1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
//! Fast and Near-optimal compression on a stack ("last in first out")
//!
//! This module provides the [`AnsCoder`], a highly efficient entropy coder with
//! near-optimal compression effectiveness that operates as a *stack* data structure. It
//! implements the Asymmetric Numeral Systems (ANS) compression algorithm \[1].
//!
//! # Comparison to sister module `queue`
//!
//! ANS Coding operates as a stack, which means that encoding and decoding operate in
//! reverse direction with respect to each other. The provided implementation of ANS Coding
//! uses a single data structure, the [`AnsCoder`], for both encoding and decoding. It
//! allows you to interleave encoding and decoding operations arbitrarily, which is in
//! contrast to the situation in the sister module [`queue`] and important for advanced
//! compression techniques such as bits-back coding in hierarchical probabilistic models.
//!
//! The parent module contains a more detailed discussion of the [differences between ANS
//! Coding and Range Coding](super#which-stream-code-should-i-use) .
//!
//! # References
//!
//! \[1] Duda, Jarek, et al. "The use of asymmetric numeral systems as an accurate
//! replacement for Huffman coding." 2015 Picture Coding Symposium (PCS). IEEE, 2015.
//!
//! [`queue`]: super::queue

use alloc::vec::Vec;
use core::{
    borrow::Borrow, convert::Infallible, fmt::Debug, iter::Fuse, marker::PhantomData, ops::Deref,
};
use num_traits::AsPrimitive;

use super::{
    model::{DecoderModel, EncoderModel},
    AsDecoder, Code, Decode, Encode, IntoDecoder, TryCodingError,
};
use crate::{
    backends::{
        self, AsReadWords, AsSeekReadWords, BoundedReadWords, Cursor, FallibleIteratorReadWords,
        IntoReadWords, IntoSeekReadWords, ReadWords, Reverse, WriteWords,
    },
    bit_array_to_chunks_truncated, BitArray, CoderError, DefaultEncoderError,
    DefaultEncoderFrontendError, NonZeroBitArray, Pos, PosSeek, Seek, Stack, UnwrapInfallible,
};

/// Entropy coder for both encoding and decoding on a stack.
///
/// This is the generic struct for an ANS coder. It provides fine-tuned control over type
/// parameters (see [discussion in parent
/// module](super#highly-customizable-implementations-with-sane-presets)). You'll usually
/// want to use this type through the type alias [`DefaultAnsCoder`], which provides sane
/// default settings for the type parameters.
///
/// The `AnsCoder` uses an entropy coding algorithm called [range Asymmetric
/// Numeral Systems (rANS)]. This means that it operates as a stack, i.e., a "last
/// in first out" data structure: encoding "pushes symbols on" the stack and
/// decoding "pops symbols off" the stack in reverse order. In default operation, decoding
/// with an `AnsCoder` *consumes* the compressed data for the decoded symbols (however, you
/// can also decode immutable data by using a [`Cursor`]). This means
/// that encoding and decoding can be interleaved arbitrarily, thus growing and shrinking
/// the stack of compressed data as you go.
///
/// # Example
///
/// Basic usage example:
///
/// ```
/// use constriction::stream::{model::DefaultLeakyQuantizer, stack::DefaultAnsCoder, Decode};
///
/// // `DefaultAnsCoder` is a type alias to `AnsCoder` with sane generic parameters.
/// let mut ans = DefaultAnsCoder::new();
///
/// // Create an entropy model based on a quantized Gaussian distribution. You can use `AnsCoder`
/// // with any entropy model defined in the `models` module.
/// let quantizer = DefaultLeakyQuantizer::new(-100..=100);
/// let entropy_model = quantizer.quantize(probability::distribution::Gaussian::new(0.0, 10.0));
///
/// let symbols = vec![-10, 4, 0, 3];
/// // Encode symbols in *reverse* order, so that we can decode them in forward order.
/// ans.encode_iid_symbols_reverse(&symbols, &entropy_model).unwrap();
///
/// // Obtain temporary shared access to the compressed bit string. If you want ownership of the
/// // compressed bit string, call `.into_compressed()` instead of `.get_compressed()`.
/// println!("Encoded into {} bits: {:?}", ans.num_bits(), &*ans.get_compressed().unwrap());
///
/// // Decode the symbols and verify correctness.
/// let reconstructed = ans
///     .decode_iid_symbols(4, &entropy_model)
///     .collect::<Result<Vec<_>, _>>()
///     .unwrap();
/// assert_eq!(reconstructed, symbols);
/// ```
///
/// # Consistency Between Encoding and Decoding
///
/// As elaborated in the [parent module's documentation](super#whats-a-stream-code),
/// encoding and decoding operates on a sequence of symbols. Each symbol can be encoded and
/// decoded with its own entropy model (the symbols can even have heterogeneous types). If
/// your goal is to reconstruct the originally encoded symbols during decoding, then you
/// must employ the same sequence of entropy models (in reversed order) during encoding and
/// decoding.
///
/// However, using the same entropy models for encoding and decoding is not a *general*
/// requirement. It is perfectly legal to push (encode) symbols on the `AnsCoder` using some
/// entropy models, and then pop off (decode) symbols using different entropy models. The
/// popped off symbols will then in general be different from the original symbols, but will
/// be generated in a deterministic way. If there is no deterministic relation between the
/// entropy models used for pushing and popping, and if there is still compressed data left
/// at the end (i.e., if [`is_empty`] returns false), then the popped off symbols are, to a
/// very good approximation, distributed as independent samples from the respective entropy
/// models. Such random samples, which consume parts of the compressed data, are useful in
/// the bits-back algorithm.
///
/// [range Asymmetric Numeral Systems (rANS)]:
/// https://en.wikipedia.org/wiki/Asymmetric_numeral_systems#Range_variants_(rANS)_and_streaming
/// [`is_empty`]: #method.is_empty`
/// [`Cursor`]: crate::backends::Cursor
#[derive(Clone)]
pub struct AnsCoder<Word, State, Backend = Vec<Word>>
where
    Word: BitArray + Into<State>,
    State: BitArray + AsPrimitive<Word>,
{
    bulk: Backend,

    /// Invariant: `state >= State::one() << (State::BITS - Word::BITS)` unless
    /// `bulk.is_empty()`.
    state: State,

    /// We keep track of the `Word` type so that we can statically enforce the invariant
    /// `Word: Into<State>`.
    phantom: PhantomData<Word>,
}

/// Type alias for an [`AnsCoder`] with sane parameters for typical use cases.
///
/// This type alias sets the generic type arguments `Word` and `State` to sane values for
/// many typical use cases.
pub type DefaultAnsCoder<Backend = Vec<u32>> = AnsCoder<u32, u64, Backend>;

