1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
//! This crate implements the matrix 1-norm estimator by [Higham and Tisseur].
//!
//! [Higham and Tisseur]: http://eprints.ma.man.ac.uk/321/1/covered/MIMS_ep2006_145.pdf

use ndarray::{
    prelude::*,
    ArrayBase,
    Data,
    DataMut,
    Dimension,
    Ix1,
    Ix2,
    s,
};
use ordered_float::NotNan;
use rand::{
    Rng,
    SeedableRng,
    thread_rng,
};
use rand_xoshiro::Xoshiro256StarStar;
use std::collections::BTreeSet;
use std::cmp;
use std::slice;

pub struct Normest1 {
    n: usize,
    t: usize,
    rng: Xoshiro256StarStar,
    x_matrix: Array2<f64>,
    y_matrix: Array2<f64>,
    z_matrix: Array2<f64>,
    w_vector: Array1<f64>,
    sign_matrix: Array2<f64>,
    sign_matrix_old: Array2<f64>,
    column_is_parallel: Vec<bool>,
    indices: Vec<usize>,
    indices_history: BTreeSet<usize>,
    h: Vec<NotNan<f64>>,
}

/// A trait to generalize over 1-norm estimates of a matrix `A`, matrix powers `A^m`,
/// or matrix products `A1 * A2 * ... * An`.
///
/// In the 1-norm estimator, one repeatedly constructs a matrix-matrix product between some n×n
/// matrix X and some other n×t matrix Y. If one wanted to estimate the 1-norm of a matrix m times
/// itself, X^m, it might thus be computationally less expensive to repeatedly apply
/// X * ( * ( X ... ( X * Y ) rather than to calculate Z = X^m = X * X * ... * X and then apply Z *
/// Y. In the first case, one has several matrix-matrix multiplications with complexity O(m*n*n*t),
/// while in the latter case one has O(m*n*n*n) (plus one more O(n*n*t)).
///
/// So in case of t << n, it is cheaper to repeatedly apply matrix multiplication to the smaller
/// matrix on the RHS, rather than to construct one definite matrix on the LHS.  Of course, this is
/// modified by the number of iterations needed when performing the norm estimate, sustained
/// performance of the matrix multiplication method used, etc.
///
/// It is at the designation of the user to check what is more efficient: to pass in one definite
/// matrix or choose the alternative route described here.
trait LinearOperator {
    fn multiply_matrix<S>(&self, b: &mut ArrayBase<S, Ix2>, c: &mut ArrayBase<S, Ix2>, transpose: bool)
        where S: DataMut<Elem=f64>;
}

impl<S1> LinearOperator for ArrayBase<S1, Ix2>
    where S1: Data<Elem=f64>,
{
    fn multiply_matrix<S2>(&self, b: &mut ArrayBase<S2, Ix2>, c: &mut ArrayBase<S2, Ix2>, transpose: bool)
        where S2: DataMut<Elem=f64>
    {
        let (n_rows, n_cols) = self.dim();
        assert_eq!(n_rows, n_cols, "Number of rows and columns does not match: `self` has to be a square matrix");
        let n = n_rows;

        let (b_n, b_t) = b.dim();
        let (c_n, c_t) = b.dim();

        assert_eq!(n, b_n, "Number of rows of b not equal to number of rows of `self`.");
        assert_eq!(n, c_n, "Number of rows of c not equal to number of rows of `self`.");

        assert_eq!(b_t, c_t, "Number of columns of b not equal to number of columns of c.");

        let t = b_t;

        let (a_slice, a_layout) = as_slice_with_layout(self).expect("Matrix `self` not contiguous.");
        let (b_slice, b_layout) = as_slice_with_layout(b).expect("Matrix `b` not contiguous.");
        let (c_slice, c_layout) = as_slice_with_layout_mut(c).expect("Matrix `c` not contiguous.");

        assert_eq!(a_layout, b_layout);
        assert_eq!(a_layout, c_layout);

        let layout = a_layout;

        let a_transpose = if transpose {
            cblas::Transpose::Ordinary
        } else {
            cblas::Transpose::None
        };

        unsafe {
            cblas::dgemm(
                layout,
                a_transpose,
                cblas::Transpose::None,
                n as i32,
                t as i32,
                n as i32,
                1.0,
                a_slice,
                n as i32,
                b_slice,
                t as i32,
                0.0,
                c_slice,
                t as i32,
            )
        }
    }
}

impl<S1> LinearOperator for [&ArrayBase<S1, Ix2>]
    where S1: Data<Elem=f64>
{
    fn multiply_matrix<S2>(&self, b: &mut ArrayBase<S2, Ix2>, c: &mut ArrayBase<S2, Ix2>, transpose: bool)
        where S2: DataMut<Elem=f64>
    {
        if self.len() > 0 {
            let mut reversed;
            let mut forward;

