1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
//! Experimental entropy coding algorithm for advanced variants of bitsback coding.
//!
//! This module provides the [`ChainCoder`], an experimental entropy coder that is similar
//! to an [`AnsCoder`] in that it operates as a stack (i.e., a last-in-first-out data
//! structure). However, different to an `AnsCoder`, a `ChainCoder` treats each symbol
//! independently. Thus, when decoding some bit string into a sequence of symbols, any
//! modification to the entropy model for one symbol does not affect decoding for any other
//! symbol (by contrast, when decoding with an `AnsCoder` then changing the entropy model
//! for one symbol can affect *all* subsequently decoded symbols too, see
//! [Motivation](#motivation) below).
//!
//! This property of treating symbols independently upon decoding can be useful for advanced
//! compression methods that combine inference, quantization, and bits-back coding.
//!
//! # Motivation
//!
//! The following example illustrates how decoding differs between an [`AnsCoder`] and a
//! [`ChainCoder`]. We decode the same bitstring `data` twice with each coder: once with a
//! sequence of toy entropy models, and then a second time with slightly different sequence
//! of entropy models. Importantly, only the entropy model for the first decoded symbol
//! differs between the two applications of each coder. We then observe that
//! - with the `AnsCoder`, changing the first entropy model affects not only the first
//!   decoded symbol but also has a ripple effect that can affect subsequently decoded
//!   symbols; while
//! - with the `ChainCoder`, changing the first entropy model affects only the first decoded
//!   symbol; all subsequently decoded symbols remain unchanged.
//!
//! ```
//! use constriction::stream::{
//!     model::DefaultContiguousCategoricalEntropyModel,
//!     stack::DefaultAnsCoder, chain::DefaultChainCoder, Decode
//! };
//!
//! /// Shorthand for decoding a sequence of symbols with categorical entropy models.
//! fn decode_categoricals<Decoder: Decode<24, Word = u32>>(
//!     decoder: &mut Decoder,
//!     probabilities: &[[f64; 4]],
//! ) -> Vec<usize> {
//!     let entropy_models = probabilities
//!         .iter()
//!         .map(
//!             |probs| DefaultContiguousCategoricalEntropyModel
//!                 ::from_floating_point_probabilities(probs).unwrap()
//!         );
//!     decoder.decode_symbols(entropy_models).collect::<Result<Vec<_>, _>>().unwrap()
//! }
//!
//! // Let's define some sample binary data and some probabilities for our entropy models
//! let data = vec![0x80d1_4131, 0xdda9_7c6c, 0x5017_a640, 0x0117_0a3d];
//! let mut probabilities = [
//!     [0.1, 0.7, 0.1, 0.1], // Probabilities for the entropy model of the first decoded symbol.
//!     [0.2, 0.2, 0.1, 0.5], // Probabilities for the entropy model of the second decoded symbol.
//!     [0.2, 0.1, 0.4, 0.3], // Probabilities for the entropy model of the third decoded symbol.
//! ];
//!
//! // Decoding the binary data with an `AnsCoder` results in the symbols `[0, 0, 1]`.
//! let mut ans_coder = DefaultAnsCoder::from_binary(data.clone()).unwrap();
//! let symbols = decode_categoricals(&mut ans_coder, &probabilities);
//! assert_eq!(symbols, [0, 0, 1]);
//!
//! // Even if we change only the first entropy model (slightly), *all* decoded symbols can change:
//! probabilities[0] = [0.09, 0.71, 0.1, 0.1]; // was: `[0.1, 0.7, 0.1, 0.1]`
//! let mut ans_coder = DefaultAnsCoder::from_binary(data.clone()).unwrap();
//! let symbols = decode_categoricals(&mut ans_coder, &probabilities);
//! assert_eq!(symbols, [1, 0, 3]); // (instead of `[0, 0, 1]` from above)
//! // It's no surprise that the first symbol changed since we changed its entropy model. But
//! // note that the third symbol changed too even though we hadn't changed its entropy model.
//! // --> Changes to entropy models (and also to compressed bits) have a *global* effect.
//!
//! // Let's try the same with a `ChainCoder`:
//! probabilities[0] = [0.1, 0.7, 0.1, 0.1]; // Restore original entropy model for first symbol.
//! let mut chain_coder = DefaultChainCoder::from_binary(data.clone()).unwrap();
//! let symbols = decode_categoricals(&mut chain_coder, &probabilities);
//! assert_eq!(symbols, [0, 3, 3]);
//! // We get different symbols than for the `AnsCoder`, of course, but that's not the point here.
//!
//! probabilities[0] = [0.09, 0.71, 0.1, 0.1]; // Change the first entropy model again slightly.
//! let mut chain_coder = DefaultChainCoder::from_binary(data).unwrap();
//! let symbols = decode_categoricals(&mut chain_coder, &probabilities);
//! assert_eq!(symbols, [1, 3, 3]); // (instead of `[0, 3, 3]` from above)
//! // The only symbol that changed was the one whose entropy model we had changed.
//! // --> In a `ChainCoder`, changes to entropy models (and also to compressed bits)
//! //     only have a *local* effect on the decompressed symbols.
//! ```
//!
//! # How does this work?
//!
//! TODO
//!
//! [`AnsCoder`]: super::stack::AnsCoder

use alloc::vec::Vec;

use core::{borrow::Borrow, convert::Infallible, fmt::Display};

use num_traits::AsPrimitive;

use super::{
    model::{DecoderModel, EncoderModel},
    Code, Decode, Encode, TryCodingError,
};
use crate::{
    backends::{ReadWords, WriteWords},
    BitArray, CoderError, DefaultEncoderFrontendError, NonZeroBitArray, Pos, PosSeek, Seek, Stack,
};