/// Type alias for an [`AnsCoder`] for use with a [`LookupDecoderModel`]
///
/// This encoder has a smaller word size and internal state than [`AnsCoder`]. It is
/// optimized for use with a [`LookupDecoderModel`].
///
/// # Examples
///
/// See [`SmallContiguousLookupDecoderModel`].
///
/// [`LookupDecoderModel`]: super::model::LookupDecoderModel
/// [`SmallContiguousLookupDecoderModel`]: super::model::SmallContiguousLookupDecoderModel
pub type SmallAnsCoder<Backend = Vec<u16>> = AnsCoder<u16, u32, Backend>;

impl<Word, State, Backend> Debug for AnsCoder<Word, State, Backend>
where
    Word: BitArray + Into<State>,
    State: BitArray + AsPrimitive<Word>,
    for<'a> &'a Backend: IntoIterator<Item = &'a Word>,
{
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        f.debug_list().entries(self.iter_compressed()).finish()
    }
}

impl<Word, State, Backend, const PRECISION: usize> IntoDecoder<PRECISION>
    for AnsCoder<Word, State, Backend>
where
    Word: BitArray + Into<State>,
    State: BitArray + AsPrimitive<Word>,
    Backend: WriteWords<Word> + IntoReadWords<Word, Stack>,
{
    type IntoDecoder = AnsCoder<Word, State, Backend::IntoReadWords>;

    fn into_decoder(self) -> Self::IntoDecoder {
        AnsCoder {
            bulk: self.bulk.into_read_words(),
            state: self.state,
            phantom: PhantomData,
        }
    }
}

impl<'a, Word, State, Backend> From<&'a AnsCoder<Word, State, Backend>>
    for AnsCoder<Word, State, <Backend as AsReadWords<'a, Word, Stack>>::AsReadWords>
where
    Word: BitArray + Into<State>,
    State: BitArray + AsPrimitive<Word>,
    Backend: AsReadWords<'a, Word, Stack>,
{
    fn from(ans: &'a AnsCoder<Word, State, Backend>) -> Self {
        AnsCoder {
            bulk: ans.bulk().as_read_words(),
            state: ans.state(),
            phantom: PhantomData,
        }
    }
}

impl<'a, Word, State, Backend, const PRECISION: usize> AsDecoder<'a, PRECISION>
    for AnsCoder<Word, State, Backend>
where
    Word: BitArray + Into<State>,
    State: BitArray + AsPrimitive<Word>,
    Backend: WriteWords<Word> + AsReadWords<'a, Word, Stack>,
{
    type AsDecoder = AnsCoder<Word, State, Backend::AsReadWords>;

    fn as_decoder(&'a self) -> Self::AsDecoder {
        self.into()
    }
}

impl<Word, State> From<AnsCoder<Word, State, Vec<Word>>> for Vec<Word>
where
    Word: BitArray + Into<State>,
    State: BitArray + AsPrimitive<Word>,
{
    fn from(val: AnsCoder<Word, State, Vec<Word>>) -> Self {
        val.into_compressed().unwrap_infallible()
    }
}

impl<Word, State> AnsCoder<Word, State, Vec<Word>>
where
    Word: BitArray + Into<State>,
    State: BitArray + AsPrimitive<Word>,
{
    /// Creates an empty ANS entropy coder.
    ///
    /// This is usually the starting point if you want to *compress* data.
    ///
    /// # Example
    ///
    /// ```
    /// let mut ans = constriction::stream::stack::DefaultAnsCoder::new();
    ///
    /// // ... push some symbols onto the ANS coder's stack ...
    ///
    /// // Finally, get the compressed data.
    /// let compressed = ans.into_compressed();
    /// ```
    ///
    /// # Generality
    ///
    /// To avoid type parameters in common use cases, `new` is only implemented for
    /// `AnsCoder`s with a `Vec` backend. To create an empty coder with a different backend,
    /// call [`Default::default`] instead.
    pub fn new() -> Self {
        Self::default()
    }
}

impl<Word, State, Backend> Default for AnsCoder<Word, State, Backend>
where
    Word: BitArray + Into<State>,
    State: BitArray + AsPrimitive<Word>,
    Backend: Default,
{
    fn default() -> Self {
        assert!(State::BITS >= 2 * Word::BITS);

        Self {
            state: State::zero(),
            bulk: Default::default(),
            phantom: PhantomData,
        }
    }
}

impl<Word, State, Backend> AnsCoder<Word, State, Backend>
where
    Word: BitArray + Into<State>,
    State: BitArray + AsPrimitive<Word>,
{
    /// Low-level constructor that assembles an `AnsCoder` from its internal components.
    ///
    /// The arguments `bulk` and `state` correspond to the two return values of the method
    /// [`into_raw_parts`](Self::into_raw_parts).
    ///
    /// The caller must ensure that `state >= State::one() << (State::BITS - Word::BITS)`
    /// unless `bulk` is empty. This cannot be checked by the method since not all
    /// `Backend`s have an `is_empty` method. Violating this invariant is not a memory
    /// safety issue but it will lead to incorrect behavior.
    pub fn from_raw_parts(bulk: Backend, state: State) -> Self {
        Self {
            bulk,
            state,
            phantom: PhantomData,
        }
    }

    /// Creates an ANS stack with some initial compressed data.
    ///
    /// This is usually the starting point if you want to *decompress* data previously
    /// obtained from [`into_compressed`].  However, it can also be used to append more
    /// symbols to an existing compressed buffer of data.
    ///
    /// Returns `Err(compressed)` if `compressed` is not empty and its last entry is
    /// zero, since an `AnsCoder` cannot represent trailing zero words. This error cannot
    /// occur if `compressed` was obtained from [`into_compressed`], which never returns
    /// data with a trailing zero word. If you want to construct a `AnsCoder` from an
    /// unknown source of binary data (e.g., to decode some side information into latent
    /// variables) then call [`from_binary`] instead.
    ///
    /// [`into_compressed`]: #method.into_compressed
    /// [`from_binary`]: #method.from_binary
    pub fn from_compressed(mut compressed: Backend) -> Result<Self, Backend>
    where
        Backend: ReadWords<Word, Stack>,
    {
        assert!(State::BITS >= 2 * Word::BITS);

        let state = match Self::read_initial_state(|| compressed.read()) {
            Ok(state) => state,
            Err(_) => return Err(compressed),
        };

        Ok(Self {
            bulk: compressed,
            state,
            phantom: PhantomData,
        })
    }

    fn read_initial_state<Error>(
        mut read_word: impl FnMut() -> Result<Option<Word>, Error>,
    ) -> Result<State, ()>
    where
        Backend: ReadWords<Word, Stack>,
    {
        if let Some(first_word) = read_word().map_err(|_| ())? {
            if first_word == Word::zero() {
                return Err(());
            }

            let mut state = first_word.into();
            while let Some(word) = read_word().map_err(|_| ())? {
                state = state << Word::BITS | word.into();
                if state >= State::one() << (State::BITS - Word::BITS) {
                    break;
                }
            }
            Ok(state)
        } else {
            Ok(State::zero())
        }
    }