            // TODO: Investigate, if an enum instead of a trait object might be more performant.
            // This probably doesn't matter for large matrices, but could have a measurable impact
            // on small ones.
            let a_iter: &mut dyn DoubleEndedIterator<Item=_> = if transpose {
                reversed = self.iter().rev();
                &mut reversed
            } else {
                forward = self.iter();
                &mut forward
            };
            let a = a_iter.next().unwrap(); // Ok because of if condition
            a.multiply_matrix(b, c, transpose);

            // NOTE: The swap in the loop body makes use of the fact that in all instances where
            // `multiply_matrix` is used, the values potentially stored in `b` are not required
            // anymore.
            for a in a_iter {
                std::mem::swap(b, c);
                a.multiply_matrix(b, c, transpose);
            }
        }
    }
}

impl<S1> LinearOperator for (&ArrayBase<S1, Ix2>, usize)
    where S1: Data<Elem=f64>
{
    fn multiply_matrix<S2>(&self, b: &mut ArrayBase<S2, Ix2>, c: &mut ArrayBase< S2, Ix2>, transpose: bool)
        where S2: DataMut<Elem=f64>
    {
        let a = self.0;
        let m = self.1;
        if m > 0 {
            a.multiply_matrix(b, c, transpose);
            for _ in 1..m {
                std::mem::swap(b, c);
                self.0.multiply_matrix(b, c, transpose);
            }
        }
    }
}

impl Normest1 {
    pub fn new(n: usize, t: usize) -> Self {
        assert!(t <= n, "Cannot have more iteration columns t than columns in the matrix.");
        let rng = Xoshiro256StarStar::from_rng(&mut thread_rng()).expect("Rng initialization failed.");
        let x_matrix = unsafe { Array2::<f64>::uninitialized((n, t)) };
        let y_matrix = unsafe { Array2::<f64>::uninitialized((n, t)) };
        let z_matrix = unsafe { Array2::<f64>::uninitialized((n, t)) };

        let w_vector = unsafe { Array1::uninitialized(n) };

        let sign_matrix = unsafe { Array2::<f64>::uninitialized((n, t)) };
        let sign_matrix_old = unsafe { Array2::<f64>::uninitialized((n, t)) };

        let column_is_parallel = vec![false; t];

        let indices = (0..n).collect();
        let indices_history = BTreeSet::new();

        let h = vec![unsafe { NotNan::unchecked_new(0.0) }; n];

        Normest1 {
            n,
            t,
            rng,
            x_matrix,
            y_matrix,
            z_matrix,
            w_vector,
            sign_matrix,
            sign_matrix_old,
            column_is_parallel,
            indices,
            indices_history,
            h,
        }
    }

    fn calculate<L>(&mut self, a_linear_operator: &L, itmax: usize) -> f64
        where L: LinearOperator + ?Sized
    {
        assert!(itmax > 1, "normest1 is undefined for iterations itmax < 2");

        // Explicitly empty the index history; all other quantities will be overwritten at some
        // point.
        self.indices_history.clear();

        let n = self.n;
        let t = self.t;

        let sample = [-1., 1.0];

        // “We now explain our choice of starting matrix. We take the first column of X to be the
        // vector of 1s, which is the starting vector used in Algorithm 2.1. This has the advantage
        // that for a matrix with nonnegative elements the algorithm converges with an exact estimate
        // on the second iteration, and such matrices arise in applications, for example as a
        // stochastic matrix or as the inverse of an M -matrix.”
        //
        // “The remaining columns are chosen as rand {− 1 , 1 } , with a check for and correction of
        // parallel columns, exactly as for S in the body of the algorithm. We choose random vectors
        // because it is difficult to argue for any particular fixed vectors and because randomness
        // lessens the importance of counterexamples (see the comments in the next section).”
        {
            let rng_mut = &mut self.rng;
            self.x_matrix.mapv_inplace(|_| sample[rng_mut.gen_range(0, sample.len())]);
            self.x_matrix.column_mut(0).fill(1.);
        }

        // Resample the x_matrix to make sure no columns are parallel
        find_parallel_columns_in(&self.x_matrix, &mut self.y_matrix, &mut self.column_is_parallel);
        for (i, is_parallel) in self.column_is_parallel.iter().enumerate() {
            if *is_parallel {
                resample_column(&mut self.x_matrix, i, &mut self.rng, &sample);
            }
        }

        // Set all columns to unit vectors
        self.x_matrix.mapv_inplace(|x| x / n as f64);

        let mut estimate = 0.0;
        let mut best_index = 0;

        'optimization_loop: for k in 0..itmax {

            // Y = A X
            a_linear_operator.multiply_matrix(&mut self.x_matrix, &mut self.y_matrix, false);

            // est = max{‖Y(:,j)‖₁ : j = 1:t}
            let (max_norm_index, max_norm) = matrix_onenorm_with_index(&self.y_matrix);

            // if est > est_old or k=2
            if max_norm > estimate || k == 1 {
                // ind_best = indⱼ where est = ‖Y(:,j)‖₁, w = Y(:, ind_best)
                estimate = max_norm;
                best_index = self.indices[max_norm_index];
                self.w_vector.assign(&self.y_matrix.column(max_norm_index));
            } else if k > 1 && max_norm <= estimate {
                break 'optimization_loop
            }

            if k >= itmax {
                break 'optimization_loop
            }

            // S = sign(Y)
            assign_signum_of_array(
                &self.y_matrix,
                &mut self.sign_matrix
            );

