1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
extern crate sprs;
extern crate num;
extern crate rand;

use sprs::sparse::compressed::SpMatView;
use sprs::sparse::CompressedStorage;

use sprs::{CsVecView, CsMatView};

use sprs::{CsVec, CsMat, CsVecOwned};

use sprs::sparse::linalg::cholesky::LdlNumeric;
use sprs::sparse::vec::SparseIterTools;

use num::Num;
use std::default::Default;
use std::ops::Deref;
use std::fmt::{Debug};
use num::{One, Zero, Float};

trait VecLike {
    type Item;
    fn size(&self) -> usize;
    fn at(&self, i: usize) -> Self::Item;
}

impl<N: Clone> VecLike for [N] {
    type Item = N;
    fn size(&self) -> usize { self.len() }
    fn at(&self, i: usize) -> N { self[i].clone() }
}

impl<'a, N: Clone> VecLike for &'a [N] {
    type Item = N;
    fn size(&self) -> usize { self.len() }
    fn at(&self, i: usize) -> N { self[i].clone() }
}

struct Cropped<V: VecLike> {
    v: V,
    source_start: usize,
    target_start: usize,
    target_end: usize,
    target_len: usize
}

fn crop<V: VecLike>(v: V, source_start: usize, target_start: usize, target_end: usize, target_len: usize) -> Cropped<V> {
    Cropped {
        v: v,
        source_start: source_start,
        target_start: target_start,
        target_end: target_end,
        target_len: target_len
    }
}

impl<V: VecLike> VecLike for Cropped<V> where V::Item: Zero {
    type Item = V::Item;
    fn size(&self) -> usize { self.target_len }
    fn at(&self, i: usize) -> V::Item {
        if i >= self.target_start && i < self.target_end {
            self.v.at(i - self.target_start + self.source_start)
        } else {
            V::Item::zero()
        }
    }
}

impl<N, IS, DS> VecLike for CsVec<N, IS, DS>
where N: Zero + Copy, IS: Deref<Target=[usize]>, DS: Deref<Target=[N]>
{
    type Item = N;
    fn size(&self) -> usize { self.dim() }
    fn at(&self, i: usize) -> N { self.at(i).unwrap_or_else(|| N::zero()) }
}

impl<N: Clone> VecLike for Vec<N> {
    type Item = N;
    fn size(&self) -> usize { self.len() }
    fn at(&self, i: usize) -> N { self[i].clone() }
}

trait MatrixLike {
    type Item;
    fn size(&self) -> (usize, usize);
    fn at(&self, i: usize, j: usize) -> Self::Item;
}

impl<N, PS, IS, DS> MatrixLike for CsMat<N, PS, IS, DS>
where N: Copy + Zero, PS: Deref<Target=[usize]>, IS: Deref<Target=[usize]>, DS: Deref<Target=[N]>
{
    type Item = N;
    fn size(&self) -> (usize, usize) { (self.rows(), self.cols()) }
    fn at(&self, i: usize, j: usize) -> N { self.at(&(i, j)).unwrap_or_else(|| N::zero()) }
}

fn per_element<N, V: VecLike + ?Sized, F: FnMut(V::Item) -> N>(v: &V, mut f: F) -> Vec<N> {
    let mut r = Vec::with_capacity(v.size());
    for i in 0..v.size() {
        r.push(f(v.at(i)));
    }
    r
}
fn combine_vec_2<N, V1: VecLike + ?Sized, V2: VecLike + ?Sized, F: FnMut(V1::Item, V2::Item) -> N>(v1: &V1, v2: &V2, mut f: F) -> Vec<N> {
    assert_eq!(v1.size(), v2.size());
    let mut r = Vec::with_capacity(v1.size());
    for i in 0..v1.size() {
        r.push(f(v1.at(i), v2.at(i)));
    }
    r
}

fn from_vec<N: Copy>(v: Vec<N>) -> CsVecOwned<N> {
    let mut indices = Vec::with_capacity(v.len());
    for i in 0..v.len() {
        indices.push(i);
    }
    CsVec::new_owned(v.len(), indices, v).unwrap()
}

fn from_iter<N: Copy, I: Iterator<Item=(usize, N)>>(itr: I, len: Option<usize>) -> CsVecOwned<N> {
    let min = itr.size_hint().0;
    let mut indices = Vec::with_capacity(min);
    let mut data = Vec::with_capacity(min);
    for (i, d) in itr {
        indices.push(i);
        data.push(d);
    }
    CsVec::new_owned(len.unwrap_or_else(|| indices[indices.len()-1] + 1), indices, data).unwrap()
}

fn rand_vec<N: rand::Rand + Zero + PartialEq>(n: usize) -> Vec<N> {
    let mut r = Vec::with_capacity(n);
    for _ in 0..n {
        let mut v = rand::random::<N>();
        while v == N::zero() {
            v = rand::random::<N>();
        }
        r.push(v);
    }
    r
}