    /// Like [`from_compressed`] but works on any binary data.
    ///
    /// This method is meant for rather advanced use cases. For most common use cases,
    /// you probably want to call [`from_compressed`] instead.
    ///
    /// Different to `from_compressed`, this method also works if `data` ends in a zero
    /// word. Calling this method is equivalent to (but likely more efficient than)
    /// appending a `1` word to `data` and then calling `from_compressed`. Note that
    /// therefore, this method always constructs a non-empty `AnsCoder` (even if `data` is
    /// empty):
    ///
    /// ```
    /// use constriction::stream::stack::DefaultAnsCoder;
    ///
    /// let stack1 = DefaultAnsCoder::from_binary(Vec::new()).unwrap();
    /// assert!(!stack1.is_empty()); // <-- stack1 is *not* empty.
    ///
    /// let stack2 = DefaultAnsCoder::from_compressed(Vec::new()).unwrap();
    /// assert!(stack2.is_empty()); // <-- stack2 is empty.
    /// ```
    /// [`from_compressed`]: #method.from_compressed
    pub fn from_binary(mut data: Backend) -> Result<Self, Backend::ReadError>
    where
        Backend: ReadWords<Word, Stack>,
    {
        let mut state = State::one();

        while state < State::one() << (State::BITS - Word::BITS) {
            if let Some(word) = data.read()? {
                state = state << Word::BITS | word.into();
            } else {
                break;
            }
        }

        Ok(Self {
            bulk: data,
            state,
            phantom: PhantomData,
        })
    }

    #[inline(always)]
    pub fn bulk(&self) -> &Backend {
        &self.bulk
    }

    /// Low-level method that disassembles the `AnsCoder` into its internal components.
    ///
    /// Can be used together with [`from_raw_parts`](Self::from_raw_parts).
    pub fn into_raw_parts(self) -> (Backend, State) {
        (self.bulk, self.state)
    }

    /// Check if no data for decoding is left.
    ///
    /// Note that you can still pop symbols off an empty stack, but this is only
    /// useful in rare edge cases, see documentation of
    /// [`decode_symbol`](#method.decode_symbol).
    pub fn is_empty(&self) -> bool {
        // We don't need to check if `bulk` is empty (which would require an additional
        // type bound `Backend: ReadLookaheadItems<Word>` because we keep up the
        // invariant that `state >= State::one() << (State::BITS - Word::BITS))`
        // when `bulk` is not empty.
        self.state == State::zero()
    }

    /// Assembles the current compressed data into a single slice.
    ///
    /// Returns the concatenation of [`bulk`] and [`state`]. The concatenation truncates
    /// any trailing zero words, which is compatible with the constructor
    /// [`from_compressed`].
    ///
    /// This method requires a `&mut self` receiver to temporarily append `state` to
    /// [`bulk`] (this mutationwill be reversed to recreate the original `bulk` as soon as
    /// the caller drops the returned value). If you don't have mutable access to the
    /// `AnsCoder`, consider calling [`iter_compressed`] instead, or get the `bulk` and
    /// `state` separately by calling [`bulk`] and [`state`], respectively.
    ///
    /// The return type dereferences to `&[Word]`, thus providing read-only
    /// access to the compressed data. If you need ownership of the compressed data,
    /// consider calling [`into_compressed`] instead.
    ///
    /// # Example
    ///
    /// ```
    /// use constriction::stream::{
    ///     model::DefaultContiguousCategoricalEntropyModel, stack::DefaultAnsCoder, Decode
    /// };
    ///
    /// let mut ans = DefaultAnsCoder::new();
    ///
    /// // Push some data on the ans.
    /// let symbols = vec![8, 2, 0, 7];
    /// let probabilities = vec![0.03, 0.07, 0.1, 0.1, 0.2, 0.2, 0.1, 0.15, 0.05];
    /// let model = DefaultContiguousCategoricalEntropyModel
    ///     ::from_floating_point_probabilities(&probabilities).unwrap();
    /// ans.encode_iid_symbols_reverse(&symbols, &model).unwrap();
    ///
    /// // Inspect the compressed data.
    /// dbg!(ans.get_compressed());
    ///
    /// // We can still use the ANS coder afterwards.
    /// let reconstructed = ans
    ///     .decode_iid_symbols(4, &model)
    ///     .collect::<Result<Vec<_>, _>>()
    ///     .unwrap();
    /// assert_eq!(reconstructed, symbols);
    /// ```
    ///
    /// [`bulk`]: #method.bulk
    /// [`state`]: #method.state
    /// [`from_compressed`]: #method.from_compressed
    /// [`iter_compressed`]: #method.iter_compressed
    /// [`into_compressed`]: #method.into_compressed
    pub fn get_compressed(
        &mut self,
    ) -> Result<impl Deref<Target = Backend> + Debug + Drop + '_, Backend::WriteError>
    where
        Backend: ReadWords<Word, Stack> + WriteWords<Word> + Debug,
    {
        CoderGuard::<'_, _, _, _, false>::new(self).map_err(|err| match err {
            CoderError::Frontend(()) => unreachable!("Can't happen for SEALED==false."),
            CoderError::Backend(err) => err,
        })
    }

    pub fn get_binary(
        &mut self,
    ) -> Result<impl Deref<Target = Backend> + Debug + Drop + '_, CoderError<(), Backend::WriteError>>
    where
        Backend: ReadWords<Word, Stack> + WriteWords<Word> + Debug,
    {
        CoderGuard::<'_, _, _, _, true>::new(self)
    }

    /// Iterates over the compressed data currently on the ans.
    ///
    /// In contrast to [`get_compressed`] or [`into_compressed`], this method does
    /// not require mutable access or even ownership of the `AnsCoder`.
    ///
    /// # Example
    ///
    /// ```
    /// use constriction::stream::{model::DefaultLeakyQuantizer, stack::DefaultAnsCoder, Decode};
    ///
    /// // Create a stack and encode some stuff.
    /// let mut ans = DefaultAnsCoder::new();
    /// let symbols = vec![8, -12, 0, 7];
    /// let quantizer = DefaultLeakyQuantizer::new(-100..=100);
    /// let model =
    ///     quantizer.quantize(probability::distribution::Gaussian::new(0.0, 10.0));
    /// ans.encode_iid_symbols_reverse(&symbols, &model).unwrap();
    ///
    /// // Iterate over compressed data, collect it into to a Vec``, and compare to direct method.
    /// let compressed_iter = ans.iter_compressed();
    /// let compressed_collected = compressed_iter.collect::<Vec<_>>();
    /// assert!(!compressed_collected.is_empty());
    /// assert_eq!(compressed_collected, *ans.get_compressed().unwrap());
    /// ```
    ///
    /// [`get_compressed`]: #method.get_compressed
    /// [`into_compressed`]: #method.into_compressed
    pub fn iter_compressed<'a>(&'a self) -> impl Iterator<Item = Word> + '_
    where
        &'a Backend: IntoIterator<Item = &'a Word>,
    {
        let bulk_iter = self.bulk.into_iter().cloned();
        let state_iter = bit_array_to_chunks_truncated(self.state).rev();
        bulk_iter.chain(state_iter)
    }