/// Experimental entropy coder for advanced variants of bitsback coding.
///
/// See [module level documentation](super) for motivation and explanation of the
/// implemented entropy coding algorithm.
///
///  # Intended Usage
///
/// A typical usage cycle goes along the following steps:
///
/// ## When compressing data using the bits-back trick
///
/// 0. Start with some stack of (typically already compressed) binary data, which you want
///    to piggy-back into the choice of certain latent variables.
/// 1. Create a `ChainCoder` by calling [`ChainCoder::from_binary`] or
///    [`ChainCoder::from_compressed`] (depending on whether you can guarantee that the
///    stack of binary data has a nonzero word on top).
/// 2. Use the `ChainCoder` and a sequence of entropy models to decode some symbols.
/// 3. Export the remainders data on the `ChainCoder` by calling [`.into_remainders()`].
///
/// ## When decompressing the data
///
/// 1. Create a `ChainCoder` by calling [`ChainCoder::from_remainders`].
/// 2. Encode the symbols you obtained in Step 2 above back onto the new chain coder (in
///    reverse order) using the same entropy models.
/// 3. Recover the original binary data from Step 0 above by calling [`.into_binary()`] or
///    [`.into_compressed()`] (using the `analogous choice as in Step 1 above).
///
/// # Examples
///
/// The following two examples show two variants of the typical usage cycle described above.
///
/// ```
/// use constriction::stream::{model::DefaultLeakyQuantizer, Decode, chain::DefaultChainCoder};
/// use probability::distribution::Gaussian;
///
/// // Step 0 of the compressor: Generate some sample binary data for demonstration purpose.
/// let original_data = (0..100u32).map(
///     |i| i.wrapping_mul(0xad5f_b2ed).wrapping_add(0xed55_4892)
/// ).collect::<Vec<_>>();
///
/// // Step 1 of the compressor: obtain a `ChainCoder` from the original binary data.
/// let mut coder = DefaultChainCoder::from_binary(original_data.clone()).unwrap();
///
/// // Step 2 of the compressor: decode data into symbols using some entropy models.
/// let quantizer = DefaultLeakyQuantizer::new(-100..=100);
/// let models = (0..50u32).map(|i| quantizer.quantize(Gaussian::new(i as f64, 10.0)));
/// let symbols = coder.decode_symbols(models.clone()).collect::<Result<Vec<_>, _>>().unwrap();
///
/// // Step 3 of the compressor: export the remainders data.
/// let (remainders_prefix, remainders_suffix) = coder.into_remainders().unwrap();
/// // (verify that we've indeed reduced the amount of data:)
/// assert!(remainders_prefix.len() + remainders_suffix.len() < original_data.len());
///
/// // ... do something with the `symbols`, then recover them later ...
///
/// // Step 1 of the decompressor: create a `ChainCoder` from the remainders data. We only really
/// // need the `remainders_suffix` here, but it would also be legal to use the concatenation of
/// // `remainders_prefix` with `remainders_suffix` (see other example below).
/// let mut coder = DefaultChainCoder::from_remainders(remainders_suffix).unwrap();
///
/// // Step 2 of the decompressor: re-encode the symbols in reverse order.
/// coder.encode_symbols_reverse(symbols.into_iter().zip(models));
///
/// // Step 3 of the decompressor: recover the original data.
/// let (recovered_prefix, recovered_suffix) = coder.into_binary().unwrap();
/// assert!(recovered_prefix.is_empty());  // Empty because we discarded `remainders_prefix` above.
/// let mut recovered = remainders_prefix;  // But we have to prepend it to the recovered data now.
/// recovered.extend_from_slice(&recovered_suffix);
///
/// assert_eq!(recovered, original_data);
/// ```
///
/// In Step 3 of the compressor in the example above, calling `.into_remainders()` on a
/// `ChainCoder` returns a tuple of a `remainders_prefix` and a `remainders_suffix`. The
/// `remainders_prefix` contains superflous data that we didn't need when decoding the
/// `symbols` (`remainders_prefix` is an unaltered prefix of the original `data`). We
/// therefore don't need `remainders_prefix` for re-encoding the symbols, so we didn't pass
/// it to `ChainCoder::from_remainders` in Step 1 of the decompressor above.
///
/// If we were to write out `remainders_prefix` and `remainders_suffix` to a file then it
/// would be tedious to keep track of where the prefix ends and where the suffix begins.
/// Luckily, we don't have to do this. We can just as well concatenate `remainders_prefix`
/// and `remainders_suffix` right away. The only additional change this will cause is that
/// the call to `.into_binary()` in Step 3 of the decompressor will then return a non-empty
/// `recovered_prefix` because the second `ChainCoder` will then also have some superflous
/// data. So we'll have to again concatenate the two returned buffers. The following example
/// shows how this works:
///
/// ```
/// # use constriction::stream::{model::DefaultLeakyQuantizer, Decode, chain::DefaultChainCoder};
/// # use probability::distribution::Gaussian;
/// # let original_data = (0..100u32).map(
/// #     |i| i.wrapping_mul(0xad5f_b2ed).wrapping_add(0xed55_4892)
/// # ).collect::<Vec<_>>();
/// # let mut coder = DefaultChainCoder::from_binary(original_data.clone()).unwrap();
/// # let quantizer = DefaultLeakyQuantizer::new(-100..=100);
/// # let models = (0..50u32).map(|i| quantizer.quantize(Gaussian::new(i as f64, 10.0)));
/// # let symbols = coder.decode_symbols(models.clone()).collect::<Result<Vec<_>, _>>().unwrap();
/// # let (remainders_prefix, remainders_suffix) = coder.into_remainders().unwrap();
/// // ... compressor same as in the previous example above ...
///
/// // Alternative Step 1 of the decompressor: concatenate `remainders_prefix` with
/// // `remainders_suffix` before creating a `ChainCoder` from them.
/// let mut remainders = remainders_prefix;
/// remainders.extend_from_slice(&remainders_suffix);
/// let mut coder = DefaultChainCoder::from_remainders(remainders).unwrap();
///
/// // Step 2 of the decompressor: re-encode symbols in reverse order (same as in previous example).
/// coder.encode_symbols_reverse(symbols.into_iter().zip(models));
///
/// // Alternative Step 3 of the decompressor: recover the original data by another concatenation.
/// let (recovered_prefix, recovered_suffix) = coder.into_binary().unwrap();
/// assert!(!recovered_prefix.is_empty());  // No longer empty because there was superflous data.
/// let mut recovered = recovered_prefix;   // So we have to concatenate `recovered_{pre,suf}fix`.
/// recovered.extend_from_slice(&recovered_suffix);
///
/// assert_eq!(recovered, original_data);
/// ```
///
/// [`.into_remainders()`]: Self::into_remainders
/// [`.into_binary()`]: Self::into_binary
/// [`.into_compressed()`]: Self::into_compressed
#[derive(Debug, Clone)]
pub struct ChainCoder<Word, State, CompressedBackend, RemaindersBackend, const PRECISION: usize>
where
    Word: BitArray + Into<State>,
    State: BitArray + AsPrimitive<Word>,
{
    /// The compressed bit string. Written to by encoder, read from by decoder.
    compressed: CompressedBackend,

    /// Leftover information from decoding. Read from by encoder, written to by decoder.
    remainders: RemaindersBackend,

    heads: ChainCoderHeads<Word, State, PRECISION>,
}

/// Type of the internal state used by [`ChainCoder<Word, State>`]. Relevant for
/// [`Seek`]ing.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct ChainCoderHeads<Word: BitArray, State: BitArray, const PRECISION: usize> {
    /// All bits following the highest order bit (which is a given in a `NonZero`) are
    /// leftover bits from previous reads from `compressed` that still need to be consumed.
    /// Thus, there are at most `Word::BITS - 1` leftover bits at any time.
    compressed: Word::NonZero,

