>;

    fn as_seek_read_words(&'a self) -> Self::AsSeekReadWords {
        self.as_read_words()
    }
}

// READ ADAPTER FOR ITERATORS =================================================

/// Adapter that turns an iterator over `Result<Word, ReadError>` into a data source.
///
/// Wraps an iterator over `Result<Word, ReadError>` and implements [`ReadWords<Word, S,
/// ReadError=ReadError>`](ReadWords) by pulling the iterator each time a client reads from
/// it. If the iterator implements [`ExactSizeIterator`] then this wrapper also implements
/// [`BoundedReadWords`].
///
/// Implements `ReadWord` for arbitrary [`Semantics`]. This is legal since it doesn't
/// implement `WriteWords`, so the question how reads relate to writes is moot.
///
/// See also [`InfallibleIteratorReadWords`], and [module-level documentation](self) for a
/// detailed usage example.
#[derive(Clone, Debug)]
pub struct FallibleIteratorReadWords<Iter: Iterator> {
    inner: core::iter::Fuse<Iter>,
}

impl<Iter: Iterator> FallibleIteratorReadWords<Iter> {
    /// Creates the adapter for the provided iterator.
    ///
    /// The provided iterator `iter` does *not* need to be fused (i.e., it may return `Some`
    /// after the first `None` even though a [`ReadWords`] wouldn't be allowed to do the
    /// equivalent of that). The adapter calls `iter.fuse()` to ensure correct behavior.
    ///
    /// You can get the (fused) iterator back by calling [IntoIterator::into_iter].
    pub fn new<I, Word, ReadError>(iter: I) -> Self
    where
        I: IntoIterator<IntoIter = Iter>,
        Iter: Iterator<Item = Result<Word, ReadError>>,
    {
        Self {
            inner: iter.into_iter().fuse(),
        }
    }
}

impl<Iter: Iterator> IntoIterator for FallibleIteratorReadWords<Iter> {
    type Item = Iter::Item;
    type IntoIter = core::iter::Fuse<Iter>;

    fn into_iter(self) -> Self::IntoIter {
        self.inner
    }
}

/// Since `FallibleIteratorReadWords` doesn't implement `WriteWords`, it is allowed to
/// implement `ReadWords` for all `ReadWriteLogic`s
impl<Iter, S, Word, ReadError> ReadWords<Word, S> for FallibleIteratorReadWords<Iter>
where
    Iter: Iterator<Item = Result<Word, ReadError>>,
    S: Semantics,
    ReadError: Debug,
{
    type ReadError = ReadError;

    #[inline(always)]
    fn read(&mut self) -> Result<Option<Word>, Self::ReadError> {
        self.inner.next().transpose()
    }
}

impl<Iter, S, Word> BoundedReadWords<Word, S> for FallibleIteratorReadWords<Iter>
where
    Self: ReadWords<Word, S>,
    Iter: ExactSizeIterator,
    S: Semantics,
{
    #[inline(always)]
    fn remaining(&self) -> usize {
        self.inner.len()
    }
}

/// Adapter that turns an iterator over `Word` into a data source.
///
/// Wraps an iterator over `Word` and implements [`ReadWords<Word, S,
/// ReadError=Infallible>`](ReadWords) by pulling the iterator each time a client reads from
/// it. If the iterator implements [`ExactSizeIterator`] then this wrapper also implements
/// [`BoundedReadWords`].
///
/// Implements `ReadWord` for arbitrary [`Semantics`]. This is legal since it doesn't
/// implement `WriteWords`, so the question how reads relate to writes is moot.
///
/// See also [`FallibleIteratorReadWords`], and [module-level documentation](self) for a
/// detailed usage example.
#[derive(Clone, Debug)]
pub struct InfallibleIteratorReadWords<Iter: Iterator> {
    inner: core::iter::Fuse<Iter>,
}

impl<Iter: Iterator> InfallibleIteratorReadWords<Iter> {
    /// Creates the adapter for the provided iterator.
    ///
    /// The provided iterator `iter` does *not* need to be fused (i.e., it may return `Some`
    /// after the first `None` even though a [`ReadWords`] wouldn't be allowed to do the
    /// equivalent of that). The adapter calls `iter.fuse()` to ensure correct behavior.
    ///
    /// You can get the (fused) iterator back by calling [IntoIterator::into_iter].
    pub fn new<I, Word, ReadError>(iter: I) -> Self
    where
        I: IntoIterator<IntoIter = Iter>,
        Iter: Iterator<Item = Result<Word, ReadError>>,
    {
        Self {
            inner: iter.into_iter().fuse(),
        }
    }
}

impl<Iter: Iterator> IntoIterator for InfallibleIteratorReadWords<Iter> {
    type Item = Iter::Item;
    type IntoIter = core::iter::Fuse<Iter>;

    fn into_iter(self) -> Self::IntoIter {
        self.inner
    }
}

/// Since `InfallibleIteratorReadWords` doesn't implement `WriteWords`, it is allowed to
/// implement `ReadWords` for all `ReadWriteLogic`s
impl<Iter, S, Word> ReadWords<Word, S> for InfallibleIteratorReadWords<Iter>
where
    Iter: Iterator<Item = Word>,
    S: Semantics,
{
    type ReadError = Infallible;