            // TODO: Combine the test checking for parallelity between _all_ columns between S
            // and S_old with the “if t > 1” test below.
            //
            // > If every column of S is parallel to a column of Sold, goto (6), end
            //
            // NOTE: We are reusing `y_matrix` here as a temporary value.
            if are_all_columns_parallel_between(&self.sign_matrix_old, &self.sign_matrix, &mut self.y_matrix) {
                break 'optimization_loop;
            }

            // FIXME: Is an explicit if condition here necessary?
            if t > 1 {
                // > Ensure that no column of S is parallel to another column of S
                // > or to a column of Sold by replacing columns of S by rand{-1,+1}
                //
                // NOTE: We are reusing `y_matrix` here as a temporary value.
                resample_parallel_columns(
                    &mut self.sign_matrix,
                    &self.sign_matrix_old,
                    &mut self.y_matrix,
                    &mut self.column_is_parallel,
                    &mut self.rng,
                    &sample,
                );
            }

            // > est_old = est, Sold = S
            // NOTE: Other than in the original algorithm, we store the sign matrix at this point
            // already. This way, we can reuse the sign matrix as additional workspace which is
            // useful when performing matrix multiplication with A^m or A1 A2 ... An (see the
            // description of the LinearOperator trait for explanation).
            //
            // NOTE: We don't “save” the old estimate, because we are using max_norm as another name
            // for the new estimate instead of overwriting/reusing est.
            self.sign_matrix_old.assign(&self.sign_matrix);

            // Z = A^T S
            a_linear_operator.multiply_matrix(&mut self.sign_matrix, &mut self.z_matrix, true);

            // hᵢ= ‖Z(i,:)‖_∞
            let mut max_h = 0.0;
            for (row, h_element) in self.z_matrix.genrows().into_iter().zip(self.h.iter_mut()) {
                let h = vector_maxnorm(&row);
                max_h = if h > max_h { h } else { max_h };
                // Convert f64 to NotNan for using sort_unstable_by below
                *h_element = h.into();
            }

            // TODO: This test for equality needs an approximate equality test instead.
            if k > 0 && max_h == self.h[best_index].into() {
                break 'optimization_loop
            }

            // > Sort h so that h_1 >= ... >= h_n and re-order correspondingly.
            // NOTE: h itself doesn't need to be reordered. Only the order of
            // the indices is relevant.
            {
                let h_ref = &self.h;
                self.indices.sort_unstable_by(|i, j| h_ref[*j].cmp(&h_ref[*i]));
            }

            self.x_matrix.fill(0.0);
            if t > 1 {
                // > Replace ind(1:t) by the first t indices in ind(1:n) that are not in ind_hist.
                //
                // > X(:, j) = e_ind_j, j = 1:t
                //
                // > ind_hist = [ind_hist ind(1:t)]
                //
                // NOTE: It's not actually needed to operate on the `indices` vector. What's important
                // is that the history of indices, `indices_history`, gets updated with visited indices,
                // and that each column of `x_matrix` is assigned that unit vector that is defined by the
                // respective index.
                //
                // If so many indices have already been used that `n_cols - indices_history.len() < t`
                // (which means that we have less than `t` unused indices remaining), we have to use a few
                // historical indices when filling up the columns in `x_matrix`. For that, we put the
                // historical indices after the fresh indices, but otherwise keep the order induced by `h`
                // above.
                let fresh_indices = cmp::min(t, n - self.indices_history.len());
                if fresh_indices == 0 {
                    break 'optimization_loop;
                }
                let mut current_column_fresh = 0;
                let mut current_column_historical = fresh_indices;
                let mut index_iterator = self.indices.iter();

                let mut all_first_t_in_history = true;
                // First, iterate over the first t sorted indices.
                for i in (&mut index_iterator).take(t) {
                    if !self.indices_history.contains(i) {
                        all_first_t_in_history = false;
                        self.x_matrix[(*i, current_column_fresh)] = 1.0;
                        current_column_fresh += 1;
                        self.indices_history.insert(*i);
                    } else if current_column_historical < t {
                        self.x_matrix[(*i, current_column_historical)] = 1.0;
                        current_column_historical += 1;
                    }
                }

                // > if ind(1:t) is contained in ind_hist, goto (6), end
                if all_first_t_in_history {
                    break 'optimization_loop;
                }

                // Iterate over the remaining indices
                'fill_x: for i in index_iterator {
                    if current_column_fresh >= t {
                        break 'fill_x;
                    }
                    if !self.indices_history.contains(i) {
                        self.x_matrix[(*i, current_column_fresh)] = 1.0;
                        current_column_fresh += 1;
                        self.indices_history.insert(*i);
                    } else if current_column_historical < t {
                        self.x_matrix[(*i, current_column_historical)] = 1.0;
                        current_column_historical += 1;
                    }
                }
            }
        }

        estimate
    }

    /// Estimate the 1-norm of matrix `a` using up to `itmax` iterations.
    pub fn normest1<S>(&mut self, a: &ArrayBase<S, Ix2>, itmax: usize) -> f64
        where S: Data<Elem=f64>,
    {
        self.calculate(a, itmax)
    }