    /// Satisfies invariants:
    /// - `heads.remainders >= 1 << (State::BITS - Word::BITS - PRECISION)`; and
    /// - `heads.remainders < 1 << (State::BITS - PRECISION)`
    remainders: State,
}

impl<Word: BitArray, State: BitArray, const PRECISION: usize>
    ChainCoderHeads<Word, State, PRECISION>
{
    /// Returns `true` iff there's currently an integer amount of `Words` on `compressed`
    #[inline(always)]
    pub fn is_whole(self) -> bool {
        self.compressed.get() == Word::one()
    }

    /// Private on purpose.
    fn new<B: ReadWords<Word, Stack>>(
        source: &mut B,
        push_one: bool,
    ) -> Result<ChainCoderHeads<Word, State, PRECISION>, CoderError<(), B::ReadError>>
    where
        Word: Into<State>,
    {
        assert!(State::BITS >= Word::BITS + PRECISION);
        assert!(PRECISION > 0);
        assert!(PRECISION <= Word::BITS);

        let threshold = State::one() << (State::BITS - Word::BITS - PRECISION);
        let mut remainders_head = if push_one {
            State::one()
        } else {
            match source.read()? {
                Some(word) if word != Word::zero() => word.into(),
                _ => return Err(CoderError::Frontend(())),
            }
        };
        while remainders_head < threshold {
            remainders_head = remainders_head << Word::BITS
                | source.read()?.ok_or(CoderError::Frontend(()))?.into();
        }

        Ok(ChainCoderHeads {
            compressed: Word::one().into_nonzero().expect("1 != 0"),
            remainders: remainders_head,
        })
    }
}

pub type DefaultChainCoder = ChainCoder<u32, u64, Vec<u32>, Vec<u32>, 24>;
pub type SmallChainCoder = ChainCoder<u16, u32, Vec<u16>, Vec<u16>, 12>;

impl<Word, State, CompressedBackend, RemaindersBackend, const PRECISION: usize>
    ChainCoder<Word, State, CompressedBackend, RemaindersBackend, PRECISION>
where
    Word: BitArray + Into<State>,
    State: BitArray + AsPrimitive<Word>,
{
    /// Creates a new `ChainCoder` for decoding from the provided `data`.
    ///
    /// The reader `data` must have enough words to initialize the chain heads but can
    /// otherwise be arbitrary. In particualar, `data` doesn't necessary have to come from
    /// an [`AnsCoder`]. If you know that `data` comes from an `AnsCoder` then it's slightly
    /// better to call [`from_compressed`] instead.
    ///
    /// Retuns an error if `data` does not have enough words to initialize the chain heads
    /// or if reading from `data` lead to an error.
    ///
    /// [`AnsCoder`]: super::stack::AnsCoder
    /// [`from_compressed`]: Self::from_compressed
    pub fn from_binary(
        mut data: CompressedBackend,
    ) -> Result<Self, CoderError<CompressedBackend, CompressedBackend::ReadError>>
    where
        CompressedBackend: ReadWords<Word, Stack>,
        RemaindersBackend: Default,
    {
        let heads = match ChainCoderHeads::new(&mut data, true) {
            Ok(heads) => heads,
            Err(CoderError::Frontend(())) => return Err(CoderError::Frontend(data)),
            Err(CoderError::Backend(err)) => return Err(CoderError::Backend(err)),
        };
        let remainders = RemaindersBackend::default();

        Ok(Self {
            compressed: data,
            remainders,
            heads,
        })
    }

    /// Creates a new `ChainCoder` for decoding from the compressed data of an [`AnsCoder`]
    ///
    /// The provided read backend `compressed`, must have enough words to initialize the
    /// chain heads and must not have a zero word at the current read position. The latter
    /// is always satisfied for (nonempty) data returned from [`AnsCoder::into_compressed`].
    ///
    /// Retuns an error if `compressed` does not have enough words, if reading from
    /// `compressed` lead to an error, or if the first word read from `compressed` is zero.
    ///
    /// [`AnsCoder`]: super::stack::AnsCoder
    /// [`AnsCoder::into_compressed`]: super::stack::AnsCoder::into_compressed
    pub fn from_compressed(
        mut compressed: CompressedBackend,
    ) -> Result<Self, CoderError<CompressedBackend, CompressedBackend::ReadError>>
    where
        CompressedBackend: ReadWords<Word, Stack>,
        RemaindersBackend: Default,
    {
        let heads = match ChainCoderHeads::new(&mut compressed, false) {
            Ok(heads) => heads,
            Err(CoderError::Frontend(())) => return Err(CoderError::Frontend(compressed)),
            Err(CoderError::Backend(err)) => return Err(CoderError::Backend(err)),
        };
        let remainders = RemaindersBackend::default();

        Ok(Self {
            compressed,
            remainders,
            heads,
        })
    }

    /// Terminates decoding and returns the remainders bit string as a tuple `(prefix,
    /// suffix)`.
    ///
    /// - The `prefix` is a shortened but otherwise unaltered variant of the data from which
    ///   you created this `ChainCoder` when you called [`ChainCoder::from_binary`] or
    ///   [`ChainCoder::from_compressed`].
    /// - The `suffix` is a stack with at least two nonzero words on top.
    ///
    /// You can use the returned tuple `(prefix, suffix)` in either of the following two
    /// ways (see examples in the [struct level documentation](ChainCoder)):
    /// - Either put `prefix` away and continue only with `suffix` as follows:
    ///   1. obtain a new `ChainCoder` by calling [`ChainCoder::from_remainders(suffix)`];
    ///   2. encode the same symbols that you decoded from the original `ChainCoder` back
    ///      onto the new `ChainCoder` (in reverse order);
    ///   3. call [`.into_binary()`] or [`.into_compressed()`] on the new `ChainCoder` to
    ///      obatain another tuple `(prefix2, suffix2)`.
    ///   4. concatenate `prefix`, `prefix2`, and `suffix2` to recover the data from which
    ///      you created the original `ChainCoder` when you constructed it with
    ///      [`ChainCoder::from_binary`] or [`ChainCoder::from_compressed`], respectively.
    /// - Or you can concatenate `prefix` with `suffix`, create a new `ChainCoder` from the
    ///   concatenation by calling `ChainCoder::from_remainders(concatenation)`, continue
    ///   with steps 2 and 3 above, and then just concatenate `prefix2` with `suffix2` to
    ///   recover the original data.
    ///
    /// [`ChainCoder::from_remainders(suffix)`]: Self::from_remainders
    /// [`.into_binary()`]: Self::into_binary
    /// [`.into_compressed()`]: Self::into_compressed
    pub fn into_remainders(
        mut self,
    ) -> Result<(CompressedBackend, RemaindersBackend), RemaindersBackend::WriteError>
    where
        RemaindersBackend: WriteWords<Word>,
    {
        // Flush remainders head.
        while self.heads.remainders != State::zero() {
            self.remainders.write(self.heads.remainders.as_())?;
            self.heads.remainders = self.heads.remainders >> Word::BITS;
        }