    /// Returns the number of compressed words on the ANS coder's stack.
    ///
    /// This includes a constant overhead of between one and two words unless the
    /// stack is completely empty.
    ///
    /// This method returns the length of the slice, the `Vec<Word>`, or the iterator
    /// that would be returned by [`get_compressed`], [`into_compressed`], or
    /// [`iter_compressed`], respectively, when called at this time.
    ///
    /// See also [`num_bits`].
    ///
    /// [`get_compressed`]: #method.get_compressed
    /// [`into_compressed`]: #method.into_compressed
    /// [`iter_compressed`]: #method.iter_compressed
    /// [`num_bits`]: #method.num_bits
    pub fn num_words(&self) -> usize
    where
        Backend: BoundedReadWords<Word, Stack>,
    {
        self.bulk.remaining() + bit_array_to_chunks_truncated::<_, Word>(self.state).len()
    }

    pub fn num_bits(&self) -> usize
    where
        Backend: BoundedReadWords<Word, Stack>,
    {
        Word::BITS * self.num_words()
    }

    pub fn num_valid_bits(&self) -> usize
    where
        Backend: BoundedReadWords<Word, Stack>,
    {
        Word::BITS * self.bulk.remaining()
            + core::cmp::max(State::BITS - self.state.leading_zeros() as usize, 1)
            - 1
    }

    pub fn into_decoder(self) -> AnsCoder<Word, State, Backend::IntoReadWords>
    where
        Backend: IntoReadWords<Word, Stack>,
    {
        AnsCoder {
            bulk: self.bulk.into_read_words(),
            state: self.state,
            phantom: PhantomData,
        }
    }

    /// Consumes the `AnsCoder` and returns a decoder that implements [`Seek`].
    ///
    /// This method is similar to [`as_seekable_decoder`] except that it takes ownership of
    /// the original `AnsCoder`, so the returned seekable decoder can typically be returned
    /// from the calling function or put on the heap.
    ///
    /// [`as_seekable_decoder`]: Self::as_seekable_decoder
    pub fn into_seekable_decoder(self) -> AnsCoder<Word, State, Backend::IntoSeekReadWords>
    where
        Backend: IntoSeekReadWords<Word, Stack>,
    {
        AnsCoder {
            bulk: self.bulk.into_seek_read_words(),
            state: self.state,
            phantom: PhantomData,
        }
    }

    pub fn as_decoder<'a>(&'a self) -> AnsCoder<Word, State, Backend::AsReadWords>
    where
        Backend: AsReadWords<'a, Word, Stack>,
    {
        AnsCoder {
            bulk: self.bulk.as_read_words(),
            state: self.state,
            phantom: PhantomData,
        }
    }

    /// Returns a decoder that implements [`Seek`].
    ///
    /// The returned decoder shares access to the compressed data with the original
    /// `AnsCoder` (i.e., `self`). This means that:
    /// - you can call this method several times to create several seekable decoders
    ///   with independent views into the same compressed data;
    /// - once the lifetime of all handed out seekable decoders ends, the original
    ///   `AnsCoder` can be used again; and
    /// - the constructed seekable decoder cannot outlive the original `AnsCoder`; for
    ///   example, if the original `AnsCoder` lives on the calling function's call stack
    ///   frame then you cannot return the constructed seekable decoder from the calling
    ///   function. If this is a problem then call [`into_seekable_decoder`] instead.
    ///
    /// # Limitations
    ///
    /// TODO: this text is outdated.
    ///
    /// This method is only implemented for `AnsCoder`s whose backing store of compressed
    /// data (`Backend`) implements `AsRef<[Word]>`. This includes the default
    /// backing data store `Backend = Vec<Word>`.
    ///
    /// [`into_seekable_decoder`]: Self::into_seekable_decoder
    pub fn as_seekable_decoder<'a>(&'a self) -> AnsCoder<Word, State, Backend::AsSeekReadWords>
    where
        Backend: AsSeekReadWords<'a, Word, Stack>,
    {
        AnsCoder {
            bulk: self.bulk.as_seek_read_words(),
            state: self.state,
            phantom: PhantomData,
        }
    }
}

impl<Word, State> AnsCoder<Word, State>
where
    Word: BitArray + Into<State>,
    State: BitArray + AsPrimitive<Word>,
{
    /// Discards all compressed data and resets the coder to the same state as
    /// [`Coder::new`](#method.new).
    pub fn clear(&mut self) {
        self.bulk.clear();
        self.state = State::zero();
    }
}

impl<'bulk, Word, State> AnsCoder<Word, State, Cursor<Word, &'bulk [Word]>>
where
    Word: BitArray + Into<State>,
    State: BitArray + AsPrimitive<Word>,
{
    // TODO: proper error type (also for `from_compressed`)
    #[allow(clippy::result_unit_err)]
    pub fn from_compressed_slice(compressed: &'bulk [Word]) -> Result<Self, ()> {
        Self::from_compressed(backends::Cursor::new_at_write_end(compressed)).map_err(|_| ())
    }

    pub fn from_binary_slice(data: &'bulk [Word]) -> Self {
        Self::from_binary(backends::Cursor::new_at_write_end(data)).unwrap_infallible()
    }
}

impl<Word, State, Buf> AnsCoder<Word, State, Reverse<Cursor<Word, Buf>>>
where
    Word: BitArray + Into<State>,
    State: BitArray + AsPrimitive<Word>,
    Buf: AsRef<[Word]>,
{
    pub fn from_reversed_compressed(compressed: Buf) -> Result<Self, Buf> {
        Self::from_compressed(Reverse(Cursor::new_at_write_beginning(compressed)))
            .map_err(|Reverse(cursor)| cursor.into_buf_and_pos().0)
    }

    pub fn from_reversed_binary(data: Buf) -> Self {
        Self::from_binary(Reverse(Cursor::new_at_write_beginning(data))).unwrap_infallible()
    }
}

impl<Word, State, Iter, ReadError> AnsCoder<Word, State, FallibleIteratorReadWords<Iter>>
where
    Word: BitArray + Into<State>,
    State: BitArray + AsPrimitive<Word>,
    Iter: Iterator<Item = Result<Word, ReadError>>,
    FallibleIteratorReadWords<Iter>: ReadWords<Word, Stack, ReadError = ReadError>,
{
    pub fn from_reversed_compressed_iter(compressed: Iter) -> Result<Self, Fuse<Iter>> {
        Self::from_compressed(FallibleIteratorReadWords::new(compressed))
            .map_err(|iterator_backend| iterator_backend.into_iter())
    }

    pub fn from_reversed_binary_iter(data: Iter) -> Result<Self, ReadError> {
        Self::from_binary(FallibleIteratorReadWords::new(data))
    }
}

impl<Word, State, Backend> AnsCoder<Word, State, Backend>
where
    Word: BitArray + Into<State>,
    State: BitArray + AsPrimitive<Word>,
    Backend: WriteWords<Word>,
{
    pub fn encode_symbols_reverse<S, M, I, const PRECISION: usize>(
        &mut self,
        symbols_and_models: I,
    ) -> Result<(), DefaultEncoderError<Backend::WriteError>>
    where
        S: Borrow<M::Symbol>,
        M: EncoderModel<PRECISION>,
        M::Probability: Into<Word>,
        Word: AsPrimitive<M::Probability>,
        I: IntoIterator<Item = (S, M)>,
        I::IntoIter: DoubleEndedIterator,
    {
        self.encode_symbols(symbols_and_models.into_iter().rev())
    }

    pub fn try_encode_symbols_reverse<S, M, E, I, const PRECISION: usize>(
        &mut self,
        symbols_and_models: I,
    ) -> Result<(), TryCodingError<DefaultEncoderError<Backend::WriteError>, E>>
    where
        S: Borrow<M::Symbol>,
        M: EncoderModel<PRECISION>,
        M::Probability: Into<Word>,
        Word: AsPrimitive<M::Probability>,
        I: IntoIterator<Item = core::result::Result<(S, M), E>>,
        I::IntoIter: DoubleEndedIterator,
    {
        self.try_encode_symbols(symbols_and_models.into_iter().rev())
    }

    pub fn encode_iid_symbols_reverse<S, M, I, const PRECISION: usize>(
        &mut self,
        symbols: I,
        model: M,
    ) -> Result<(), DefaultEncoderError<Backend::WriteError>>
    where
        S: Borrow<M::Symbol>,
        M: EncoderModel<PRECISION> + Copy,
        M::Probability: Into<Word>,
        Word: AsPrimitive<M::Probability>,
        I: IntoIterator<Item = S>,
        I::IntoIter: DoubleEndedIterator,
    {
        self.encode_iid_symbols(symbols.into_iter().rev(), model)
    }