    /// Estimate the 1-norm of a marix `a` to the power `m` up to `itmax` iterations.
    pub fn normest1_pow<S>(&mut self, a: &ArrayBase<S, Ix2>, m: usize, itmax: usize) -> f64
        where S: Data<Elem=f64>,
    {
        self.calculate(&(a, m), itmax)
    }

    /// Estimate the 1-norm of a product of matrices `a1 a2 ... an` up to `itmax` iterations.
    pub fn normest1_prod<S>(&mut self, aprod: &[&ArrayBase<S, Ix2>], itmax: usize) -> f64
        where S: Data<Elem=f64>,
    {
        self.calculate(aprod, itmax)
    }
}

/// Estimates the 1-norm of matrix `a`.
///
/// The parameter `t` is the number of vectors that have to fulfill some bound. See [Higham,
/// Tisseur] for more information. `itmax` is the maximum number of sweeps permitted.
///
/// **NOTE:** This function allocates on every call. If you want to repeatedly estimate the
/// 1-norm on matrices of the same size, construct a [`Normest1`] first, and call its methods.
///
/// [Higham, Tisseur]: http://eprints.ma.man.ac.uk/321/1/covered/MIMS_ep2006_145.pdf
/// [`Normest1`]: struct.Normest1.html
pub fn normest1(a_matrix: &Array2<f64>, t: usize, itmax: usize) -> f64
{
    // Assume the matrix is square and take the columns as n. If it's not square, the assertion in
    // normest.calculate will fail.
    let n = a_matrix.dim().1;
    let mut normest1 = Normest1::new(n, t);
    normest1.normest1(a_matrix, itmax)
}

/// Estimates the 1-norm of a matrix `a` to the power `m`, `a^m`.
///
/// The parameter `t` is the number of vectors that have to fulfill some bound. See [Higham,
/// Tisseur] for more information. `itmax` is the maximum number of sweeps permitted.
///
/// **NOTE:** This function allocates on every call. If you want to repeatedly estimate the
/// 1-norm on matrices of the same size, construct a [`Normest1`] first, and call its methods.
///
/// [Higham, Tisseur]: http://eprints.ma.man.ac.uk/321/1/covered/MIMS_ep2006_145.pdf
pub fn normest1_pow(a_matrix: &Array2<f64>, m: usize, t: usize, itmax: usize) -> f64
{
    // Assume the matrix is square and take the columns as n. If it's not square, the assertion in
    // normest.calculate will fail.
    let n = a_matrix.dim().1;
    let mut normest1 = Normest1::new(n, t);
    normest1.normest1_pow(a_matrix, m, itmax)
}

/// Estimates the 1-norm of a product of matrices `a1`, `a2`, ..., `an` passed in as a slice of
/// references.
///
/// The parameter `t` is the number of vectors that have to fulfill some bound. See [Higham,
/// Tisseur] for more information. `itmax` is the maximum number of sweeps permitted.
///
/// **NOTE:** This function allocates on every call. If you want to repeatedly estimate the
/// 1-norm on matrices of the same size, construct a [`Normest1`] first, and call its methods.
///
/// [Higham, Tisseur]: http://eprints.ma.man.ac.uk/321/1/covered/MIMS_ep2006_145.pdf
pub fn normest1_prod(a_matrices: &[&Array2<f64>], t: usize, itmax: usize) -> f64
{
    assert!(a_matrices.len() > 0);
    let n = a_matrices[0].dim().1;
    let mut normest1 = Normest1::new(n, t);
    normest1.normest1_prod(a_matrices, itmax)
}

/// Assigns the sign of matrix `a` to matrix `b`.
///
/// Panics if matrices `a` and `b` have different shape and strides, or if either underlying array is
/// non-contiguous. This is to make sure that the iteration order over the matrices is the same.
fn assign_signum_of_array<S1, S2, D>(a: &ArrayBase<S1, D>, b: &mut ArrayBase<S2, D>)
    where S1: Data<Elem=f64>,
          S2: DataMut<Elem=f64>,
          D: Dimension
{
    assert_eq!(a.strides(), b.strides());
    let (a_slice, a_layout) = as_slice_with_layout(a).expect("Matrix `a` is not contiguous.");
    let (b_slice, b_layout) = as_slice_with_layout_mut(b).expect("Matrix `b` is not contiguous.");
    assert_eq!(a_layout, b_layout);

    signum_of_slice(a_slice, b_slice);
}

fn signum_of_slice(source: &[f64], destination: &mut [f64]) {
    for (s, d) in source.iter().zip(destination) {
        *d = s.signum();
    }
}