        // Transfer compressed head onto `remainders`.
        self.remainders.write(self.heads.compressed.get())?;

        Ok((self.compressed, self.remainders))
    }

    /// Creates a new `ChainCoder` for encoding some symbols together with the data
    /// previously obtained from [`into_remainders`].
    ///
    /// See [`into_remainders`] for detailed explanation.
    ///
    /// [`into_remainders`]: Self::into_remainders
    pub fn from_remainders(
        mut remainders: RemaindersBackend,
    ) -> Result<Self, CoderError<RemaindersBackend, RemaindersBackend::ReadError>>
    where
        RemaindersBackend: ReadWords<Word, Stack>,
        CompressedBackend: Default,
    {
        let compressed_head = match remainders.read()?.and_then(Word::into_nonzero) {
            Some(word) => word,
            _ => return Err(CoderError::Frontend(remainders)),
        };
        let mut heads = match ChainCoderHeads::new(&mut remainders, false) {
            Ok(heads) => heads,
            Err(CoderError::Frontend(())) => return Err(CoderError::Frontend(remainders)),
            Err(CoderError::Backend(err)) => return Err(CoderError::Backend(err)),
        };
        heads.compressed = compressed_head;

        let compressed = CompressedBackend::default();

        Ok(Self {
            compressed,
            remainders,
            heads,
        })
    }

    /// Terminates encoding if possible and returns the compressed data as a tuple `(prefix,
    /// suffix)`
    ///
    /// Call this method only if the original `ChainCoder` used for decoding was constructed
    /// with [`ChainCoder::from_compressed`] (typically if the original data came from an
    /// [`AnsCoder`]). If the original `ChainCoder` was instead constructed with
    /// [`ChainCoder::from_binary`] then call [`.into_binary()`] instead.
    ///
    /// Returns an error unless there's currently an integer amount of `Words` in the
    /// compressed data (which will be the case if you've used the `ChainCoder` correctly,
    /// see also [`is_whole`]).
    ///
    /// See [`into_remainders`] for usage instructions.
    ///
    /// [`is_whole`]: Self::is_whole
    /// [`AnsCoder`]: super::stack::AnsCoder
    /// [`.into_binary()`]: Self::into_binary
    /// [`into_remainders`]: Self::into_remainders
    pub fn into_compressed(
        mut self,
    ) -> Result<
        (RemaindersBackend, CompressedBackend),
        CoderError<Self, CompressedBackend::WriteError>,
    >
    where
        CompressedBackend: WriteWords<Word>,
    {
        if !self.is_whole() {
            return Err(CoderError::Frontend(self));
        }

        // Transfer remainders head onto `compressed`.
        while self.heads.remainders != State::zero() {
            self.compressed.write(self.heads.remainders.as_())?;
            self.heads.remainders = self.heads.remainders >> Word::BITS;
        }

        Ok((self.remainders, self.compressed))
    }

    /// Terminates encoding if possible and returns the compressed data as a tuple `(prefix,
    /// suffix)`
    ///
    /// Call this method only if the original `ChainCoder` used for decoding was constructed
    /// with [`ChainCoder::from_binary`]. If the original `ChainCoder` was instead
    /// constructed with [`ChainCoder::from_compressed`] then call [`.into_compressed()`]
    /// instead.
    ///
    /// Returns an error unless there's currently an integer amount of `Words` in the both
    /// the compressed data and the remainders data (which will be the case if you've used
    /// the `ChainCoder` correctly and if the original chain coder was constructed with
    /// `from_binary` rather than `from_compressed`).
    ///
    /// See [`into_remainders`] for usage instructions.
    ///
    /// [`is_whole`]: Self::is_whole
    /// [`AnsCoder`]: super::stack::AnsCoder
    /// [`.into_compressed()`]: Self::into_compressed
    /// [`into_remainders`]: Self::into_remainders
    pub fn into_binary(
        mut self,
    ) -> Result<
        (RemaindersBackend, CompressedBackend),
        CoderError<Self, CompressedBackend::WriteError>,
    >
    where
        CompressedBackend: WriteWords<Word>,
    {
        if !self.is_whole()
            || (State::BITS - self.heads.remainders.leading_zeros() as usize - 1) % Word::BITS != 0
        {
            return Err(CoderError::Frontend(self));
        }

        // Transfer remainders head onto `compressed`.
        while self.heads.remainders > State::one() {
            self.compressed.write(self.heads.remainders.as_())?;
            self.heads.remainders = self.heads.remainders >> Word::BITS;
        }

        debug_assert!(self.heads.remainders == State::one());

        Ok((self.remainders, self.compressed))
    }

    /// Returns `true` iff there's currently an integer amount of `Words` in the compressed data
    #[inline(always)]
    pub fn is_whole(&self) -> bool {
        self.heads.compressed.get() == Word::one()
    }

    pub fn encode_symbols_reverse<S, M, I>(
        &mut self,
        symbols_and_models: I,
    ) -> Result<(), EncoderError<Word, CompressedBackend, RemaindersBackend>>
    where
        S: Borrow<M::Symbol>,
        M: EncoderModel<PRECISION>,
        M::Probability: Into<Word>,
        Word: AsPrimitive<M::Probability>,
        I: IntoIterator<Item = (S, M)>,
        I::IntoIter: DoubleEndedIterator,
        CompressedBackend: WriteWords<Word>,
        RemaindersBackend: ReadWords<Word, Stack>,
    {
        self.encode_symbols(symbols_and_models.into_iter().rev())
    }

    pub fn try_encode_symbols_reverse<S, M, E, I>(
        &mut self,
        symbols_and_models: I,
    ) -> Result<(), TryCodingError<EncoderError<Word, CompressedBackend, RemaindersBackend>, E>>
    where
        S: Borrow<M::Symbol>,
        M: EncoderModel<PRECISION>,
        M::Probability: Into<Word>,
        Word: AsPrimitive<M::Probability>,
        I: IntoIterator<Item = core::result::Result<(S, M), E>>,
        I::IntoIter: DoubleEndedIterator,
        CompressedBackend: WriteWords<Word>,
        RemaindersBackend: ReadWords<Word, Stack>,
    {
        self.try_encode_symbols(symbols_and_models.into_iter().rev())
    }