    /// Consumes the ANS coder and returns the compressed data.
    ///
    /// The returned data can be used to recreate an ANS coder with the same state
    /// (e.g., for decoding) by passing it to
    /// [`from_compressed`](#method.from_compressed).
    ///
    /// If you don't want to consume the ANS coder, consider calling
    /// [`get_compressed`](#method.get_compressed),
    /// [`iter_compressed`](#method.iter_compressed) instead.
    ///
    /// # Example
    ///
    /// ```
    /// use constriction::stream::{
    ///     model::DefaultContiguousCategoricalEntropyModel, stack::DefaultAnsCoder, Decode
    /// };
    ///
    /// let mut ans = DefaultAnsCoder::new();
    ///
    /// // Push some data onto the ANS coder's stack:
    /// let symbols = vec![8, 2, 0, 7];
    /// let probabilities = vec![0.03, 0.07, 0.1, 0.1, 0.2, 0.2, 0.1, 0.15, 0.05];
    /// let model = DefaultContiguousCategoricalEntropyModel
    ///     ::from_floating_point_probabilities(&probabilities).unwrap();
    /// ans.encode_iid_symbols_reverse(&symbols, &model).unwrap();
    ///
    /// // Get the compressed data, consuming the ANS coder:
    /// let compressed = ans.into_compressed().unwrap();
    ///
    /// // ... write `compressed` to a file and then read it back later ...
    ///
    /// // Create a new ANS coder with the same state and use it for decompression:
    /// let mut ans = DefaultAnsCoder::from_compressed(compressed).expect("Corrupted compressed file.");
    /// let reconstructed = ans
    ///     .decode_iid_symbols(4, &model)
    ///     .collect::<Result<Vec<_>, _>>()
    ///     .unwrap();
    /// assert_eq!(reconstructed, symbols);
    /// assert!(ans.is_empty())
    /// ```
    pub fn into_compressed(mut self) -> Result<Backend, Backend::WriteError> {
        self.bulk
            .extend_from_iter(bit_array_to_chunks_truncated(self.state).rev())?;
        Ok(self.bulk)
    }

    /// Returns the binary data if it fits precisely into an integer number of
    /// `Word`s
    ///
    /// This method is meant for rather advanced use cases. For most common use cases,
    /// you probably want to call [`into_compressed`] instead.
    ///
    /// This method is the inverse of [`from_binary`]. It is equivalent to calling
    /// [`into_compressed`], verifying that the returned vector ends in a `1` word, and
    /// popping off that trailing `1` word.
    ///
    /// Returns `Err(())` if the compressed data (excluding an obligatory trailing
    /// `1` bit) does not fit into an integer number of `Word`s. This error
    /// case includes the case of an empty `AnsCoder` (since an empty `AnsCoder` lacks the
    /// obligatory trailing one-bit).
    ///
    /// # Example
    ///
    /// ```
    /// // Some binary data we want to represent on a `AnsCoder`.
    /// let data = vec![0x89ab_cdef, 0x0123_4567];
    ///
    /// // Constructing a `AnsCoder` with `from_binary` indicates that all bits of `data` are
    /// // considered part of the information-carrying payload.
    /// let stack1 = constriction::stream::stack::DefaultAnsCoder::from_binary(data.clone()).unwrap();
    /// assert_eq!(stack1.clone().into_binary().unwrap(), data); // <-- Retrieves the original `data`.
    ///
    /// // By contrast, if we construct a `AnsCoder` with `from_compressed`, we indicate that
    /// // - any leading `0` bits of the last entry of `data` are not considered part of
    /// //   the information-carrying payload; and
    /// // - the (obligatory) first `1` bit of the last entry of `data` defines the
    /// //   boundary between unused bits and information-carrying bits; it is therefore
    /// //   also not considered part of the payload.
    /// // Therefore, `stack2` below only contains `32 * 2 - 7 - 1 = 56` bits of payload,
    /// // which cannot be exported into an integer number of `u32` words:
    /// let stack2 = constriction::stream::stack::DefaultAnsCoder::from_compressed(data.clone()).unwrap();
    /// assert!(stack2.clone().into_binary().is_err()); // <-- Returns an error.
    ///
    /// // Use `into_compressed` to retrieve the data in this case:
    /// assert_eq!(stack2.into_compressed().unwrap(), data);
    ///
    /// // Calling `into_compressed` on `stack1` would append an extra `1` bit to indicate
    /// // the boundary between information-carrying bits and padding `0` bits:
    /// assert_eq!(stack1.into_compressed().unwrap(), vec![0x89ab_cdef, 0x0123_4567, 0x0000_0001]);
    /// ```
    ///
    /// [`from_binary`]: #method.from_binary
    /// [`into_compressed`]: #method.into_compressed
    pub fn into_binary(mut self) -> Result<Backend, Option<Backend::WriteError>> {
        let valid_bits = (State::BITS - 1).wrapping_sub(self.state.leading_zeros() as usize);

        if valid_bits % Word::BITS != 0 || valid_bits == usize::max_value() {
            Err(None)
        } else {
            let truncated_state = self.state ^ (State::one() << valid_bits);
            self.bulk
                .extend_from_iter(bit_array_to_chunks_truncated(truncated_state).rev())?;
            Ok(self.bulk)
        }
    }
}

impl<Word, State, Buf> AnsCoder<Word, State, Cursor<Word, Buf>>
where
    Word: BitArray,
    State: BitArray + AsPrimitive<Word> + From<Word>,
    Buf: AsRef<[Word]> + AsMut<[Word]>,
{
    pub fn into_reversed(self) -> AnsCoder<Word, State, Reverse<Cursor<Word, Buf>>> {
        let (bulk, state) = self.into_raw_parts();
        AnsCoder {
            bulk: bulk.into_reversed(),
            state,
            phantom: PhantomData,
        }
    }
}

impl<Word, State, Buf> AnsCoder<Word, State, Reverse<Cursor<Word, Buf>>>
where
    Word: BitArray,
    State: BitArray + AsPrimitive<Word> + From<Word>,
    Buf: AsRef<[Word]> + AsMut<[Word]>,
{
    pub fn into_reversed(self) -> AnsCoder<Word, State, Cursor<Word, Buf>> {
        let (bulk, state) = self.into_raw_parts();
        AnsCoder {
            bulk: bulk.into_reversed(),
            state,
            phantom: PhantomData,
        }
    }
}

impl<Word, State, Backend> Code for AnsCoder<Word, State, Backend>
where
    Word: BitArray + Into<State>,
    State: BitArray + AsPrimitive<Word>,
{
    type Word = Word;
    type State = State;

