1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
extern crate rand;
extern crate rayon;
extern crate parsnip;

use rand::Rng;
use rayon::prelude::*;
use std::cmp::Ordering::Equal;
use std::collections::HashMap;
use std::sync::Arc;

pub enum Splitter {
    RANDOM,
    BEST,
}

pub struct DTParameters {
    splitter: Splitter,
    max_depth: usize,
    min_samples_split: usize,
    max_features: usize,
}

#[derive(Clone)]
pub struct Node {
    value: f64,
    index: u64,
    l: Option<Arc<Node>>,
    r: Option<Arc<Node>>,
    category: Option<u64>,
}

/// The model for a decision tree backed by the CART algorithm. A binary tree.
pub struct CARTree {
    root_node: Node,
}

fn mode(numbers: &[u64]) -> u64 {
    let mut count = HashMap::new();

    for &value in numbers {
        *count.entry(value).or_insert(0) += 1;
    }

    return count
        .into_iter()
        .max_by_key(|&(_, c)| c)
        .map(|(val, _)| val)
        .expect("Cannot compute the mode of nothing");
}

type Criteria = (f64, u64);

impl CARTree {
    /// Evaluate the truthiness of the condition for a given value. Can also be thought of as, if less than criteria, go left, else right.
    ///
    fn eval_node(node: &Node, matrix: &[f64]) -> bool {
        return matrix[node.index as usize] < node.value;
    }

    fn traverse(node: &Node, matrix: &[f64]) -> u64 {
        match CARTree::eval_node(node, matrix) {
            true => match node.l {
                Some(ref n) => CARTree::traverse(&n, matrix),
                _ => return node.category.unwrap(),
            },
            false => match node.r {
                Some(ref n) => CARTree::traverse(&n, matrix),
                _ => return node.category.unwrap(),
            },
        }
    }
    /// Given a vector of x values, predict the corresponding category. Requires that the decision tree has already been fit.
    ///
    /// ### In Review
    /// Should this method potentially take a reference as opposed to ownership?
    ///
    pub fn predict(&self, x: &[f64]) -> u64 {
        return CARTree::traverse(&self.root_node, &x);
    }

    ///
    /// ```
    /// let x1 = vec![0.0, 1.0, 2.0];
    /// let x2 = vec![2.0, 1.0, 0.0];
    /// let x = vec![x1, x2];
    /// // In this case, x[0] == x1 && x[0][2] == 2.0
    /// ```
    pub fn fit(x: &[Vec<f64>], y: &[u64], params: DTParameters) -> CARTree {
        return CARTree {
            root_node: CARTree::best_criteria(x, &y, &params, 0),
        };
    }

    /// Generate potential splitting points
    fn criteria_options(x: &[Vec<f64>], params: &DTParameters) -> Vec<Criteria> {
        let potential_criteria: Vec<Vec<(f64, u64)>> = x[0]
            .par_iter()
            .enumerate()
            .filter(|_| {
                return rand::thread_rng().gen::<f64>()
                    < params.max_features as f64 / x[0].len() as f64;
            }).map(|(i, _)| {
                let mut column: Vec<(f64, u64)> = x.par_iter().map(|v| (v[i], i as u64)).collect();
                column.par_sort_by(|a, b| a.partial_cmp(b).unwrap_or(Equal));
                column.dedup();
                return column;
            }).collect();
        return potential_criteria
            .iter()
            .flat_map(|v| v.iter())
            .cloned()
            .collect();
    }

    fn eval_criteria(
        criteria: &Criteria,
        x: &[Vec<f64>],
        y: &[u64],
    ) -> (Vec<u64>, Vec<u64>, Vec<usize>, Vec<usize>) {
        let mut y1 = Vec::new();
        let mut y2 = Vec::new();
        let mut index1 = Vec::new();
        let mut index2 = Vec::new();
        let node = Node {
            value: criteria.0,
            index: criteria.1,
            l: None,
            r: None,
            category: None,
        };
        for i in 0..x.len() {
            if CARTree::eval_node(&node, &x[i]) {
                y1.push(y[i]);
                index1.push(i);
            } else {
                y2.push(y[i]);
                index2.push(i);
            }
        }
        return (y1, y2, index1, index2);
    }

    fn get_split(
        split: &(Vec<u64>, Vec<u64>, Vec<usize>, Vec<usize>),
        x: &[Vec<f64>],
        left: bool,
    ) -> Vec<Vec<f64>> {
        let indicies;
        if left {
            indicies = split.2.clone();
        } else {
            indicies = split.3.clone();
        }
        return indicies.par_iter().map(|index| x[*index].clone()).collect();
    }

    fn weighted_gini(c: Criteria, x: &[Vec<f64>], y: &[u64]) -> f64 {
        let split = CARTree::eval_criteria(&c, x, y);
        let gini_left = parsnip::gini(&split.0) as f64 * (split.0.len() + 1) as f64;
        let gini_right = parsnip::gini(&split.1) as f64 * (split.1.len() + 1) as f64;
        return gini_left + gini_right;
    }

