1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
//! [![github]](https://github.com/danipopes/const-hex) [![crates-io]](https://crates.io/crates/const-hex) [![docs-rs]](https://docs.rs/const-hex)
//!
//! [github]: https://img.shields.io/badge/github-8da0cb?style=for-the-badge&labelColor=555555&logo=github
//! [crates-io]: https://img.shields.io/badge/crates.io-fc8d62?style=for-the-badge&labelColor=555555&logo=rust
//! [docs-rs]: https://img.shields.io/badge/docs.rs-66c2a5?style=for-the-badge&labelColor=555555&logo=docs.rs
//!
//! This crate provides a fast conversion of byte arrays to hexadecimal strings,
//! both at compile time, and at run time.
//!
//! Extends the [`hex`] crate's implementation with [const-eval], a
//! [const-generics formatting buffer][Buffer], similar to [`itoa`]'s, and more.
//!
//! _Version requirement: rustc 1.64+_
//!
//! [const-eval]: const_encode
//! [`itoa`]: https://docs.rs/itoa/latest/itoa/struct.Buffer.html
#![cfg_attr(not(feature = "std"), no_std)]
#![allow(clippy::must_use_candidate, clippy::wildcard_imports)]
#[cfg(feature = "alloc")]
#[macro_use]
extern crate alloc;
cfg_if::cfg_if! {
if #[cfg(any(target_arch = "x86", target_arch = "x86_64"))] {
mod x86;
use x86::_encode;
} else {
use encode_default as _encode;
}
}
use core::slice;
use core::str;
#[cfg(feature = "alloc")]
use alloc::string::String;
#[cfg(feature = "hex")]
#[doc(inline)]
pub use hex::{decode_to_slice, FromHex, FromHexError, ToHex};
#[cfg(all(feature = "hex", feature = "alloc"))]
#[doc(inline)]
pub use hex::decode;
#[cfg(not(feature = "hex"))]
#[doc(hidden)]
mod error;
#[cfg(not(feature = "hex"))]
#[doc(inline)]
pub use error::FromHexError;
/// The table of lowercase characters used for hex encoding.
pub const HEX_CHARS_LOWER: &[u8; 16] = b"0123456789abcdef";
/// The table of uppercase characters used for hex encoding.
pub const HEX_CHARS_UPPER: &[u8; 16] = b"0123456789ABCDEF";
/// A correctly sized stack allocation for the formatted bytes to be written
/// into.
///
/// # Examples
///
/// ```
/// let mut buffer = const_hex::Buffer::new();
/// let printed = buffer.format(b"1234");
/// assert_eq!(printed, "31323334");
/// ```
#[must_use]
pub struct Buffer<const N: usize> {
/// Workaround for not being able to do operations with constants: `[u8; N * 2]`
bytes: [u16; N],
}
impl<const N: usize> Default for Buffer<N> {
#[inline]
fn default() -> Self {
Self::new()
}
}
impl<const N: usize> Clone for Buffer<N> {
#[inline]
fn clone(&self) -> Self {
Self::new()
}
}
impl<const N: usize> Buffer<N> {
/// This is a cheap operation; you don't need to worry about reusing buffers
/// for efficiency.
#[inline]
pub const fn new() -> Self {
Self { bytes: [0; N] }
}
/// Clears the buffer.
pub fn clear(&mut self) {
self.bytes = [0; N];
}
/// Consumes and clears the buffer.
pub const fn cleared(mut self) -> Self {
self.bytes = [0; N];
self
}
/// Print an array of bytes into this buffer.
pub const fn const_format(self, array: &[u8; N]) -> Self {
self.const_format_inner(array, HEX_CHARS_LOWER)
}
/// Print an array of bytes into this buffer.
pub const fn const_format_upper(self, array: &[u8; N]) -> Self {
self.const_format_inner(array, HEX_CHARS_UPPER)
}
/// Same as [`encode_to_slice_inner`], but const-stable.
const fn const_format_inner(mut self, array: &[u8; N], table: &[u8; 16]) -> Self {
let mut i = 0;
while i < N {
let (high, low) = byte2hex(array[i], table);
self.bytes[i] = u16::from_le_bytes([high, low]);
i = i.wrapping_add(1);
}
self
}
/// Print an array of bytes into this buffer and return a reference to its
/// *lower* hex string representation within the buffer.
pub fn format(&mut self, array: &[u8; N]) -> &mut str {
// length of array is guaranteed to be N.
self.format_inner(array, HEX_CHARS_LOWER)
}
/// Print an array of bytes into this buffer and return a reference to its
/// *upper* hex string representation within the buffer.
pub fn format_upper(&mut self, array: &[u8; N]) -> &mut str {
// length of array is guaranteed to be N.
self.format_inner(array, HEX_CHARS_UPPER)
}
/// Print a slice of bytes into this buffer and return a reference to its
/// *lower* hex string representation within the buffer.