/// Calculate the onenorm of a vector (an `ArrayBase` with dimension `Ix1`).
fn vector_onenorm<S>(a: &ArrayBase<S, Ix1>) -> f64
    where S: Data<Elem=f64>,
{
    let stride = a.strides()[0];
    assert!(stride >= 0);
    let stride = stride as usize;
    let n_elements = a.len();
    let a_slice = {
        let a = a.as_ptr();
        let total_len = n_elements * stride;
        unsafe { slice::from_raw_parts(a, total_len) }
    };

    unsafe {
        cblas::dasum(n_elements as i32, a_slice, stride as i32)
    }
}

/// Calculate the maximum norm of a vector (an `ArrayBase` with dimension `Ix1`).
fn vector_maxnorm<S>(a: &ArrayBase<S, Ix1>) -> f64
    where S: Data<Elem=f64>
{
    let stride = a.strides()[0];
    assert!(stride >= 0);
    let stride = stride as usize;
    let n_elements = a.len();
    let a_slice = {
        let a = a.as_ptr();
        let total_len = n_elements * stride;
        unsafe { slice::from_raw_parts(a, total_len) }
    };

    let idx = unsafe {
        cblas::idamax(
            n_elements as i32,
            a_slice,
            stride as i32,
        ) as usize
    };
    f64::abs(a[idx])
}

// /// Calculate the onenorm of a matrix (an `ArrayBase` with dimension `Ix2`).
// fn matrix_onenorm<S>(a: &ArrayBase<S, Ix2>) -> f64
//     where S: Data<Elem=f64>,
// {
//     let (n_rows, n_cols) = a.dim();
//     if let Some((a_slice, layout)) = as_slice_with_layout(a) {
//         let layout = match layout {
//             cblas::Layout::RowMajor => lapacke::Layout::RowMajor,
//             cblas::Layout::ColumnMajor => lapacke::Layout::ColumnMajor,
//         };
//         unsafe {
//             lapacke::dlange(
//                 layout,
//                 b'1',
//                 n_rows as i32,
//                 n_cols as i32,
//                 a_slice,
//                 n_rows as i32,
//             )
//         }
//     // Fall through case for non-contiguous arrays.
//     } else {
//         a.gencolumns().into_iter()
//             .fold(0.0, |max, column| {
//                 let onenorm = column.fold(0.0, |acc, element| { acc + f64::abs(*element) });
//                 if onenorm > max { onenorm } else { max }
//         })
//     }
// }

/// Returns the one-norm of a matrix `a` together with the index of that column for
/// which the norm is maximal.
fn matrix_onenorm_with_index<S>(a: &ArrayBase<S, Ix2>) -> (usize, f64)
    where S: Data<Elem=f64>,
{
    let mut max_norm = 0.0;
    let mut max_norm_index = 0;
    for (i, column) in a.gencolumns().into_iter().enumerate() {
        let norm = vector_onenorm(&column);
        if norm > max_norm {
            max_norm = norm;
            max_norm_index = i;
        }
    }
    (max_norm_index, max_norm)
}

/// Finds columns in the matrix `a` that are parallel to to some other column in `a`.
///
/// Assumes that all entries of `a` are either +1 or -1.
///
/// If column `j` of matrix `a` is parallel to some column `i`, `column_is_parallel[i]` is set to
/// `true`. The matrix `c` is used as an intermediate value for the matrix product `a^t * a`.
///
/// This function does not reset `column_is_parallel` to `false`. Entries that are `true` will be
/// assumed to be parallel and not checked.
///
/// Panics if arrays `a` and `c` don't have the same dimensions, or if the length of the slice
/// `column_is_parallel` is not equal to the number of columns in `a`.
fn find_parallel_columns_in<S1, S2> (
    a: &ArrayBase<S1, Ix2>,
    c: &mut ArrayBase<S2, Ix2>,
    column_is_parallel: &mut [bool]
)
    where S1: Data<Elem=f64>,
          S2: DataMut<Elem=f64>
{
    let a_dim = a.dim();
    let c_dim = c.dim();
    assert_eq!(a_dim, c_dim);

    let (n_rows, n_cols) = a_dim;

    assert_eq!(column_is_parallel.len(), n_cols);
    {
        let (a_slice, a_layout) = as_slice_with_layout(a).expect("Matrix `a` is not contiguous.");
        let (c_slice, c_layout) = as_slice_with_layout_mut(c).expect("Matrix `c` is not contiguous.");
        assert_eq!(a_layout, c_layout);
        let layout = a_layout;