#[derive(Debug)]
pub enum SolverError {
    NoFeasibleSolution,
    Unbounded
}
fn dot<N: Copy + Num>(a: CsVecView<N>, b: &[N]) -> N {
    a.iter().nnz_zip(b.iter().cloned().enumerate())
        .map(|(_, a, b)| a*b)
        .fold(N::zero(), |sum, x| sum + x)
}

fn min<N: PartialOrd + Copy, I: Iterator<Item=N>>(mut itr: I) -> Option<N> {
    let mut r = itr.next();
    for v in itr {
        r = r.map(|r| if r < v { r } else { v }).or(Some(v));
    }
    r
}

fn max<N: PartialOrd + Copy, I: Iterator<Item=N>>(mut itr: I) -> Option<N> {
    let mut r = itr.next();
    for v in itr {
        r = r.map(|r| if r > v { r } else { v }).or(Some(v));
    }
    r
}

fn as_cs_vec<'a, N: Copy>(v: &'a [N], indices: &'a [usize]) -> CsVecView<'a, N> {
    assert_eq!(v.len(), indices.len());
    CsVec::new_borrowed(v.len(), indices, v).unwrap()
}

pub trait Eps {
    fn eps() -> Self;
}

impl Eps for f32 {
    fn eps() -> f32 { 1.1920929e-07 }
}

impl Eps for f64 {
    fn eps() -> f64 { 2.220446049250313e-16 }
}

pub fn spsolqp<N: Float + Eps + Default + Debug + rand::Rand + Debug>(q: CsMatView<N>, c: CsVecView<N>, a: CsMatView<N>, b: CsVecView<N>, tolerance: N, step_size: N) -> Result<(Vec<N>, N), SolverError>{
    let (m, n) = (a.rows(), a.cols());
    assert_eq!(q.rows(), n);
    assert_eq!(q.cols(), n);
    assert_eq!(b.dim(), m);

    println!("Searching for a feasible point...");

    let mut alpha = N::from(0.95).unwrap();