///
/// # Panics
///
/// If the slice is not exactly `N` bytes long.
#[track_caller]
pub fn format_slice<T: AsRef<[u8]>>(&mut self, slice: T) -> &mut str {
self.format_slice_inner(slice.as_ref(), HEX_CHARS_LOWER)
}
/// Print a slice of bytes into this buffer and return a reference to its
/// *upper* hex string representation within the buffer.
///
/// # Panics
///
/// If the slice is not exactly `N` bytes long.
#[track_caller]
pub fn format_slice_upper<T: AsRef<[u8]>>(&mut self, slice: T) -> &mut str {
self.format_slice_inner(slice.as_ref(), HEX_CHARS_UPPER)
}
// Checks length
#[track_caller]
#[inline]
fn format_slice_inner(&mut self, slice: &[u8], table: &[u8; 16]) -> &mut str {
if slice.len() != N {
length_mismatch();
}
self.format_inner(slice, table)
}
// Doesn't check length
fn format_inner(&mut self, input: &[u8], table: &[u8; 16]) -> &mut str {
let buf = self.as_mut_bytes();
// SAFETY: Length was checked previously.
unsafe { encode_to_slice_inner(input, buf, table).unwrap_unchecked() };
// SAFETY: `encode_to_slice` writes only ASCII bytes.
unsafe { str::from_utf8_unchecked_mut(buf) }
}
/// Returns a reference to the underlying bytes casted to a string slice.
///
/// Note that this contains only null ('\0') bytes before any formatting
/// is done.
#[inline]
pub const fn as_str(&self) -> &str {
// SAFETY: The buffer always contains valid UTF-8.
let bytes = self.as_bytes();
unsafe { str::from_utf8_unchecked(bytes) }
}
/// Returns a reference to the underlying bytes casted to a string slice.
///
/// Note that this contains only null ('\0') bytes before any formatting
/// is done.
#[inline]
pub fn as_mut_str(&mut self) -> &mut str {
// SAFETY: The buffer always contains valid UTF-8.
let bytes = self.as_mut_bytes();
unsafe { str::from_utf8_unchecked_mut(bytes) }
}
/// Returns a reference to the underlying byte slice.
///
/// Note that this contains only null ('\0') bytes before any formatting
/// is done.
#[inline]
pub const fn as_bytes(&self) -> &[u8] {
// SAFETY: [u16; N] is layout-compatible with [u8; N * 2].
let ptr = self.bytes.as_ptr().cast::<u8>();
unsafe { slice::from_raw_parts(ptr, N * 2) }
}
/// Returns a mutable reference to the underlying byte slice.
///
/// Note that this contains only null ('\0') bytes before any formatting
/// is done.
///
/// Not public API because other methods rely on the internal buffer always
/// being valid UTF-8.
#[inline]
fn as_mut_bytes(&mut self) -> &mut [u8] {
// SAFETY: [u16; N] is layout-compatible with [u8; N * 2].
let ptr = self.bytes.as_mut_ptr().cast::<u8>();
unsafe { slice::from_raw_parts_mut(ptr, N * 2) }
}
}
/// Encodes `input` as a hex string into a [`Buffer`].
///
/// # Examples
///
/// ```
/// # fn main() -> Result<(), const_hex::FromHexError> {
/// const BUFFER: const_hex::Buffer<4> = const_hex::const_encode(b"kiwi");
/// assert_eq!(BUFFER.as_str(), "6b697769");
/// # Ok(())
/// # }
/// ```
#[inline]
pub const fn const_encode<const N: usize>(input: &[u8; N]) -> Buffer<N> {
Buffer::new().const_format(input)
}
/// Encodes `input` as a hex string using lowercase characters into a mutable
/// slice of bytes `output`.
///
/// # Errors
///
/// If the output buffer is not exactly `input.len() * 2` bytes long.