        // NOTE: When calling the wrapped Fortran dsyrk subroutine with row major layout,
        // cblas::*syrk changes `'U'` to `'L'` (`Upper` to `Lower`), and `'O'` to `'N'` (`Ordinary`
        // to `None`). Different from `cblas::*gemm`, however, it does not automatically make sure
        // that the other arguments are changed to make sense in a routine expecting column major
        // order (in `cblas::*gemm`, this happens by flipping the matrices `a` and `b` as
        // arguments).
        //
        // So while `cblas::dsyrk` changes transposition and the position of where the results are
        // written to, it passes the other arguments on to the Fortran routine as is.
        //
        // For example, in case matrix `a` is a 4x2 matrix in column major order, and we want to
        // perform the operation `a^T a` on it (resulting in a symmetric 2x2 matrix), we would pass
        // TRANS='T', N=2 (order of c), K=4 (number of rows because of 'T'), LDA=4 (max(1,k)
        // because of 'T'), LDC=2.
        //
        // But if `a` is in row major order and we want to perform the same operation, we pass
        // TRANS='T' (gets translated to 'N'), N=2, K=2 (number of columns, because we 'T' -> 'N'),
        // LDA=2 (max(1,n) because of 'N'), LDC=2.
        //
        // In other words, because of row major order, the Fortran routine actually sees our 4x2
        // matrix as a 2x4 matrix, and if we want to calculate `a^T a`, `cblas::dsyrk` makes sure
        // `'N'` is passed.
        let (k, lda) = match layout {
            cblas::Layout::ColumnMajor => (n_cols, n_rows),
            cblas::Layout::RowMajor => (n_rows, n_cols),
        };
        unsafe {
            cblas::dsyrk(
                layout,
                cblas::Part::Upper,
                cblas::Transpose::Ordinary,
                n_cols as i32,
                k as i32,
                1.0,
                a_slice,
                lda as i32,
                0.0,
                c_slice,
                n_cols as i32,
            );
        }
    }

    // c is upper triangular and contains all pair-wise vector products:
    //
    // x x x x x
    // . x x x x
    // . . x x x
    // . . . x x
    // . . . . x

    // Don't check more rows than we have columns 
    'rows: for (i, row) in c.genrows().into_iter().enumerate().take(n_cols) {
        // Skip if the column is already found to be parallel or if we are checking
        // the last column
        if column_is_parallel[i] || i >= n_cols - 1 { continue 'rows; }
        for (j, element) in row.slice(s![i+1..]).iter().enumerate() {
            // Check if the vectors are parallel or anti-parallel
            if f64::abs(*element) == n_rows as f64 {
                column_is_parallel[i+j+1] = true;
            }
        }
    }
}

/// Checks whether any columns of the matrix `a` are parallel to any columns of `b`.
///
/// Assumes that we have parallelity only if all entries of two columns `a` and `b` are either +1
/// or -1.
///
/// `The matrix `c` is used as an intermediate value for the matrix product `a^t * b`.
///
/// `column_is_parallel[j]` is set to `true` if column `j` of matrix `a` is parallel to some column
/// `i` of the matrix `b`,
///
/// This function does not reset `column_is_parallel` to `false`. Entries that are `true` will be
/// assumed to be parallel and not checked.
///
/// Panics if arrays `a`, `b`, and `c` don't have the same dimensions, or if the length of the slice
/// `column_is_parallel` is not equal to the number of columns in `a`.
fn find_parallel_columns_between<S1, S2, S3> (
    a: &ArrayBase<S1, Ix2>,
    b: &ArrayBase<S2, Ix2>,
    c: &mut ArrayBase<S3, Ix2>,
    column_is_parallel: &mut [bool],
)
    where S1: Data<Elem=f64>,
          S2: Data<Elem=f64>,
          S3: DataMut<Elem=f64>
{
    let a_dim = a.dim();
    let b_dim = b.dim();
    let c_dim = c.dim();
    assert_eq!(a_dim, b_dim);
    assert_eq!(a_dim, c_dim);

    let (n_rows, n_cols) = a_dim;

    assert_eq!(column_is_parallel.len(), n_cols);

    // Extra scope, because c_slice needs to be dropped after the dgemm
    {
        let (a_slice, a_layout) = as_slice_with_layout(&a).expect("Matrix `a` not contiguous.");
        let (b_slice, b_layout) = as_slice_with_layout(&b).expect("Matrix `b` not contiguous.");
        let (c_slice, c_layout) = as_slice_with_layout_mut(c).expect("Matrix `c` not contiguous.");

        assert_eq!(a_layout, b_layout);
        assert_eq!(a_layout, c_layout);

        let layout = a_layout;

        unsafe {
            cblas::dgemm(
                layout,
                cblas::Transpose::Ordinary,
                cblas::Transpose::None,
                n_cols as i32,
                n_cols as i32,
                n_rows as i32,
                1.0,
                a_slice,
                n_cols as i32,
                b_slice,
                n_cols as i32,
                0.0,
                c_slice,
                n_cols as i32,
            );
        }
    }

    // We are iterating over the rows because it's more memory efficient (for row-major array).  In
    // terms of logic there is no difference: we simply check if the current column of a (that's
    // the outer loop) is parallel to any column of b (inner loop). By iterating via columns we would check if
    // any column of a is parallel to the, in that case, current column of b.
    // TODO:  Implement for column major arrays.
    'rows: for (i, row) in c.genrows().into_iter().enumerate().take(n_cols) {
        // Skip if the column is already found to be parallel the last column.
        if column_is_parallel[i] { continue 'rows; }
        for element in row {
            if f64::abs(*element) == n_rows as f64 {
                column_is_parallel[i] = true;
                continue 'rows;
            }
        }
    }
}