    let a_ = &b - &(&a * &from_vec(vec![N::one(); n]));
    //let mut x = from_vec(vec![N::one(); n + 1]);
    let mut x = vec![N::one(); n];
    let n_ind: Vec<_> = (0..n).collect();
    let m_ind: Vec<_> = (0..m).collect();
    let mut z = N::zero();
    let mut ob = N::one();
    let mut obhis = vec![ob];
    let mut gap = ob - z;
    let mut u = vec![];
    while gap >= tolerance {
        let dx = per_element(&x, |x| N::one() / x);
        let dd = CsMat::new_owned(CompressedStorage::CSC, n, n,
                                  (0..n+1).collect(),
                                  (0..n).collect(),
                                  dx.clone()).unwrap();
        let mat = sprs::sparse::construct::bmat(
            &[[Some(dd.borrowed()), Some(a.transpose_view())],
              [Some(a.borrowed()), None]]).unwrap();
        let solver = LdlNumeric::new(&mat);
        let dx_extended = {
            let mut v = dx;
            v.extend(::std::iter::repeat(N::zero()).take(m));
            v
        };
        let a_extended = {
            let mut v = vec![N::zero(); n + m];
            a_.scatter(&mut v[n..]);
            v
        };
        let y1 = solver.solve(&dx_extended);
        let y1 = &y1[n..];
        let y2 = solver.solve(&a_extended);
        let y2 = &y2[n..];
        let r_ob_2 = N::one() / (ob * ob);
        let w1 = (N::one() / ob - dot(a_.borrowed(), y1)) / (r_ob_2 - dot(a_.borrowed(), y2));
        let w2 = N::one() / (r_ob_2 - dot(a_.borrowed(), y2));
        let mut y1: Vec<_> = combine_vec_2(y1, y2, |y1, y2| y1 - w1 * y2);
        let mut y2: Vec<_> = per_element(y2, |y2| -w2 * y2);
        let w1 = dot(b.borrowed(), &y1);
        let w2 = dot(b.borrowed(), &y2);
        y1 = per_element(&y1, |y1| y1 / (N::one() + w1));
        y2 = combine_vec_2(&y1, &y2, |y1, y2| y2 - w2*y1);
        u = combine_vec_2(&(&a.transpose_view() * &as_cs_vec(&y2, &m_ind)), &x, |v, x| -x * v);
        u.push(ob * (N::one() - dot(a_.borrowed(), &y2)));
        u.push(w2 / (N::one() + w1));
        let mut v = combine_vec_2(&(&a.transpose_view() * &as_cs_vec(&y1, &m_ind)), &x, |v, x| x * v);
        v.push(ob * dot(a_.borrowed(), &y1));
        v.push(N::one() / (N::one() + w1));
        if min(combine_vec_2(&u, &v, |u, v| u - z*v).into_iter()).unwrap() >= N::zero() {
            z = dot(b.borrowed(), &combine_vec_2(&y1, &y2, |y1, y2| y2 + z*y1));
        }
        u = combine_vec_2(&u, &v, |u, v| u - z * v - (ob - z)/(N::from(n + 2).unwrap()));
        let nora = max(u.iter().cloned()).unwrap();
        if nora == u.at(n) {
            alpha = N::one();
        }
        v = per_element(&u, |u| N::one() - (alpha/nora)*u);
        x = combine_vec_2(&x, &crop(&v[..], 0, 0, n, n), |x, v_| x * v_ / v.at(n + 1));
        ob = ob * v.at(n) / v.at(n + 1);
        obhis.push(ob);
        gap = ob - z;
        if z > N::zero() {
            return Result::Err(SolverError::NoFeasibleSolution)
        }
    }
    println!("Searching for an optimal solution...");
    alpha = N::from(0.9).unwrap();
    let mut comp: Vec<N> = rand_vec(n);
    let mat = sprs::sparse::construct::bmat(
        &[[Some(CsMat::eye(CompressedStorage::CSC, n).borrowed()), Some(a.transpose_view())],
          [Some(a.borrowed()), None]]).unwrap();
    let solver = LdlNumeric::new(&mat);
    let comp_extended = {
        let mut v = comp;
        v.extend(::std::iter::repeat(N::zero()).take(m));
        v
    };
    comp = solver.solve(&comp_extended);
    comp.truncate(n);
    let comp_div_x = combine_vec_2(&comp, &x, |comp, x| comp / x);
    let mut nora = min(comp_div_x.iter().cloned()).unwrap();
    if nora < N::zero() {
        nora = N::from(-0.01).unwrap() / nora;
    } else {
        nora = max(comp_div_x.iter().cloned()).unwrap();
        if nora == N::zero() {
            println!("The problem has a unique feasible point");
            return Ok((x, ob));
        }
        nora = N::from(0.01).unwrap() / nora;
    }
    x = combine_vec_2(&x, &comp, |x, comp| x + nora * comp);
    let mut obvalue = dot((&q * &as_cs_vec(&x, &n_ind)).borrowed(), &x) * N::from(0.5).unwrap() + dot(c.borrowed(), &x);
    obhis.push(obvalue);
    let mut lower = N::neg_infinity();
    let mut y;
    let mut zhis = vec![lower];
    gap = N::one();
    let mut lambda = N::one().max((obvalue.abs() / N::from(n).unwrap().sqrt().sqrt()));
    let mut iter = 0;
    while gap >= tolerance {
        iter += 1;
        lambda = (N::one() - step_size)*lambda;
        let mut go = N::zero();
        let gg = combine_vec_2(&(&q * &as_cs_vec(&x, &n_ind)), &c, |v, c| v + c);
        let mut xx = CsMat::new_owned(CompressedStorage::CSC, n, n,
                                  (0..n+1).collect(),
                                  (0..n).collect(),
                                  x.clone()).unwrap();
        let aa = &a*&xx;
        xx = &(&xx*&q)*&xx;
        while go <= N::zero() {
            let solver = LdlNumeric::new(&sprs::sparse::construct::bmat(&[
                [Some((&xx + &(&CsMat::eye(CompressedStorage::CSC, n) * lambda)).borrowed()), Some(aa.transpose_view())],
                [Some(aa.borrowed()), None]]).unwrap());
            let mut rhs = combine_vec_2(&x, &gg, |x, gg| -x*gg);
            rhs.extend(::std::iter::repeat(N::zero()).take(m));
            u = solver.solve(&rhs);
            let xx = combine_vec_2(&x, &crop(&u[..], 0, 0, n, n), |x, u| x + x*u);
            go = min(xx.iter().cloned()).unwrap();
            if go > N::zero() {
                let xx = as_cs_vec(&xx, &n_ind);
                ob = N::from(0.5).unwrap() * xx.dot(&(&q * &xx)) + c.dot(&xx);
                go = go.min(obvalue - ob + N::eps());
            }
            lambda = N::from(2.0).unwrap() * lambda;
            if lambda >= (N::one() + obvalue.abs()/tolerance) {
                println!("The problem seems unbounded.");
                return Err(SolverError::Unbounded);
            }
        }
        y = per_element(&crop(&u[..], n, 0, m, m), |u| -u);
        u = per_element(&crop(&u[..], 0, 0, n, n), |u| u);
        nora = min(u.iter().cloned()).unwrap();
        if nora <= N::zero() {
            nora = alpha / (-nora).max(N::one());
        } else {
            nora = N::infinity();
        }
        u = combine_vec_2(&x, &u, |x, u| x*u);
        let w1;
        let w2;
        {
            let u = as_cs_vec(&u, &n_ind);
            w1 = u.dot(&(&q*&u));
            w2 = -dot(u.borrowed(), &gg);
        }
        if w1 > N::zero() {
            nora = (w2/w1).min(nora);
        }
        if nora == N::infinity() {
            ob = N::neg_infinity();
        } else {
            x = combine_vec_2(&x, &u, |x, u| x + nora*u);
            let x = as_cs_vec(&x, &n_ind);
            ob = N::from(0.5).unwrap() * x.dot(&(&q*&x)) + x.dot(&c);
        }
        //END phase2
        if ob == N::neg_infinity() {
            println!("The problem is unbounded");
            return Err(SolverError::Unbounded);
        } else {
            obhis.push(ob);
            comp = vec![N::zero(); n];
            let x = as_cs_vec(&x, &n_ind);
            (&(&(&q * &x) + &c) - &(&a.transpose_view() * &as_cs_vec(&y, &m_ind))).scatter(&mut comp[..]);
            if min(comp.iter().cloned()).unwrap() >= N::zero() {
                zhis.push(ob - dot(x, &comp));
                lower = zhis[iter];
                gap = (ob-lower)/(N::one() + ob.abs());
                obvalue = ob;
            } else {
                let z_new = zhis[iter-1];
                zhis.push(z_new);
                lower = zhis[iter];
                gap = (obvalue - ob)/(N::one() + ob.abs());
                obvalue = ob;
            }
        }
    }
    println!("A (local) optimal solution has been found in {} iterations.", iter);
    Ok((x, ob))
}
/*
#[inline]
fn id(s: &'static str) -> usize {
    use std::mem::transmute;
    unsafe{transmute(s.as_ptr())}
}