    #[inline(always)]
    pub fn encode_iid_symbols_reverse<S, M, I>(
        &mut self,
        symbols: I,
        model: M,
    ) -> Result<(), EncoderError<Word, CompressedBackend, RemaindersBackend>>
    where
        S: Borrow<M::Symbol>,
        M: EncoderModel<PRECISION> + Copy,
        M::Probability: Into<Word>,
        Word: AsPrimitive<M::Probability>,
        I: IntoIterator<Item = S>,
        I::IntoIter: DoubleEndedIterator,
        CompressedBackend: WriteWords<Word>,
        RemaindersBackend: ReadWords<Word, Stack>,
    {
        self.encode_iid_symbols(symbols.into_iter().rev(), model)
    }

    #[allow(clippy::type_complexity)]
    pub fn increase_precision<const NEW_PRECISION: usize>(
        mut self,
    ) -> Result<
        ChainCoder<Word, State, CompressedBackend, RemaindersBackend, NEW_PRECISION>,
        CoderError<Infallible, BackendError<Infallible, RemaindersBackend::WriteError>>,
    >
    where
        RemaindersBackend: WriteWords<Word>,
    {
        assert!(NEW_PRECISION >= PRECISION);
        assert!(NEW_PRECISION <= Word::BITS);
        assert!(State::BITS >= Word::BITS + NEW_PRECISION);

        if self.heads.remainders >= State::one() << (State::BITS - NEW_PRECISION) {
            self.flush_remainders_head()?;
        }

        Ok(ChainCoder {
            compressed: self.compressed,
            remainders: self.remainders,
            heads: ChainCoderHeads {
                compressed: self.heads.compressed,
                remainders: self.heads.remainders,
            },
        })
    }

    #[allow(clippy::type_complexity)]
    pub fn decrease_precision<const NEW_PRECISION: usize>(
        mut self,
    ) -> Result<
        ChainCoder<Word, State, CompressedBackend, RemaindersBackend, NEW_PRECISION>,
        CoderError<EncoderFrontendError, BackendError<Infallible, RemaindersBackend::ReadError>>,
    >
    where
        RemaindersBackend: ReadWords<Word, Stack>,
    {
        assert!(NEW_PRECISION <= PRECISION);
        assert!(NEW_PRECISION > 0);

        if self.heads.remainders < State::one() << (State::BITS - NEW_PRECISION - Word::BITS) {
            // Won't truncate since, from the above check it follows that we satisfy the contract
            // `self.heads.remainders < 1 << (State::BITS - Word::BITS)`.
            self.refill_remainders_head()?
        }

        Ok(ChainCoder {
            compressed: self.compressed,
            remainders: self.remainders,
            heads: ChainCoderHeads {
                compressed: self.heads.compressed,
                remainders: self.heads.remainders,
            },
        })
    }

    /// Converts the `stable::Decoder` into a new `stable::Decoder` that accepts entropy
    /// models with a different fixed-point precision.
    ///
    /// Here, "precision" refers to the number of bits with which probabilities are
    /// represented in entropy models passed to the `decode_XXX` methods.
    ///
    /// The generic argument `NEW_PRECISION` can usually be omitted because the compiler
    /// can infer its value from the first time the new `stable::Decoder` is used for
    /// decoding. The recommended usage pattern is to store the returned
    /// `stable::Decoder` in a variable that shadows the old `stable::Decoder` (since
    /// the old one gets consumed anyway), i.e.,
    /// `let mut stable_decoder = stable_decoder.change_precision()`. See example below.
    ///
    /// # Failure Case
    ///
    /// The conversion can only fail if *all* of the following conditions are true
    ///
    /// - `NEW_PRECISION < PRECISION`; and
    /// - the `ChainCoder` has already been used incorrectly: it
    ///   must have encoded too many symbols or used the wrong sequence of entropy
    ///   models, causing it to use up just a few more bits of `remainders` than available
    ///   (but also not exceeding the capacity enough for this to be detected during
    ///   encoding).
    ///
    /// In the event of this failure, `change_precision` returns `Err(self)`.
    ///
    /// # Example
    ///
    /// ```
    /// use constriction::stream::{model::LeakyQuantizer, Decode, chain::DefaultChainCoder};
    ///
    /// // Construct two entropy models with 24 bits and 20 bits of precision, respectively.
    /// let continuous_distribution = probability::distribution::Gaussian::new(0.0, 10.0);
    /// let quantizer24 = LeakyQuantizer::<_, _, u32, 24>::new(-100..=100);
    /// let quantizer20 = LeakyQuantizer::<_, _, u32, 20>::new(-100..=100);
    /// let distribution24 = quantizer24.quantize(continuous_distribution);
    /// let distribution20 = quantizer20.quantize(continuous_distribution);
    ///
    /// // Construct a `ChainCoder` and decode some data with the 24 bit precision entropy model.
    /// let data = vec![0x0123_4567u32, 0x89ab_cdef];
    /// let mut coder = DefaultChainCoder::from_binary(data).unwrap();
    /// let _symbol_a = coder.decode_symbol(distribution24);
    ///
    /// // Change `coder`'s precision and decode data with the 20 bit precision entropy model.
    /// // The compiler can infer the new precision based on how `coder` will be used.
    /// let mut coder = coder.change_precision().unwrap();
    /// let _symbol_b = coder.decode_symbol(distribution20);
    /// ```
    #[inline(always)]
    pub fn change_precision<const NEW_PRECISION: usize>(
        self,
    ) -> Result<
        ChainCoder<Word, State, CompressedBackend, RemaindersBackend, NEW_PRECISION>,
        ChangePrecisionError<Word, RemaindersBackend>,
    >
    where
        RemaindersBackend: WriteWords<Word> + ReadWords<Word, Stack>,
    {
        if NEW_PRECISION > PRECISION {
            self.increase_precision()
                .map_err(ChangePrecisionError::Increase)
        } else {
            self.decrease_precision()
                .map_err(ChangePrecisionError::Decrease)
        }
    }

    #[inline(always)]
    /// This would flush meaningless zero bits if `self.heads.remainders < 1 << Word::BITS`.
    fn flush_remainders_head<FrontendError, ReadError>(
        &mut self,
    ) -> Result<(), CoderError<FrontendError, BackendError<ReadError, RemaindersBackend::WriteError>>>
    where
        RemaindersBackend: WriteWords<Word>,
    {
        self.remainders
            .write(self.heads.remainders.as_())
            .map_err(|err| CoderError::Backend(BackendError::Remainders(err)))?;
        self.heads.remainders = self.heads.remainders >> Word::BITS;
        Ok(())
    }