    #[inline(always)]
    fn read(&mut self) -> Result<Option<Word>, Infallible> {
        Ok(self.inner.next())
    }
}

impl<Iter, S, Word> BoundedReadWords<Word, S> for InfallibleIteratorReadWords<Iter>
where
    Self: ReadWords<Word, S>,
    Iter: ExactSizeIterator,
    S: Semantics,
{
    #[inline(always)]
    fn remaining(&self) -> usize {
        self.inner.len()
    }
}

// WRITE ADAPTER FOR CALLBACKS ================================================

/// Adapter that turns a fallible callback into a fallible data sink.
///
/// Wraps a callback function from `Word` to `Result<(), Err>` and implements
/// [`WriteWords<Word, ReadError=Err>`](WriteWords) by calling the callback each time a
/// client writes to it.
///
/// See also [`InfallibleCallbackWriteWords`], and [module-level documentation](self) for a
/// detailed usage example.
#[derive(Clone, Debug)]
pub struct FallibleCallbackWriteWords<Callback> {
    write_callback: Callback,
}

impl<Callback> FallibleCallbackWriteWords<Callback> {
    /// Creates the adapter for the provided callback.
    pub fn new(write_callback: Callback) -> Self {
        Self { write_callback }
    }

    /// Consumes the adapter and returns the provided callback.
    pub fn into_inner(self) -> Callback {
        self.write_callback
    }
}

impl<Word, WriteError, Callback> WriteWords<Word> for FallibleCallbackWriteWords<Callback>
where
    Callback: FnMut(Word) -> Result<(), WriteError>,
    WriteError: Debug,
{
    type WriteError = WriteError;

    fn write(&mut self, word: Word) -> Result<(), Self::WriteError> {
        (self.write_callback)(word)
    }
}

/// Adapter that turns an infallible callback into an infallible data sink.
///
/// Wraps a callback function from `Word` to `()` and implements [`WriteWords<Word,
/// WriteError=Infallible>`](WriteWords) by calling the callback each time a client writes
/// to it.
///
/// See also [`FallibleCallbackWriteWords`], and [module-level documentation](self) for a
/// detailed usage example.
#[derive(Clone, Debug)]
pub struct InfallibleCallbackWriteWords<Callback> {
    write_callback: Callback,
}

impl<Callback> InfallibleCallbackWriteWords<Callback> {
    /// Creates the adapter for the provided callback.
    pub fn new(write_callback: Callback) -> Self {
        Self { write_callback }
    }

    /// Consumes the adapter and returns the provided callback.
    pub fn into_inner(self) -> Callback {
        self.write_callback
    }
}

impl<Word, Callback> WriteWords<Word> for InfallibleCallbackWriteWords<Callback>
where
    Callback: FnMut(Word),
{
    type WriteError = Infallible;

    fn write(&mut self, word: Word) -> Result<(), Infallible> {
        (self.write_callback)(word);
        Ok(())
    }
}

#[cfg(test)]
mod tests {
    use crate::stream::{model::DefaultLeakyQuantizer, stack::DefaultAnsCoder, Decode};
    use byteorder::{LittleEndian, ReadBytesExt, WriteBytesExt};
    use probability::distribution::Gaussian;
    use std::{
        fs::File,
        io::{BufReader, BufWriter},
    };

    #[test]
    #[cfg_attr(miri, ignore)]
    fn decode_on_the_fly_stack() {
        fn encode_to_file(amt: u32) {
            let quantizer = DefaultLeakyQuantizer::new(-256..=255);
            let model = quantizer.quantize(Gaussian::new(0.0, 100.0));

            let symbols = (0..amt).map(|i| {
                let cheap_hash = i.wrapping_mul(0x6979_E2F3).wrapping_add(0x0059_0E91);
                (cheap_hash >> (32 - 9)) as i32 - 256
            });

            let mut encoder = DefaultAnsCoder::new();
            encoder.encode_iid_symbols_reverse(symbols, model).unwrap();
            let compressed = encoder.into_compressed().unwrap();

            let mut file = BufWriter::new(File::create("backend_stack_example.tmp").unwrap());
            for &word in compressed.iter().rev() {
                file.write_u32::<LittleEndian>(word).unwrap();
            }
        }

        fn decode_from_file_on_the_fly(amt: u32) {
            let quantizer = DefaultLeakyQuantizer::new(-256..=255);
            let model = quantizer.quantize(Gaussian::new(0.0, 100.0));

            let mut file = BufReader::new(File::open("backend_stack_example.tmp").unwrap());
            let word_iterator = std::iter::from_fn(move || match file.read_u32::<LittleEndian>() {
                Ok(word) => Some(Ok(word)),
                Err(err) => {
                    if err.kind() == std::io::ErrorKind::UnexpectedEof {
                        None
                    } else {
                        Some(Err(err))
                    }
                }
            });

            let mut decoder =
                DefaultAnsCoder::from_reversed_compressed_iter(word_iterator).unwrap();

            for (i, symbol) in decoder.decode_iid_symbols(amt as usize, &model).enumerate() {
                let cheap_hash = (i as u32)
                    .wrapping_mul(0x6979_E2F3)
                    .wrapping_add(0x0059_0E91);
                let expected = (cheap_hash >> (32 - 9)) as i32 - 256;
                assert_eq!(symbol.unwrap(), expected);
            }
            assert!(decoder.is_empty());

            let mut word_iterator = decoder.into_raw_parts().0.into_iter();
            assert!(word_iterator.next().is_none());

            std::mem::drop(word_iterator);
            std::fs::remove_file("backend_stack_example.tmp").unwrap();
        }

        encode_to_file(1000);
        decode_from_file_on_the_fly(1000);
    }
}