macro_rules! id {
    ($id:ident) => {$crate::id(stringify!(@ $id @))}
}
*/
#[test]
fn it_works() {
    let q = CsMat::new_owned(CompressedStorage::CSR, 5, 5,
                             vec![0, 2, 4, 4, 4, 4],
                             vec![0, 1,
                                  0, 1],
                             vec![1.0, -1.0,
                                  -1.0, 2.0]).unwrap();
    let c = CsVec::new_owned(5, vec![0, 1], vec![-2.0, -6.0]).unwrap();
    let a = CsMat::new_owned(CompressedStorage::CSR, 3, 5,
                             vec![0, 3, 6, 9],
                             vec![0, 1, 2, 0, 1, 3, 0, 1, 4],
                             vec![ 1.0, 1.0, 1.0,
                                  -1.0, 2.0,      1.0,
                                   2.0, 1.0,           1.0]).unwrap();
    let b = CsVec::new_owned(3, vec![0, 1, 2], vec![2.0, 2.0, 3.0]).unwrap();
    let target_error = 1E-6;
    let (x, ob) = spsolqp::<f64>(
        q.borrowed(), c.borrowed(),
        a.borrowed(), b.borrowed(),
        target_error, 0.95).unwrap();
    let answer = -8.0 - 2.0/9.0;
    let error = ((ob - answer)/answer).abs();
    println!("x: {:#?}", x);
    println!("result: {:#?}", ob);
    println!("true result: {:#?}", answer);
    println!("error: {:?}", error);
    assert!(error <= target_error);
    panic!()
}