    /// This truncates if `self.heads.remainders >= 1 << (State::BITS - Word::BITS)`.
    #[inline(always)]
    fn refill_remainders_head<WriteError>(
        &mut self,
    ) -> Result<
        (),
        CoderError<EncoderFrontendError, BackendError<WriteError, RemaindersBackend::ReadError>>,
    >
    where
        RemaindersBackend: ReadWords<Word, Stack>,
    {
        let word = self
            .remainders
            .read()
            .map_err(|err| CoderError::Backend(BackendError::Remainders(err)))?
            .ok_or(CoderError::Frontend(EncoderFrontendError::OutOfRemainders))?;
        self.heads.remainders = (self.heads.remainders << Word::BITS) | word.into();
        Ok(())
    }
}

impl<Word, State, CompressedBackend, RemaindersBackend, const PRECISION: usize> Code
    for ChainCoder<Word, State, CompressedBackend, RemaindersBackend, PRECISION>
where
    Word: BitArray + Into<State>,
    State: BitArray + AsPrimitive<Word>,
{
    type Word = Word;
    type State = ChainCoderHeads<Word, State, PRECISION>;

    fn state(&self) -> Self::State {
        self.heads
    }
}

#[allow(type_alias_bounds)]
pub type DecoderError<
    Word,
    CompressedBackend: ReadWords<Word, Stack>,
    RemaindersBackend: WriteWords<Word>,
> = CoderError<
    DecoderFrontendError,
    BackendError<CompressedBackend::ReadError, RemaindersBackend::WriteError>,
>;

#[allow(type_alias_bounds)]
pub type EncoderError<
    Word,
    CompressedBackend: WriteWords<Word>,
    RemaindersBackend: ReadWords<Word, Stack>,
> = CoderError<
    EncoderFrontendError,
    BackendError<CompressedBackend::WriteError, RemaindersBackend::ReadError>,
>;

/// Frontend error type for misuse of a [`ChainCoder`] for decoding.
#[derive(Debug, PartialEq, Eq)]
pub enum DecoderFrontendError {
    OutOfCompressedData,
}

impl core::fmt::Display for DecoderFrontendError {
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        match self {
            Self::OutOfCompressedData => {
                write!(f, "Out of compressed data.")
            }
        }
    }
}

#[cfg(feature = "std")]
impl std::error::Error for DecoderFrontendError {}

/// Frontend error type for misuse of a [`ChainCoder`] for encoding.
#[derive(Debug, PartialEq, Eq)]
pub enum EncoderFrontendError {
    OutOfRemainders,
    ImpossibleSymbol,
}

impl core::fmt::Display for EncoderFrontendError {
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        match self {
            Self::OutOfRemainders => {
                write!(f, "Out of remainders information from previous decoding.")
            }
            Self::ImpossibleSymbol => DefaultEncoderFrontendError::ImpossibleSymbol.fmt(f),
        }
    }
}

#[cfg(feature = "std")]
impl std::error::Error for EncoderFrontendError {}

/// Error type for backend errors in a [`ChainCoder`].
#[derive(Debug, PartialEq, Eq)]
pub enum BackendError<CompressedBackendError, RemaindersBackendError> {
    Compressed(CompressedBackendError),
    Remainders(RemaindersBackendError),
}

impl<CompressedBackendError: Display, RemaindersBackendError: Display> core::fmt::Display
    for BackendError<CompressedBackendError, RemaindersBackendError>
{
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        match self {
            Self::Compressed(err) => {
                write!(f, "Read/write error when accessing compressed: {err}")
            }
            Self::Remainders(err) => {
                write!(f, "Read/write error when accessing remainders: {err}")
            }
        }
    }
}

#[cfg(feature = "std")]
impl<
        CompressedBackendError: std::error::Error + 'static,
        RemaindersBackendError: std::error::Error + 'static,
    > std::error::Error for BackendError<CompressedBackendError, RemaindersBackendError>
{
    fn source(&self) -> Option<&(dyn std::error::Error + 'static)> {
        match self {
            Self::Compressed(err) => Some(err),
            Self::Remainders(err) => Some(err),
        }
    }
}

#[derive(Debug, PartialEq, Eq)]
pub enum ChangePrecisionError<Word, RemaindersBackend>
where
    RemaindersBackend: WriteWords<Word> + ReadWords<Word, Stack>,
{
    Increase(CoderError<Infallible, BackendError<Infallible, RemaindersBackend::WriteError>>),
    Decrease(
        CoderError<EncoderFrontendError, BackendError<Infallible, RemaindersBackend::ReadError>>,
    ),
}

impl<Word, RemaindersBackend> Display for ChangePrecisionError<Word, RemaindersBackend>
where
    RemaindersBackend: WriteWords<Word> + ReadWords<Word, Stack>,
    RemaindersBackend::WriteError: Display,
    RemaindersBackend::ReadError: Display,
{
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        match self {
            ChangePrecisionError::Increase(err) => {
                write!(f, "Error while increasing precision of chain coder: {err}")
            }
            ChangePrecisionError::Decrease(err) => {
                write!(f, "Error while decreasing precision of chain coder: {err}")
            }
        }
    }
}

#[cfg(feature = "std")]
impl<Word, RemaindersBackend> std::error::Error for ChangePrecisionError<Word, RemaindersBackend>
where
    Self: core::fmt::Debug,
    RemaindersBackend: WriteWords<Word> + ReadWords<Word, Stack>,
    RemaindersBackend::WriteError: std::error::Error + 'static,
    RemaindersBackend::ReadError: std::error::Error + 'static,
{
    fn source(&self) -> Option<&(dyn std::error::Error + 'static)> {
        match self {
            Self::Increase(err) => Some(err),
            Self::Decrease(err) => Some(err),
        }
    }
}

impl<Word, State, CompressedBackend, RemaindersBackend, const PRECISION: usize> PosSeek
    for ChainCoder<Word, State, CompressedBackend, RemaindersBackend, PRECISION>
where
    Word: BitArray + Into<State>,
    State: BitArray + AsPrimitive<Word>,
    CompressedBackend: PosSeek,
    RemaindersBackend: PosSeek,
{
    type Position = (
        BackendPosition<CompressedBackend::Position, RemaindersBackend::Position>,
        ChainCoderHeads<Word, State, PRECISION>,
    );
}

#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct BackendPosition<CompressedPosition, RemaindersPosition> {
    pub compressed: CompressedPosition,
    pub remainders: RemaindersPosition,
}

impl<Word, State, CompressedBackend, RemaindersBackend, const PRECISION: usize> Pos
    for ChainCoder<Word, State, CompressedBackend, RemaindersBackend, PRECISION>
where
    Word: BitArray + Into<State>,
    State: BitArray + AsPrimitive<Word>,
    CompressedBackend: Pos,
    RemaindersBackend: Pos,
{
    fn pos(&self) -> Self::Position {
        (
            BackendPosition {
                compressed: self.compressed.pos(),
                remainders: self.remainders.pos(),
            },
            self.state(),
        )
    }
}

impl<Word, State, CompressedBackend, RemaindersBackend, const PRECISION: usize> Seek
    for ChainCoder<Word, State, CompressedBackend, RemaindersBackend, PRECISION>
where
    Word: BitArray + Into<State>,
    State: BitArray + AsPrimitive<Word>,
    CompressedBackend: Seek,
    RemaindersBackend: Seek,
{
    fn seek(&mut self, (pos, state): Self::Position) -> Result<(), ()> {
        self.compressed.seek(pos.compressed)?;
        self.remainders.seek(pos.remainders)?;