/// Check if every column in `a` is parallel to some column in `b`.
///
/// Assumes that we have parallelity only if all entries of two columns `a` and `b` are either +1
/// or -1.
fn are_all_columns_parallel_between<S1, S2> (
    a: &ArrayBase<S1, Ix2>,
    b: &ArrayBase<S1, Ix2>,
    c: &mut ArrayBase<S2, Ix2>,
) -> bool
    where S1: Data<Elem=f64>,
          S2: DataMut<Elem=f64>
{
    let a_dim = a.dim();
    let b_dim = b.dim();
    let c_dim = c.dim();
    assert_eq!(a_dim, b_dim);
    assert_eq!(a_dim, c_dim);

    let (n_rows, n_cols) = a_dim;

    // Extra scope, because c_slice needs to be dropped after the dgemm
    {
        let (a_slice, a_layout) = as_slice_with_layout(&a).expect("Matrix `a` not contiguous.");
        let (b_slice, b_layout) = as_slice_with_layout(&b).expect("Matrix `b` not contiguous.");
        let (c_slice, c_layout) = as_slice_with_layout_mut(c).expect("Matrix `c` not contiguous.");

        assert_eq!(a_layout, b_layout);
        assert_eq!(a_layout, c_layout);

        let layout = a_layout;

        unsafe {
            cblas::dgemm(
                layout,
                cblas::Transpose::Ordinary,
                cblas::Transpose::None,
                n_cols as i32,
                n_cols as i32,
                n_rows as i32,
                1.0,
                a_slice,
                n_cols as i32,
                b_slice,
                n_cols as i32,
                0.0,
                c_slice,
                n_rows as i32,
            );
        }
    }

    // We are iterating over the rows because it's more memory efficient (for row-major array).  In
    // terms of logic there is no difference: we simply check if a specific column of a is parallel
    // to any column of b. By iterating via columns we would check if any column of a is parallel
    // to a specific column of b.
    'rows: for row in c.genrows() {
        for element in row {
            // If a parallel column was found, cut to the next one.
            if f64::abs(*element) == n_rows as f64 { continue 'rows; }
        }
        // This return statement should only be reached if not a single column parallel to the
        // current one was found.
        return false;
    }
    true
}

/// Find parallel columns in matrix `a` and columns in `a` that are parallel to any columns in
/// matrix `b`, and replace those with random vectors. Returns `true` if resampling has taken place.
fn resample_parallel_columns<S1, S2, S3, R>(
    a: &mut ArrayBase<S1, Ix2>,
    b: &ArrayBase<S2, Ix2>,
    c: &mut ArrayBase<S3, Ix2>,
    column_is_parallel: &mut [bool],
    rng: &mut R,
    sample: &[f64],
) -> bool
    where S1: DataMut<Elem=f64>,
          S2: Data<Elem=f64>,
          S3: DataMut<Elem=f64>,
          R: Rng
{
    column_is_parallel.iter_mut().for_each(|x| {*x = false;});
    find_parallel_columns_in(a, c, column_is_parallel);
    find_parallel_columns_between(a, b, c, column_is_parallel);
    let mut has_resampled = false;
    for (i, is_parallel) in column_is_parallel.into_iter().enumerate() {
        if *is_parallel {
            resample_column(a, i, rng, sample);
            has_resampled = true;
        }
    }
    has_resampled
}

/// Resamples column `i` of matrix `a` with elements drawn from `sample` using `rng`.
///
/// Panics if `i` exceeds the number of columns in `a`.
fn resample_column<R, S>(a: &mut ArrayBase<S, Ix2>, i: usize, rng: &mut R, sample: &[f64])
    where S: DataMut<Elem=f64>,
          R: Rng
{
    assert!(i < a.dim().1, "Trying to resample column with index exceeding matrix dimensions");
    assert!(sample.len() > 0);
    a.column_mut(i).mapv_inplace(|_| sample[rng.gen_range(0, sample.len())]);
}

/// Returns slice and layout underlying an array `a`.
fn as_slice_with_layout<S, T, D>(a: &ArrayBase<S, D>) -> Option<(&[T], cblas::Layout)>
    where S: Data<Elem=T>,
          D: Dimension
{
    if let Some(a_slice) = a.as_slice() {
        Some((a_slice, cblas::Layout::RowMajor))
    } else if let Some(a_slice) = a.as_slice_memory_order() {
        Some((a_slice, cblas::Layout::ColumnMajor))
    } else {
        None
    }
}