    #[inline(always)]
    fn state(&self) -> Self::State {
        self.state
    }
}

impl<Word, State, Backend, const PRECISION: usize> Encode<PRECISION>
    for AnsCoder<Word, State, Backend>
where
    Word: BitArray + Into<State>,
    State: BitArray + AsPrimitive<Word>,
    Backend: WriteWords<Word>,
{
    type FrontendError = DefaultEncoderFrontendError;
    type BackendError = Backend::WriteError;

    /// Encodes a single symbol and appends it to the compressed data.
    ///
    /// This is a low level method. You probably usually want to call a batch method
    /// like [`encode_symbols`](#method.encode_symbols) or
    /// [`encode_iid_symbols`](#method.encode_iid_symbols) instead. See examples there.
    ///
    /// The bound `impl Borrow<M::Symbol>` on argument `symbol` essentially means that
    /// you can provide the symbol either by value or by reference, at your choice.
    ///
    /// Returns [`Err(ImpossibleSymbol)`] if `symbol` has zero probability under the
    /// entropy model `model`. This error can usually be avoided by using a
    /// "leaky" distribution as the entropy model, i.e., a distribution that assigns a
    /// nonzero probability to all symbols within a finite domain. Leaky distributions
    /// can be constructed with, e.g., a
    /// [`LeakyQuantizer`](models/struct.LeakyQuantizer.html) or with
    /// [`LeakyCategorical::from_floating_point_probabilities`](
    /// models/struct.LeakyCategorical.html#method.from_floating_point_probabilities).
    ///
    /// TODO: move this and similar doc comments to the trait definition.
    ///
    /// [`Err(ImpossibleSymbol)`]: enum.EncodingError.html#variant.ImpossibleSymbol
    fn encode_symbol<M>(
        &mut self,
        symbol: impl Borrow<M::Symbol>,
        model: M,
    ) -> Result<(), DefaultEncoderError<Self::BackendError>>
    where
        M: EncoderModel<PRECISION>,
        M::Probability: Into<Self::Word>,
        Self::Word: AsPrimitive<M::Probability>,
    {
        assert!(State::BITS >= Word::BITS + PRECISION);

        let (left_sided_cumulative, probability) = model
            .left_cumulative_and_probability(symbol)
            .ok_or_else(|| DefaultEncoderFrontendError::ImpossibleSymbol.into_coder_error())?;

        if (self.state >> (State::BITS - PRECISION)) >= probability.get().into().into() {
            self.bulk.write(self.state.as_())?;
            self.state = self.state >> Word::BITS;
            // At this point, the invariant on `self.state` (see its doc comment) is
            // temporarily violated, but it will be restored below.
        }

        let remainder = (self.state % probability.get().into().into()).as_().as_();
        let prefix = self.state / probability.get().into().into();
        let quantile = left_sided_cumulative + remainder;
        self.state = prefix << PRECISION | quantile.into().into();

        Ok(())
    }

    fn maybe_full(&self) -> bool {
        self.bulk.maybe_full()
    }
}

impl<Word, State, Backend, const PRECISION: usize> Decode<PRECISION>
    for AnsCoder<Word, State, Backend>
where
    Word: BitArray + Into<State>,
    State: BitArray + AsPrimitive<Word>,
    Backend: ReadWords<Word, Stack>,
{
    /// ANS coding is surjective, and we (deliberately) allow decoding past EOF (in a
    /// deterministic way) for consistency. Therefore, decoding cannot fail.    
    type FrontendError = Infallible;

    type BackendError = Backend::ReadError;

    /// Decodes a single symbol and pops it off the compressed data.
    ///
    /// This is a low level method. You usually probably want to call a batch method
    /// like [`decode_symbols`](#method.decode_symbols) or
    /// [`decode_iid_symbols`](#method.decode_iid_symbols) instead.
    ///
    /// This method is called `decode_symbol` rather than `decode_symbol` to stress the
    /// fact that the `AnsCoder` is a stack: `decode_symbol` will return the *last* symbol
    /// that was previously encoded via [`encode_symbol`](#method.encode_symbol).
    ///
    /// Note that this method cannot fail. It will still produce symbols in a
    /// deterministic way even if the stack is empty, but such symbols will not
    /// recover any previously encoded data and will generally have low entropy.
    /// Still, being able to pop off an arbitrary number of symbols can sometimes be
    /// useful in edge cases of, e.g., the bits-back algorithm.
    #[inline(always)]
    fn decode_symbol<M>(
        &mut self,
        model: M,
    ) -> Result<M::Symbol, CoderError<Self::FrontendError, Self::BackendError>>
    where
        M: DecoderModel<PRECISION>,
        M::Probability: Into<Self::Word>,
        Self::Word: AsPrimitive<M::Probability>,
    {
        assert!(State::BITS >= Word::BITS + PRECISION);

        let quantile = (self.state % (State::one() << PRECISION)).as_().as_();
        let (symbol, left_sided_cumulative, probability) = model.quantile_function(quantile);
        let remainder = quantile - left_sided_cumulative;
        self.state =
            (self.state >> PRECISION) * probability.get().into().into() + remainder.into().into();
        if self.state < State::one() << (State::BITS - Word::BITS) {
            // Invariant on `self.state` (see its doc comment) is violated. Restore it by
            // refilling with a compressed word from `self.bulk` if available.
            if let Some(word) = self.bulk.read()? {
                self.state = (self.state << Word::BITS) | word.into();
            }
        }

        Ok(symbol)
    }

    fn maybe_exhausted(&self) -> bool {
        self.is_empty()
    }
}

impl<Word, State, Backend> PosSeek for AnsCoder<Word, State, Backend>
where
    Word: BitArray + Into<State>,
    State: BitArray + AsPrimitive<Word>,
    Backend: PosSeek,
    Self: Code,
{
    type Position = (Backend::Position, <Self as Code>::State);
}

impl<Word, State, Backend> Seek for AnsCoder<Word, State, Backend>
where
    Word: BitArray + Into<State>,
    State: BitArray + AsPrimitive<Word>,
    Backend: Seek,
{
    fn seek(&mut self, (pos, state): Self::Position) -> Result<(), ()> {
        self.bulk.seek(pos)?;
        self.state = state;
        Ok(())
    }
}

impl<Word, State, Backend> Pos for AnsCoder<Word, State, Backend>
where
    Word: BitArray + Into<State>,
    State: BitArray + AsPrimitive<Word>,
    Backend: Pos,
{
    fn pos(&self) -> Self::Position {
        (self.bulk.pos(), self.state())
    }
}