        // `state` is valid since we don't provide a public API to modify fields of
        // `ChainCoderHeads` individually.
        self.heads = state;

        Ok(())
    }
}

impl<Word, State, CompressedBackend, RemaindersBackend, const PRECISION: usize> Decode<PRECISION>
    for ChainCoder<Word, State, CompressedBackend, RemaindersBackend, PRECISION>
where
    Word: BitArray + Into<State>,
    State: BitArray + AsPrimitive<Word>,
    CompressedBackend: ReadWords<Word, Stack>,
    RemaindersBackend: WriteWords<Word>,
{
    type FrontendError = DecoderFrontendError;

    type BackendError = BackendError<CompressedBackend::ReadError, RemaindersBackend::WriteError>;

    fn decode_symbol<M>(
        &mut self,
        model: M,
    ) -> Result<M::Symbol, DecoderError<Word, CompressedBackend, RemaindersBackend>>
    where
        M: DecoderModel<PRECISION>,
        M::Probability: Into<Self::Word>,
        Self::Word: AsPrimitive<M::Probability>,
    {
        assert!(PRECISION <= Word::BITS);
        assert!(PRECISION != 0);
        assert!(State::BITS >= Word::BITS + PRECISION);

        let word = if PRECISION == Word::BITS
            || self.heads.compressed.get() < Word::one() << PRECISION
        {
            let word = self
                .compressed
                .read()
                .map_err(BackendError::Compressed)?
                .ok_or(CoderError::Frontend(
                    DecoderFrontendError::OutOfCompressedData,
                ))?;
            if PRECISION != Word::BITS {
                self.heads.compressed = unsafe {
                    // SAFETY:
                    // - `0 < PRECISION < Word::BITS` as per our assertion and the above check,
                    //   therefore `Word::BITS - PRECISION > 0` and both the left-shift and
                    //   the right-shift are valid;
                    // - `heads.compressed.get() != 0` sinze `heads.compressed` is a `NonZero`.
                    // - `heads.compressed.get() < 1 << PRECISION`, so all its "one" bits are
                    //   in the `PRECISION` lowest significant bits; since it we have
                    //   `Word::BITS` bits available, shifting left by `Word::BITS - PRECISION`
                    //   doesn't truncate, and thus the result is also nonzero.
                    Word::NonZero::new_unchecked(
                        self.heads.compressed.get() << (Word::BITS - PRECISION) | word >> PRECISION,
                    )
                };
            }
            word
        } else {
            let word = self.heads.compressed.get();
            self.heads.compressed = unsafe {
                // SAFETY: `heads.compressed.get() >= 1 << PRECISION`, so shifting right by
                // `PRECISION` doesn't result in zero.
                Word::NonZero::new_unchecked(self.heads.compressed.get() >> PRECISION)
            };
            word
        };

        let quantile = if PRECISION == Word::BITS {
            word
        } else {
            word % (Word::one() << PRECISION)
        };
        let quantile = quantile.as_();

        let (symbol, left_sided_cumulative, probability) = model.quantile_function(quantile);
        let remainder = quantile - left_sided_cumulative;

        // This can't truncate because
        // - we maintain the invariant `heads.remainders < 1 << (State::BITS - PRECISION)`; and
        // - `probability <= 1 << PRECISION` and `remainder < probability`.
        // Thus, `remainders * proability + remainder < (remainders + 1) * probability`
        // which is `<= (1 << (State::BITS - PRECISION)) << PRECISION = 1 << State::BITS`.
        self.heads.remainders =
            self.heads.remainders * probability.get().into().into() + remainder.into().into();

        if self.heads.remainders >= State::one() << (State::BITS - PRECISION) {
            // The invariant on `self.heads.remainders` (see its doc comment) is violated and must
            // be restored.
            self.flush_remainders_head()?;
        }

        Ok(symbol)
    }

    fn maybe_exhausted(&self) -> bool {
        self.compressed.maybe_exhausted() || self.remainders.maybe_full()
    }
}

impl<Word, State, CompressedBackend, RemaindersBackend, const PRECISION: usize> Encode<PRECISION>
    for ChainCoder<Word, State, CompressedBackend, RemaindersBackend, PRECISION>
where
    Word: BitArray + Into<State>,
    State: BitArray + AsPrimitive<Word>,
    CompressedBackend: WriteWords<Word>,
    RemaindersBackend: ReadWords<Word, Stack>,
{
    type FrontendError = EncoderFrontendError;
    type BackendError = BackendError<CompressedBackend::WriteError, RemaindersBackend::ReadError>;

    fn encode_symbol<M>(
        &mut self,
        symbol: impl Borrow<M::Symbol>,
        model: M,
    ) -> Result<(), EncoderError<Word, CompressedBackend, RemaindersBackend>>
    where
        M: EncoderModel<PRECISION>,
        M::Probability: Into<Self::Word>,
        Self::Word: AsPrimitive<M::Probability>,
    {
        // assert!(State::BITS >= Word::BITS + PRECISION);
        assert!(PRECISION <= Word::BITS);
        assert!(PRECISION > 0);

        let (left_sided_cumulative, probability) = model
            .left_cumulative_and_probability(symbol)
            .ok_or(CoderError::Frontend(EncoderFrontendError::ImpossibleSymbol))?;

        if self.heads.remainders
            < probability.get().into().into() << (State::BITS - Word::BITS - PRECISION)
        {
            self.refill_remainders_head()?;
            // At this point, the invariant on `self.heads.remainders` (see its doc comment) is
            // temporarily violated (but it will be restored below). This is how
            // `decode_symbol` can detect that it has to flush `remainders.state`.
        }

        let remainder = (self.heads.remainders % probability.get().into().into())
            .as_()
            .as_();
        let quantile = (left_sided_cumulative + remainder).into();
        self.heads.remainders = self.heads.remainders / probability.get().into().into();

        if PRECISION != Word::BITS
            && self.heads.compressed.get() < Word::one() << (Word::BITS - PRECISION)
        {
            unsafe {
                // SAFETY:
                // - `heads.compressed` is nonzero because it is a `NonZero`
                // - `heads.compressed`, has `Word::BITS` bits and we checked above that all its one
                //   bits are within theleast significant `Word::BITS - PRECISION` bits. Thus, the
                //   most significant `PRECISION` bits are 0 and the left-shift doesn't truncate.
                // Thus, the result of the left-shift is also noznero.
                self.heads.compressed =
                    (self.heads.compressed.get() << PRECISION | quantile).into_nonzero_unchecked();
            }
        } else {
            let word = if PRECISION == Word::BITS {
                quantile
            } else {
                let word = self.heads.compressed.get() << PRECISION | quantile;
                unsafe {
                    // SAFETY: if we're here then `heads.compressed >= 1 << (Word::BITS - PRECISION).
                    // Thus, shifting right by this amount of bits leaves at least one 1 bit.
                    self.heads.compressed = (self.heads.compressed.get()
                        >> (Word::BITS - PRECISION))
                        .into_nonzero_unchecked();
                }
                word
            };
            self.compressed
                .write(word)
                .map_err(BackendError::Compressed)?;
        }