/// Returns mutable slice and layout underlying an array `a`.
fn as_slice_with_layout_mut<S, T, D>(a: &mut ArrayBase<S, D>) -> Option<(&mut [T], cblas::Layout)>
    where S: DataMut<Elem=T>,
          D: Dimension
{
    if a.as_slice_mut().is_some() {
        Some((a.as_slice_mut().unwrap(), cblas::Layout::RowMajor))
    } else if a.as_slice_memory_order_mut().is_some() {
        Some((a.as_slice_memory_order_mut().unwrap(), cblas::Layout::ColumnMajor))
    } else {
        None
    }
    // XXX: The above is a workaround for Rust not having non-lexical lifetimes yet.
    // More information here:
    // http://smallcultfollowing.com/babysteps/blog/2016/04/27/non-lexical-lifetimes-introduction/#problem-case-3-conditional-control-flow-across-functions
    //
    // if let Some(slice) = a.as_slice_mut() {
    //     Some((slice, cblas::Layout::RowMajor))
    // } else if let Some(slice) = a.as_slice_memory_order_mut() {
    //     Some((slice, cblas::Layout::ColumnMajor))
    // } else {
    //     None
    // }
}

#[cfg(test)]
mod tests {
    extern crate openblas_src;

    use ndarray::{
        prelude::*,
        Zip,
    };
    use ndarray_rand::RandomExt;
    use rand::{
        SeedableRng,
    };
    use rand::distributions::StandardNormal;
    use rand_xoshiro::Xoshiro256Plus;

    #[test]
    fn equality_between_methods() {
        let t = 2;
        let n = 100;
        let itmax = 5;

        let mut rng = Xoshiro256Plus::seed_from_u64(1234);
        let distribution = StandardNormal;

        let mut a_matrix = Array::random_using((n, n), distribution, &mut rng);
        a_matrix.mapv_inplace(|x| 1.0/x);

        let unity = Array::eye(n);

        let estimate_onlymatrix = crate::normest1(&a_matrix, t, itmax);
        let estimate_matrixpow = crate::normest1_pow(&a_matrix, 1, t, itmax);
        let estimate_matrixprod = crate::normest1_prod(&[&a_matrix, &unity], t, itmax);

        assert_eq!(estimate_onlymatrix, estimate_matrixpow);
        assert_eq!(estimate_onlymatrix, estimate_matrixprod);
    }

    #[test]
    fn pow_2_is_prod_2() {
        let t = 2;
        let n = 100;
        let itmax = 5;

        let mut rng = Xoshiro256Plus::seed_from_u64(1234);
        let distribution = StandardNormal;

        let mut a_matrix = Array::random_using((n, n), distribution, &mut rng);
        a_matrix.mapv_inplace(|x| 1.0/x);

        let estimate_matrixpow = crate::normest1_pow(&a_matrix, 2, t, itmax);
        let estimate_matrixprod = crate::normest1_prod(&[&a_matrix, &a_matrix], t, itmax);

        assert_eq!(estimate_matrixpow, estimate_matrixprod);
    }

    #[test]
    /// This performs tests inspired by Table 3 of [Higham and Tisseur].
    ///
    /// NOTE: Due to (most likely) floating point precision), the ratio `calculated/expected` (that
    /// is, the ratio of the estimated condition number to the explicitly calculated one) can
    /// exceed 1.0. However, when running the tests I have observed at most a ratio exceeding 1.0
    /// by 3 bits in the significand/mantissa. In other words, the estimated condition number appears to be
    /// within 4 ULPS of the calculated/expected one.
    ///
    /// One can probably explain this with different ordering of summation/addition/multiplication.
    ///
    /// During tests run performed by the author(s) of this library, running the tets below with
    /// `nsamples = 5000` happened to always let the test pass.
    fn table_3_t_2() {
        let t = 2;
        let n = 100;
        let itmax = 5;
        let nsamples = 5000;

        let mut calculated = Vec::with_capacity(nsamples);
        let mut expected = Vec::with_capacity(nsamples);

        let mut rng = Xoshiro256Plus::seed_from_u64(1234);
        let distribution = StandardNormal;

        for _ in 0..nsamples {
            let mut a_matrix = Array::random_using((n, n), distribution, &mut rng);
            a_matrix.mapv_inplace(|x| 1.0/x);
            let estimate = crate::normest1(&a_matrix, t, itmax);
            calculated.push(estimate);
            expected.push({
                let (a_slice, a_layout) = crate::as_slice_with_layout(&a_matrix).expect("a matrix not contiguous");
                let a_layout = match a_layout {
                    cblas::Layout::ColumnMajor => lapacke::Layout::ColumnMajor,
                    cblas::Layout::RowMajor => lapacke::Layout::RowMajor,
                };
                unsafe {
                    lapacke::dlange(
                    a_layout,
                    b'1',
                    n as i32,
                    n as i32,
                    a_slice,
                    n as i32,
                )}
            });
        }

        let calculated = Array1::from_vec(calculated);
        let expected = Array1::from_vec(expected);

        let mut underestimation_ratio = unsafe { Array1::<f64>::uninitialized(nsamples) };
        Zip::from(&calculated)
            .and(&expected)
            .and(&mut underestimation_ratio)
            .apply(|c, e, u| {
                *u = *c / *e;
        });

        let underestimation_mean = underestimation_ratio.mean_axis(Axis(0)).into_scalar();
        assert!(0.99 < underestimation_mean);
        assert!(underestimation_mean < 1.0);
    }
}