/// Provides temporary read-only access to the compressed data wrapped in a
/// [`AnsCoder`].
///
/// Dereferences to `&[Word]`. See [`Coder::get_compressed`] for an example.
///
/// [`AnsCoder`]: struct.Coder.html
/// [`Coder::get_compressed`]: struct.Coder.html#method.get_compressed
struct CoderGuard<'a, Word, State, Backend, const SEALED: bool>
where
    Word: BitArray + Into<State>,
    State: BitArray + AsPrimitive<Word>,
    Backend: WriteWords<Word> + ReadWords<Word, Stack>,
{
    inner: &'a mut AnsCoder<Word, State, Backend>,
}

impl<'a, Word, State, Backend, const SEALED: bool> CoderGuard<'a, Word, State, Backend, SEALED>
where
    Word: BitArray + Into<State>,
    State: BitArray + AsPrimitive<Word>,
    Backend: WriteWords<Word> + ReadWords<Word, Stack>,
{
    #[inline(always)]
    fn new(
        ans: &'a mut AnsCoder<Word, State, Backend>,
    ) -> Result<Self, CoderError<(), Backend::WriteError>> {
        // Append state. Will be undone in `<Self as Drop>::drop`.
        let mut chunks_rev = bit_array_to_chunks_truncated(ans.state);
        if SEALED && chunks_rev.next() != Some(Word::one()) {
            return Err(CoderError::Frontend(()));
        }
        for chunk in chunks_rev.rev() {
            ans.bulk.write(chunk)?
        }

        Ok(Self { inner: ans })
    }
}

impl<'a, Word, State, Backend, const SEALED: bool> Drop
    for CoderGuard<'a, Word, State, Backend, SEALED>
where
    Word: BitArray + Into<State>,
    State: BitArray + AsPrimitive<Word>,
    Backend: WriteWords<Word> + ReadWords<Word, Stack>,
{
    fn drop(&mut self) {
        // Revert what we did in `Self::new`.
        let mut chunks_rev = bit_array_to_chunks_truncated(self.inner.state);
        if SEALED {
            chunks_rev.next();
        }
        for _ in chunks_rev {
            core::mem::drop(self.inner.bulk.read());
        }
    }
}

impl<'a, Word, State, Backend, const SEALED: bool> Deref
    for CoderGuard<'a, Word, State, Backend, SEALED>
where
    Word: BitArray + Into<State>,
    State: BitArray + AsPrimitive<Word>,
    Backend: WriteWords<Word> + ReadWords<Word, Stack>,
{
    type Target = Backend;

    fn deref(&self) -> &Self::Target {
        &self.inner.bulk
    }
}

impl<Word, State, Backend, const SEALED: bool> Debug
    for CoderGuard<'_, Word, State, Backend, SEALED>
where
    Word: BitArray + Into<State>,
    State: BitArray + AsPrimitive<Word>,
    Backend: WriteWords<Word> + ReadWords<Word, Stack> + Debug,
{
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        Debug::fmt(&**self, f)
    }
}

#[cfg(test)]
mod tests {
    use super::super::model::{
        ContiguousCategoricalEntropyModel, DefaultLeakyQuantizer, IterableEntropyModel,
        LeakyQuantizer,
    };
    use super::*;
    extern crate std;
    use std::dbg;

    use probability::distribution::{Gaussian, Inverse};
    use rand_xoshiro::{
        rand_core::{RngCore, SeedableRng},
        Xoshiro256StarStar,
    };

    #[test]
    fn compress_none() {
        let coder1 = DefaultAnsCoder::new();
        assert!(coder1.is_empty());
        let compressed = coder1.into_compressed().unwrap();
        assert!(compressed.is_empty());

        let coder2 = DefaultAnsCoder::from_compressed(compressed).unwrap();
        assert!(coder2.is_empty());
    }

    #[test]
    fn compress_one() {
        generic_compress_few(core::iter::once(5), 1)
    }

    #[test]
    fn compress_two() {
        generic_compress_few([2, 8].iter().cloned(), 1)
    }

    #[test]
    fn compress_ten() {
        generic_compress_few(0..10, 2)
    }

    #[test]
    fn compress_twenty() {
        generic_compress_few(-10..10, 4)
    }

    fn generic_compress_few<I>(symbols: I, expected_size: usize)
    where
        I: IntoIterator<Item = i32>,
        I::IntoIter: Clone + DoubleEndedIterator,
    {
        let symbols = symbols.into_iter();

        let mut encoder = DefaultAnsCoder::new();
        let quantizer = DefaultLeakyQuantizer::new(-127..=127);
        let model = quantizer.quantize(Gaussian::new(3.2, 5.1));

        // We don't reuse the same encoder for decoding because we want to test
        // if exporting and re-importing of compressed data works.
        encoder.encode_iid_symbols(symbols.clone(), model).unwrap();
        let compressed = encoder.into_compressed().unwrap();
        assert_eq!(compressed.len(), expected_size);

        let mut decoder = DefaultAnsCoder::from_compressed(compressed).unwrap();
        for symbol in symbols.rev() {
            assert_eq!(decoder.decode_symbol(model).unwrap(), symbol);
        }
        assert!(decoder.is_empty());
    }

    #[test]
    fn compress_many_u32_u64_32() {
        generic_compress_many::<u32, u64, u32, 32>();
    }

    #[test]
    fn compress_many_u32_u64_24() {
        generic_compress_many::<u32, u64, u32, 24>();
    }

    #[test]
    fn compress_many_u32_u64_16() {
        generic_compress_many::<u32, u64, u16, 16>();
    }

    #[test]
    fn compress_many_u32_u64_8() {
        generic_compress_many::<u32, u64, u8, 8>();
    }

    #[test]
    fn compress_many_u16_u64_16() {
        generic_compress_many::<u16, u64, u16, 16>();
    }

    #[test]
    fn compress_many_u16_u64_12() {
        generic_compress_many::<u16, u64, u16, 12>();
    }

    #[test]
    fn compress_many_u16_u64_8() {
        generic_compress_many::<u16, u64, u8, 8>();
    }

    #[test]
    fn compress_many_u8_u64_8() {
        generic_compress_many::<u8, u64, u8, 8>();
    }

    #[test]
    fn compress_many_u16_u32_16() {
        generic_compress_many::<u16, u32, u16, 16>();
    }

    #[test]
    fn compress_many_u16_u32_12() {
        generic_compress_many::<u16, u32, u16, 12>();
    }

    #[test]
    fn compress_many_u16_u32_8() {
        generic_compress_many::<u16, u32, u8, 8>();
    }

    #[test]
    fn compress_many_u8_u32_8() {
        generic_compress_many::<u8, u32, u8, 8>();
    }

    #[test]
    fn compress_many_u8_u16_8() {
        generic_compress_many::<u8, u16, u8, 8>();
    }

    fn generic_compress_many<Word, State, Probability, const PRECISION: usize>()
    where
        State: BitArray + AsPrimitive<Word>,
        Word: BitArray + Into<State> + AsPrimitive<Probability>,
        Probability: BitArray + Into<Word> + AsPrimitive<usize> + Into<f64>,
        u32: AsPrimitive<Probability>,
        usize: AsPrimitive<Probability>,
        f64: AsPrimitive<Probability>,
        i32: AsPrimitive<Probability>,
    {
        #[cfg(not(miri))]
        const AMT: usize = 1000;