        Ok(())
    }

    fn maybe_full(&self) -> bool {
        self.remainders.maybe_exhausted() || self.compressed.maybe_full()
    }
}

#[cfg(test)]
mod tests {
    use super::super::model::LeakyQuantizer;
    use super::*;

    use probability::distribution::Gaussian;
    use rand_xoshiro::{
        rand_core::{RngCore, SeedableRng},
        Xoshiro256StarStar,
    };

    use alloc::vec;

    #[test]
    fn restore_none() {
        generic_restore_many::<u32, u64, u32, 24>(4, 0);
    }

    #[test]
    fn restore_one() {
        generic_restore_many::<u32, u64, u32, 24>(5, 1);
    }

    #[test]
    fn restore_two() {
        generic_restore_many::<u32, u64, u32, 24>(5, 2);
    }

    #[test]
    fn restore_ten() {
        generic_restore_many::<u32, u64, u32, 24>(20, 10);
    }

    #[test]
    fn restore_twenty() {
        generic_restore_many::<u32, u64, u32, 24>(19, 20);
    }

    #[test]
    fn restore_many_u32_u64_32() {
        generic_restore_many::<u32, u64, u32, 32>(1024, 1000);
    }

    #[test]
    fn restore_many_u32_u64_24() {
        generic_restore_many::<u32, u64, u32, 24>(1024, 1000);
    }

    #[test]
    fn restore_many_u32_u64_16() {
        generic_restore_many::<u32, u64, u16, 16>(1024, 1000);
    }

    #[test]
    fn restore_many_u16_u64_16() {
        generic_restore_many::<u16, u64, u16, 16>(1024, 1000);
    }

    #[test]
    fn restore_many_u32_u64_8() {
        generic_restore_many::<u32, u64, u8, 8>(1024, 1000);
    }

    #[test]
    fn restore_many_u16_u64_8() {
        generic_restore_many::<u16, u64, u8, 8>(1024, 1000);
    }

    #[test]
    fn restore_many_u8_u64_8() {
        generic_restore_many::<u8, u64, u8, 8>(1024, 1000);
    }

    #[test]
    fn restore_many_u16_u32_16() {
        generic_restore_many::<u16, u32, u16, 16>(1024, 1000);
    }

    #[test]
    fn restore_many_u16_u32_8() {
        generic_restore_many::<u16, u32, u8, 8>(1024, 1000);
    }

    #[test]
    fn restore_many_u8_u32_8() {
        generic_restore_many::<u8, u32, u8, 8>(1024, 1000);
    }

    fn generic_restore_many<Word, State, Probability, const PRECISION: usize>(
        amt_compressed_words: usize,
        amt_symbols: usize,
    ) where
        State: BitArray + AsPrimitive<Word>,
        Word: BitArray + Into<State> + AsPrimitive<Probability>,
        Probability: BitArray + Into<Word> + AsPrimitive<usize> + Into<f64>,
        u64: AsPrimitive<Word>,
        u32: AsPrimitive<Probability>,
        usize: AsPrimitive<Probability>,
        f64: AsPrimitive<Probability>,
        i32: AsPrimitive<Probability>,
    {
        #[cfg(miri)]
        let (amt_compressed_words, amt_symbols) =
            (amt_compressed_words.min(128), amt_symbols.min(100));

        let mut rng = Xoshiro256StarStar::seed_from_u64(
            (amt_compressed_words as u64).rotate_left(32) ^ amt_symbols as u64,
        );
        let mut compressed = (0..amt_compressed_words)
            .map(|_| rng.next_u64().as_())
            .collect::<Vec<_>>();

        // Make the last compressed word have a random number of leading zero bits so that
        // we test various filling levels.
        let leading_zeros = (rng.next_u32() % (Word::BITS as u32 - 1)) as usize;
        let last_word = compressed.last_mut().unwrap();
        *last_word = *last_word | Word::one() << (Word::BITS - leading_zeros - 1);
        *last_word = *last_word & Word::max_value() >> leading_zeros;

        let distributions = (0..amt_symbols)
            .map(|_| {
                let mean = (200.0 / u32::MAX as f64) * rng.next_u32() as f64 - 100.0;
                let std_dev = (10.0 / u32::MAX as f64) * rng.next_u32() as f64 + 0.001;
                Gaussian::new(mean, std_dev)
            })
            .collect::<Vec<_>>();
        let quantizer = LeakyQuantizer::<_, _, Probability, PRECISION>::new(-100..=100);

        let mut coder =
            ChainCoder::<Word, State, Vec<Word>, Vec<Word>, PRECISION>::from_compressed(
                compressed.clone(),
            )
            .unwrap();

        let symbols = coder
            .decode_symbols(
                distributions
                    .iter()
                    .map(|&distribution| quantizer.quantize(distribution)),
            )
            .collect::<Result<Vec<_>, _>>()
            .unwrap();

        assert!(!coder.maybe_exhausted());

        let (remainders_prefix, remainders_suffix) = coder.clone().into_remainders().unwrap();
        let mut remainders = remainders_prefix.clone();
        remainders.extend_from_slice(&remainders_suffix);
        let coder2 = ChainCoder::from_remainders(remainders).unwrap();
        let coder3 = ChainCoder::from_remainders(remainders_suffix).unwrap();

        for (mut coder, prefix) in [
            (coder, vec![]),
            (coder2, vec![]),
            (coder3, remainders_prefix),
        ] {
            coder
                .encode_symbols_reverse(
                    symbols
                        .iter()
                        .zip(&distributions)
                        .map(|(&symbol, &distribution)| (symbol, quantizer.quantize(distribution))),
                )
                .unwrap();

            let (compressed_prefix, compressed_suffix) = coder.into_compressed().unwrap();

            let mut reconstructed = prefix;
            reconstructed.extend(compressed_prefix);
            reconstructed.extend(compressed_suffix);

            assert_eq!(reconstructed, compressed);
        }
    }
}