1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
use crate::math::random::{Gaussian, RandomGenerable, RandomGenerator, Uniform};
use crate::math::tensor::AsMutTensor;

use concrete_commons::dispersion::DispersionParameter;
use concrete_commons::numeric::UnsignedInteger;
use concrete_commons::parameters::{
    DecompositionLevelCount, GlweDimension, GlweSize, LweDimension, LweSize, PolynomialSize,
};
#[cfg(feature = "multithread")]
use rayon::prelude::*;

/// A random number generator which can be used to encrypt messages.
pub struct EncryptionRandomGenerator {
    // A separate mask generator, only used to generate the mask elements.
    mask: RandomGenerator,
    // A separate noise generator, only used to generate the noise elements.
    noise: RandomGenerator,
}

impl EncryptionRandomGenerator {
    /// Creates a new encryption, optionally seeding it with the given value.
    pub fn new(seed: Option<u128>) -> EncryptionRandomGenerator {
        EncryptionRandomGenerator {
            mask: RandomGenerator::new(seed),
            noise: RandomGenerator::new(None),
        }
    }

    // Allows to seed the noise generator. For testing purpose only.
    #[allow(dead_code)]
    pub(crate) fn seed_noise_generator(&mut self, seed: u128) {
        println!("WARNING: The noise generator of the encryption random generator was seeded.");
        self.noise = RandomGenerator::new(Some(seed));
    }

    /// Returns the number of remaining bytes, if the generator is bounded.
    pub fn remaining_bytes(&self) -> Option<usize> {
        self.mask.remaining_bytes()
    }

    /// Returns whether the generator is bounded.
    pub fn is_bounded(&self) -> bool {
        self.mask.is_bounded()
    }

    // Forks the generator, when splitting a bootstrap key into ggsw ct.
    #[allow(dead_code)]
    pub(crate) fn fork_bsk_to_ggsw<T: UnsignedInteger>(
        &mut self,
        lwe_dimension: LweDimension,
        level: DecompositionLevelCount,
        glwe_size: GlweSize,
        polynomial_size: PolynomialSize,
    ) -> Option<impl Iterator<Item = EncryptionRandomGenerator>> {
        let mask_bytes = mask_bytes_per_ggsw::<T>(level, glwe_size, polynomial_size);
        let noise_bytes = noise_bytes_per_ggsw(level, glwe_size, polynomial_size);
        self.try_fork(lwe_dimension.0, mask_bytes, noise_bytes)
    }

    // Forks the generator into a parallel iterator, when splitting a bootstrap key into ggsw ct.
    #[cfg(feature = "multithread")]
    pub(crate) fn par_fork_bsk_to_ggsw<T: UnsignedInteger>(
        &mut self,
        lwe_dimension: LweDimension,
        level: DecompositionLevelCount,
        glwe_size: GlweSize,
        polynomial_size: PolynomialSize,
    ) -> Option<impl IndexedParallelIterator<Item = EncryptionRandomGenerator>> {
        let mask_bytes = mask_bytes_per_ggsw::<T>(level, glwe_size, polynomial_size);
        let noise_bytes = noise_bytes_per_ggsw(level, glwe_size, polynomial_size);
        self.par_try_fork(lwe_dimension.0, mask_bytes, noise_bytes)
    }

    // Forks the generator, when splitting a ggsw into level matrices.
    pub(crate) fn fork_ggsw_to_ggsw_levels<T: UnsignedInteger>(
        &mut self,
        level: DecompositionLevelCount,
        glwe_size: GlweSize,
        polynomial_size: PolynomialSize,
    ) -> Option<impl Iterator<Item = EncryptionRandomGenerator>> {
        let mask_bytes = mask_bytes_per_ggsw_level::<T>(glwe_size, polynomial_size);
        let noise_bytes = noise_bytes_per_ggsw_level(glwe_size, polynomial_size);
        self.try_fork(level.0, mask_bytes, noise_bytes)
    }

    // Forks the generator into a parallel iterator, when splitting a ggsw into level matrices.
    #[cfg(feature = "multithread")]
    pub(crate) fn par_fork_ggsw_to_ggsw_levels<T: UnsignedInteger>(
        &mut self,
        level: DecompositionLevelCount,
        glwe_size: GlweSize,
        polynomial_size: PolynomialSize,
    ) -> Option<impl IndexedParallelIterator<Item = EncryptionRandomGenerator>> {
        let mask_bytes = mask_bytes_per_ggsw_level::<T>(glwe_size, polynomial_size);
        let noise_bytes = noise_bytes_per_ggsw_level(glwe_size, polynomial_size);
        self.par_try_fork(level.0, mask_bytes, noise_bytes)
    }