        #[cfg(miri)]
        const AMT: usize = 100;

        let mut symbols_gaussian = Vec::with_capacity(AMT);
        let mut means = Vec::with_capacity(AMT);
        let mut stds = Vec::with_capacity(AMT);

        let mut rng = Xoshiro256StarStar::seed_from_u64(
            (Word::BITS as u64).rotate_left(3 * 16)
                ^ (State::BITS as u64).rotate_left(2 * 16)
                ^ (Probability::BITS as u64).rotate_left(16)
                ^ PRECISION as u64,
        );

        for _ in 0..AMT {
            let mean = (200.0 / u32::MAX as f64) * rng.next_u32() as f64 - 100.0;
            let std_dev = (10.0 / u32::MAX as f64) * rng.next_u32() as f64 + 0.001;
            let quantile = (rng.next_u32() as f64 + 0.5) / (1u64 << 32) as f64;
            let dist = Gaussian::new(mean, std_dev);
            let symbol = (dist.inverse(quantile).round() as i32).clamp(-127, 127);

            symbols_gaussian.push(symbol);
            means.push(mean);
            stds.push(std_dev);
        }

        let hist = [
            1u32, 186545, 237403, 295700, 361445, 433686, 509456, 586943, 663946, 737772, 1657269,
            896675, 922197, 930672, 916665, 0, 0, 0, 0, 0, 723031, 650522, 572300, 494702, 418703,
            347600, 1, 283500, 226158, 178194, 136301, 103158, 76823, 55540, 39258, 27988, 54269,
        ];
        let categorical_probabilities = hist.iter().map(|&x| x as f64).collect::<Vec<_>>();
        let categorical =
            ContiguousCategoricalEntropyModel::<Probability, _, PRECISION>::from_floating_point_probabilities(
                &categorical_probabilities,
            )
            .unwrap();
        let mut symbols_categorical = Vec::with_capacity(AMT);
        let max_probability = Probability::max_value() >> (Probability::BITS - PRECISION);
        for _ in 0..AMT {
            let quantile = rng.next_u32().as_() & max_probability;
            let symbol = categorical.quantile_function(quantile).0;
            symbols_categorical.push(symbol);
        }

        let mut ans = AnsCoder::<Word, State>::new();

        ans.encode_iid_symbols_reverse(&symbols_categorical, &categorical)
            .unwrap();
        dbg!(
            ans.num_valid_bits(),
            AMT as f64 * categorical.entropy_base2::<f64>()
        );

        let quantizer = LeakyQuantizer::<_, _, Probability, PRECISION>::new(-127..=127);
        ans.encode_symbols_reverse(symbols_gaussian.iter().zip(&means).zip(&stds).map(
            |((&symbol, &mean), &core)| (symbol, quantizer.quantize(Gaussian::new(mean, core))),
        ))
        .unwrap();
        dbg!(ans.num_valid_bits());

        // Test if import/export of compressed data works.
        let compressed = ans.into_compressed().unwrap();
        let mut ans = AnsCoder::from_compressed(compressed).unwrap();

        let reconstructed_gaussian = ans
            .decode_symbols(
                means
                    .iter()
                    .zip(&stds)
                    .map(|(&mean, &core)| quantizer.quantize(Gaussian::new(mean, core))),
            )
            .collect::<Result<Vec<_>, CoderError<Infallible, Infallible>>>()
            .unwrap();
        let reconstructed_categorical = ans
            .decode_iid_symbols(AMT, &categorical)
            .collect::<Result<Vec<_>, CoderError<Infallible, Infallible>>>()
            .unwrap();

        assert!(ans.is_empty());

        assert_eq!(symbols_gaussian, reconstructed_gaussian);
        assert_eq!(symbols_categorical, reconstructed_categorical);
    }

    #[test]
    fn seek() {
        #[cfg(not(miri))]
        let (num_chunks, symbols_per_chunk) = (100, 100);

        #[cfg(miri)]
        let (num_chunks, symbols_per_chunk) = (10, 10);

        let quantizer = DefaultLeakyQuantizer::new(-100..=100);
        let model = quantizer.quantize(Gaussian::new(0.0, 10.0));

        let mut encoder = DefaultAnsCoder::new();

        let mut rng = Xoshiro256StarStar::seed_from_u64(123);
        let mut symbols = Vec::with_capacity(num_chunks);
        let mut jump_table = Vec::with_capacity(num_chunks);
        let (initial_pos, initial_state) = encoder.pos();

        for _ in 0..num_chunks {
            let chunk = (0..symbols_per_chunk)
                .map(|_| model.quantile_function(rng.next_u32() % (1 << 24)).0)
                .collect::<Vec<_>>();
            encoder.encode_iid_symbols_reverse(&chunk, &model).unwrap();
            symbols.push(chunk);
            jump_table.push(encoder.pos());
        }

        // Test decoding from back to front.
        {
            let mut seekable_decoder = encoder.as_seekable_decoder();

            // Verify that decoding leads to the same positions and states.
            for (chunk, &(pos, state)) in symbols.iter().zip(&jump_table).rev() {
                assert_eq!(seekable_decoder.pos(), (pos, state));
                let decoded = seekable_decoder
                    .decode_iid_symbols(symbols_per_chunk, &model)
                    .collect::<Result<Vec<_>, _>>()
                    .unwrap();
                assert_eq!(&decoded, chunk)
            }
            assert_eq!(seekable_decoder.pos(), (initial_pos, initial_state));
            assert!(seekable_decoder.is_empty());

            // Seek to some random offsets in the jump table and decode one chunk
            for _ in 0..100 {
                let chunk_index = rng.next_u32() as usize % num_chunks;
                let (pos, state) = jump_table[chunk_index];
                seekable_decoder.seek((pos, state)).unwrap();
                let decoded = seekable_decoder
                    .decode_iid_symbols(symbols_per_chunk, &model)
                    .collect::<Result<Vec<_>, _>>()
                    .unwrap();
                assert_eq!(&decoded, &symbols[chunk_index])
            }
        }

        // Reverse compressed data, map positions in jump table to reversed positions,
        // and test decoding from front to back.
        let mut compressed = encoder.into_compressed().unwrap();
        compressed.reverse();
        for (pos, _state) in jump_table.iter_mut() {
            *pos = compressed.len() - *pos;
        }
        let initial_pos = compressed.len() - initial_pos;

        {
            let mut seekable_decoder = AnsCoder::from_reversed_compressed(compressed).unwrap();

            // Verify that decoding leads to the expected positions and states.
            for (chunk, &(pos, state)) in symbols.iter().zip(&jump_table).rev() {
                assert_eq!(seekable_decoder.pos(), (pos, state));
                let decoded = seekable_decoder
                    .decode_iid_symbols(symbols_per_chunk, &model)
                    .collect::<Result<Vec<_>, _>>()
                    .unwrap();
                assert_eq!(&decoded, chunk)
            }
            assert_eq!(seekable_decoder.pos(), (initial_pos, initial_state));
            assert!(seekable_decoder.is_empty());

            // Seek to some random offsets in the jump table and decode one chunk each time.
            for _ in 0..100 {
                let chunk_index = rng.next_u32() as usize % num_chunks;
                let (pos, state) = jump_table[chunk_index];
                seekable_decoder.seek((pos, state)).unwrap();
                let decoded = seekable_decoder
                    .decode_iid_symbols(symbols_per_chunk, &model)
                    .collect::<Result<Vec<_>, _>>()
                    .unwrap();
                assert_eq!(&decoded, &symbols[chunk_index])
            }
        }
    }
}