///
/// # Examples
///
/// ```
/// # fn main() -> Result<(), const_hex::FromHexError> {
/// let mut bytes = [0u8; 4 * 2];
/// const_hex::encode_to_slice(b"kiwi", &mut bytes)?;
/// assert_eq!(&bytes, b"6b697769");
/// # Ok(())
/// # }
/// ```
pub fn encode_to_slice<T: AsRef<[u8]>>(input: T, output: &mut [u8]) -> Result<(), FromHexError> {
encode_to_slice_inner(input.as_ref(), output, HEX_CHARS_LOWER)
}
/// Encodes `input` as a hex string using uppercase characters into a mutable
/// slice of bytes `output`.
///
/// # Errors
///
/// If the output buffer is not exactly `input.len() * 2` bytes long.
///
/// # Examples
///
/// ```
/// # fn main() -> Result<(), const_hex::FromHexError> {
/// let mut bytes = [0u8; 4 * 2];
/// const_hex::encode_to_slice_upper(b"kiwi", &mut bytes)?;
/// assert_eq!(&bytes, b"6B697769");
/// # Ok(())
/// # }
/// ```
pub fn encode_to_slice_upper<T: AsRef<[u8]>>(
input: T,
output: &mut [u8],
) -> Result<(), FromHexError> {
encode_to_slice_inner(input.as_ref(), output, HEX_CHARS_UPPER)
}
/// Encodes `data` as a hex string using lowercase characters.
///
/// Lowercase characters are used (e.g. `f9b4ca`). The resulting string's
/// length is always even, each byte in `data` is always encoded using two hex
/// digits. Thus, the resulting string contains exactly twice as many bytes as
/// the input data.
///
/// # Examples
///
/// ```
/// assert_eq!(const_hex::encode("Hello world!"), "48656c6c6f20776f726c6421");
/// assert_eq!(const_hex::encode([1, 2, 3, 15, 16]), "0102030f10");
/// ```
#[cfg(feature = "alloc")]
pub fn encode<T: AsRef<[u8]>>(data: T) -> String {
encode_inner(data.as_ref(), HEX_CHARS_LOWER)
}
/// Encodes `data` as a hex string using uppercase characters.
///
/// Apart from the characters' casing, this works exactly like `encode()`.
///
/// # Examples
///
/// ```
/// assert_eq!(const_hex::encode_upper("Hello world!"), "48656C6C6F20776F726C6421");
/// assert_eq!(const_hex::encode_upper([1, 2, 3, 15, 16]), "0102030F10");
/// ```
#[cfg(feature = "alloc")]
pub fn encode_upper<T: AsRef<[u8]>>(data: T) -> String {
encode_inner(data.as_ref(), HEX_CHARS_UPPER)
}
#[cfg(feature = "alloc")]
fn encode_inner(data: &[u8], table: &[u8; 16]) -> String {
let mut output = vec![0u8; data.len() * 2];
// SAFETY: `output` is long enough (input.len() * 2).
unsafe { encode_to_slice_inner(data, &mut output, table).unwrap_unchecked() };
// SAFETY: `encode_to_slice` writes only ASCII bytes.
unsafe { String::from_utf8_unchecked(output) }
}
/// The main encoding function.
#[inline]
fn encode_to_slice_inner(
input: &[u8],
output: &mut [u8],
table: &[u8; 16],
) -> Result<(), FromHexError> {
if output.len() != 2 * input.len() {
return Err(FromHexError::InvalidStringLength);
}
// SAFETY: Lengths are checked above.
unsafe { _encode(input, output, table) };
Ok(())
}
/// # Safety
///
/// `output.len() == 2 * input.len()`
#[inline]
unsafe fn encode_default(input: &[u8], output: &mut [u8], table: &[u8; 16]) {
let mut c = 0;
for byte in input.iter() {
let (high, low) = byte2hex(*byte, table);
*output.get_unchecked_mut(c) = high;
c = c.wrapping_add(1);
*output.get_unchecked_mut(c) = low;
c = c.wrapping_add(1);
}
}
#[inline]
const fn byte2hex(byte: u8, table: &[u8; 16]) -> (u8, u8) {
let high = table[((byte & 0xf0) >> 4) as usize];
let low = table[(byte & 0x0f) as usize];
(high, low)
}
#[cold]
#[inline(never)]
#[track_caller]
fn length_mismatch() -> ! {
panic!("length mismatch");
}