1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
use core::{
    fmt::{self, Debug},
    marker::PhantomData,
};

use bytemuck::Zeroable;

use crate::TypeSize;

/// Constructs an [`IsZeroable<$T>`](struct@crate::IsZeroable),
/// requires `$T:`[`Zeroable`].
///
/// This has an optional type argument (`$T`) that defaults to
/// infering the type if not passed.
///
/// This macro is defined for completeness' sake,
/// no function in this crate takes `IsZeroable` by itself,
/// always a [`TypeSize<T, IsZeroable<T>, _>`](struct@crate::TypeSize),
/// which can be constructed with the
/// [`TypeSize`](macro@crate::TypeSize) macro.
///
/// Related: the [`copying`](crate::copying) module
///
/// # Example
///
/// ```rust
/// use constmuck::{IsZeroable, TypeSize};
///
/// const FOO: IsZeroable<u32> = IsZeroable!();
/// assert_eq!(constmuck::zeroed(TypeSize!(u32).with_bounds(FOO)), 0u32);
/// // alternatively, the typical way to call `constmuck::zeroed`.
/// assert_eq!(constmuck::zeroed(TypeSize!(u32)), 0u32);
///
///
/// const BAR: IsZeroable<u8> = IsZeroable!(u8);
/// assert_eq!(constmuck::zeroed_array(TypeSize!(u8).with_bounds(BAR)), [0u8; 4]);
/// // alternatively, the typical way to call `constmuck::zeroed_array`.
/// assert_eq!(constmuck::zeroed_array(TypeSize!(u8)), [0u8; 4]);
///
/// ```
///
/// [`Zeroable`]: trait@Zeroable
#[macro_export]
macro_rules! IsZeroable {
    () => {
        <$crate::IsZeroable<_> as $crate::Infer>::INFER
    };
    ($T:ty) => {
        <$crate::IsZeroable<$T> as $crate::Infer>::INFER
    };
}

mod __ {
    use super::*;

    /// Encodes a `T:`[`Zeroable`] bound as a value.
    ///
    /// Related: the [`zeroed`] and [`zeroed_array`] functions.
    ///
    /// [`Zeroable`]: trait@Zeroable
    pub struct IsZeroable<T> {
        // The lifetime of `T` is invariant,
        // just in case that it's unsound for lifetimes to be co/contravariant.
        _private: PhantomData<fn(T) -> T>,
    }

    impl<T> Debug for IsZeroable<T> {
        fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
            f.write_str("IsZeroable")
        }
    }

    impl<T> Copy for IsZeroable<T> {}

    impl<T> Clone for IsZeroable<T> {
        fn clone(&self) -> Self {
            *self
        }
    }

    impl<T: Zeroable> IsZeroable<T> {
        /// Constructs an `IsZeroable`
        ///
        /// You can also use the [`IsZeroable`](macro@crate::IsZeroable)
        /// macro to construct `IsZeroable` arguments.
        pub const NEW: Self = Self {
            _private: PhantomData,
        };
    }

    impl<T> IsZeroable<T> {
        const __NEW_UNCHECKED__: Self = Self {
            _private: PhantomData,
        };

        /// Constructs an `IsZeroable<T>` without checking that `T` implements [`Zeroable`].
        ///
        /// # Safety
        ///
        /// You must ensure that `T` follows the
        /// [safety requirements of `Zeroable`](trait@bytemuck::Zeroable#safety)
        ///
        /// [`Zeroable`]: trait@Zeroable
        #[inline(always)]
        pub const unsafe fn new_unchecked() -> Self {
            Self::__NEW_UNCHECKED__
        }
    }
}
pub use __::IsZeroable;

impl<T: Zeroable> crate::Infer for IsZeroable<T> {
    const INFER: Self = Self::NEW;
}

/// Constructs a zero-initialized `T`,
/// equivalent to [`std::mem::zeroed::<T>()`](core::mem::zeroed).
///
/// This function requires that `T` implements [`Zeroable`].
///
/// # Example
///
/// ```rust
/// use constmuck::{TypeSize, zeroed};
///
/// const BYTES: [u8; 4] = zeroed(TypeSize!([u8; 4]));
/// const CHARS: [char; 4] = zeroed(TypeSize!([char; 4]));
///
/// assert_eq!(BYTES, [0, 0, 0, 0]);
/// assert_eq!(CHARS, ['\0', '\0', '\0', '\0']);
///
/// ```
///
/// [`Zeroable`]: trait@Zeroable
pub const fn zeroed<T, const SIZE: usize>(_bounds: TypeSize<T, IsZeroable<T>, SIZE>) -> T {
    // safety:
    // `IsZeroable<T>` guarantees that `std::mem::zeroed::<T>` is sound to call.
    //
    // `TypeSize<T, _, SIZE>` guarantees that `T` is `SIZE` bytes large
    //
    unsafe { __priv_transmute!([u8; SIZE], T, [0; SIZE]) }
}

/// Constructs a zero-initialized `[T; N]`,
/// equivalent to [`std::mem::zeroed::<[T; N]>()`](core::mem::zeroed).
///
/// This function requires that `T` implements [`Zeroable`].
///
/// To specify the length of the returned array, [`TypeSize::zeroed_array`]
/// can be used instead.
///
/// # Example
///
/// ```rust
/// use constmuck::{TypeSize, zeroed_array};
///
/// const BYTES: [u8; 2] = zeroed_array(TypeSize!(u8));
/// assert_eq!(BYTES, [0, 0]);
/// // using `TypeSize::zeroed_array` to pass the length of the returned array.
/// assert_eq!(TypeSize!(u8).zeroed_array::<2>(), [0, 0]);
///
///
/// const CHARS: [char; 4] = zeroed_array(TypeSize!(char));
/// assert_eq!(CHARS, ['\0', '\0', '\0', '\0']);
/// // using `TypeSize::zeroed_array` to pass the length of the returned array.
/// assert_eq!(TypeSize!(char).zeroed_array::<4>(), ['\0', '\0', '\0', '\0']);
///
/// ```
///
/// [`Zeroable`]: trait@Zeroable
pub const fn zeroed_array<T, const SIZE: usize, const LEN: usize>(
    _bounds: TypeSize<T, IsZeroable<T>, SIZE>,
) -> [T; LEN] {
    if crate::__priv_utils::SizeIsStride::<T, LEN>::V {
        crate::__priv_utils::SizeIsStride::<T, LEN>::panic();
    }

    // safety: see `zeroable::zeroed`
    unsafe { __priv_transmute!([[u8; SIZE]; LEN], [T; LEN], [[0u8; SIZE]; LEN]) }
}