    fn best_split(x: &[Vec<f64>], y: &[u64], params: &DTParameters) -> Criteria {
        match params.splitter {
            Splitter::BEST => {
                return *CARTree::criteria_options(x, params)
                    .par_iter()
                    .min_by(|a, b| {
                        let gini_a = CARTree::weighted_gini(**a, x, y);
                        let gini_b = CARTree::weighted_gini(**b, x, y);
                        return gini_a.partial_cmp(&gini_b).unwrap_or(Equal);
                    }).unwrap();
            }
            Splitter::RANDOM => {
                let options = CARTree::criteria_options(x, params);
                return options[rand::thread_rng().gen_range(0, options.len())];
            }
        }
    }

    fn best_criteria(x: &[Vec<f64>], y: &[u64], params: &DTParameters, depth: usize) -> Node {
        if depth == params.max_depth || y.len() <= params.min_samples_split {
            return Node {
                value: 0.0,
                index: 0,
                l: None,
                r: None,
                category: Some(mode(y)),
            };
        }
        let best_choice = CARTree::best_split(x, y, params);
        let split = CARTree::eval_criteria(&best_choice, x, y);
        let gini_left = parsnip::gini(&split.0);
        let gini_right = parsnip::gini(&split.1);
        if gini_left == 0.0 && gini_right == 0.0 {
            let left = Arc::new(Node {
                value: 0.0,
                index: 0,
                l: None,
                r: None,
                category: Some(split.0[0]),
            });
            let right = Arc::new(Node {
                value: 0.0,
                index: 0,
                l: None,
                r: None,
                category: Some(split.1[0]),
            });
            return Node {
                value: best_choice.0,
                index: best_choice.1,
                l: Some(left),
                r: Some(right),
                category: None,
            };
        } else if gini_left == 0.0 {
            let right = CARTree::best_criteria(
                &CARTree::get_split(&split, x, false),
                &split.1,
                params,
                depth + 1,
            );
            return Node {
                value: best_choice.0,
                index: best_choice.1,
                l: None,
                r: Some(Arc::new(right)),
                category: Some(split.0[0]),
            };
        } else if gini_right == 0.0 {
            let left = CARTree::best_criteria(
                &CARTree::get_split(&split, x, true),
                &split.0,
                params,
                depth + 1,
            );
            return Node {
                value: best_choice.0,
                index: best_choice.1,
                l: Some(Arc::new(left)),
                r: None,
                category: Some(split.1[0]),
            };
        } else {
            let left = CARTree::best_criteria(
                &CARTree::get_split(&split, x, true),
                &split.0,
                params,
                depth + 1,
            );
            let right = CARTree::best_criteria(
                &CARTree::get_split(&split, x, false),
                &split.1,
                params,
                depth + 1,
            );
            return Node {
                value: best_choice.0,
                index: best_choice.1,
                l: Some(Arc::new(left)),
                r: Some(Arc::new(right)),
                category: None,
            };
        }
    }
}

pub struct ID3Tree {
    
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_eval_node() {
        let gte = Node {
            value: 0.0,
            index: 0,
            l: None,
            r: None,
            category: Some(3),
        };
        assert_eq!(CARTree::eval_node(&gte, &vec![0.01]), false);
    }

    #[test]
    fn test_generate_criteria() {
        let vector = vec![vec![0.0, 0.0], vec![1.0, 1.0]];
        let params = DTParameters {
            splitter: Splitter::BEST,
            max_depth: 300,
            min_samples_split: 0,
            max_features: 300,
        };
        let result = CARTree::criteria_options(&vector, &params);
        assert_eq!(result.len(), 4);
        let vector2 = vec![vec![0.0, 0.0], vec![1.0, 0.0], vec![0.0, 0.0]];
        let result = CARTree::criteria_options(&vector2, &params);
        assert_eq!(result.len(), 3);
    }

    #[test]
    fn test_best_split() {
        let vector = vec![vec![0.0, 0.0], vec![1.0, 0.0], vec![0.0, 0.0]];
        let params = DTParameters {
            splitter: Splitter::BEST,
            max_depth: 300,
            min_samples_split: 0,
            max_features: 300,
        };
        let result = CARTree::best_split(&vector, &vec![0, 1, 0], &params);
        assert_eq!(result.0, 1.0);
        assert_eq!(result.1, 0);
    }

    #[test]
    fn test_best_criteria() {
        let vector = vec![vec![0.0, 0.0], vec![1.0, 0.0], vec![0.0, 0.0]];
        let params = DTParameters {
            splitter: Splitter::BEST,
            max_depth: 300,
            min_samples_split: 0,
            max_features: 300,
        };
        let root_node = CARTree::best_criteria(&vector, &vec![0, 1, 0], &params, 0);
        assert!(root_node.l.is_some());
        assert!(root_node.r.is_some());
    }

    #[test]
    fn test_decision_tree() {
        let vector = vec![vec![0.0, 0.0], vec![1.0, 0.0], vec![0.0, 0.0]];
        let params = DTParameters {
            splitter: Splitter::BEST,
            max_depth: 300,
            min_samples_split: 0,
            max_features: 300,
        };
        let dt = CARTree::fit(&vector, &vec![0, 1, 0], params);
        let res = dt.predict(&vec![0.0, 0.0]);
        assert_eq!(res, 0);
    }

}