    // Forks the generator, when splitting a ggsw level matrix to glwe.
    pub(crate) fn fork_ggsw_level_to_glwe<T: UnsignedInteger>(
        &mut self,
        glwe_size: GlweSize,
        polynomial_size: PolynomialSize,
    ) -> Option<impl Iterator<Item = EncryptionRandomGenerator>> {
        let mask_bytes = mask_bytes_per_glwe::<T>(glwe_size.to_glwe_dimension(), polynomial_size);
        let noise_bytes = noise_bytes_per_glwe(polynomial_size);
        self.try_fork(glwe_size.0, mask_bytes, noise_bytes)
    }

    // Forks the generator into a parallel iterator, when splitting a ggsw level matrix to glwe.
    #[cfg(feature = "multithread")]
    pub(crate) fn par_fork_ggsw_level_to_glwe<T: UnsignedInteger>(
        &mut self,
        glwe_size: GlweSize,
        polynomial_size: PolynomialSize,
    ) -> Option<impl IndexedParallelIterator<Item = EncryptionRandomGenerator>> {
        let mask_bytes = mask_bytes_per_glwe::<T>(glwe_size.to_glwe_dimension(), polynomial_size);
        let noise_bytes = noise_bytes_per_glwe(polynomial_size);
        self.par_try_fork(glwe_size.0, mask_bytes, noise_bytes)
    }

    // Forks the generator, when splitting a ggsw into level matrices.
    pub(crate) fn fork_gsw_to_gsw_levels<T: UnsignedInteger>(
        &mut self,
        level: DecompositionLevelCount,
        lwe_size: LweSize,
    ) -> Option<impl Iterator<Item = EncryptionRandomGenerator>> {
        let mask_bytes = mask_bytes_per_gsw_level::<T>(lwe_size);
        let noise_bytes = noise_bytes_per_gsw_level(lwe_size);
        self.try_fork(level.0, mask_bytes, noise_bytes)
    }

    // Forks the generator into a parallel iterator, when splitting a ggsw into level matrices.
    #[cfg(feature = "multithread")]
    pub(crate) fn par_fork_gsw_to_gsw_levels<T: UnsignedInteger>(
        &mut self,
        level: DecompositionLevelCount,
        lwe_size: LweSize,
    ) -> Option<impl IndexedParallelIterator<Item = EncryptionRandomGenerator>> {
        let mask_bytes = mask_bytes_per_gsw_level::<T>(lwe_size);
        let noise_bytes = noise_bytes_per_gsw_level(lwe_size);
        self.par_try_fork(level.0, mask_bytes, noise_bytes)
    }

    // Forks the generator, when splitting a ggsw level matrix to glwe.
    pub(crate) fn fork_gsw_level_to_lwe<T: UnsignedInteger>(
        &mut self,
        lwe_size: LweSize,
    ) -> Option<impl Iterator<Item = EncryptionRandomGenerator>> {
        let mask_bytes = mask_bytes_per_lwe::<T>(lwe_size.to_lwe_dimension());
        let noise_bytes = noise_bytes_per_lwe();
        self.try_fork(lwe_size.0, mask_bytes, noise_bytes)
    }

    // Forks the generator into a parallel iterator, when splitting a ggsw level matrix to glwe.
    #[cfg(feature = "multithread")]
    pub(crate) fn par_fork_gsw_level_to_lwe<T: UnsignedInteger>(
        &mut self,
        lwe_size: LweSize,
    ) -> Option<impl IndexedParallelIterator<Item = EncryptionRandomGenerator>> {
        let mask_bytes = mask_bytes_per_lwe::<T>(lwe_size.to_lwe_dimension());
        let noise_bytes = noise_bytes_per_lwe();
        self.par_try_fork(lwe_size.0, mask_bytes, noise_bytes)
    }

    // Forks both generators into an iterator
    fn try_fork(
        &mut self,
        n_child: usize,
        mask_bytes: usize,
        noise_bytes: usize,
    ) -> Option<impl Iterator<Item = EncryptionRandomGenerator>> {
        // We try to fork the generators
        let mask_iter = self.mask.try_fork(n_child, mask_bytes)?;
        let noise_iter = self.noise.try_fork(n_child, noise_bytes)?;

        // We return a proper iterator.
        Some(
            mask_iter
                .zip(noise_iter)
                .map(|(mask, noise)| EncryptionRandomGenerator { mask, noise }),
        )
    }

    // Forks both generators into a parallel iterator.
    #[cfg(feature = "multithread")]
    fn par_try_fork(
        &mut self,
        n_child: usize,
        mask_bytes: usize,
        noise_bytes: usize,
    ) -> Option<impl IndexedParallelIterator<Item = EncryptionRandomGenerator>> {
        // We try to fork the generators
        let mask_iter = self.mask.par_try_fork(n_child, mask_bytes)?;
        let noise_iter = self.noise.par_try_fork(n_child, noise_bytes)?;

        // We return a proper iterator.
        Some(
            mask_iter
                .zip(noise_iter)
                .map(|(mask, noise)| EncryptionRandomGenerator { mask, noise }),
        )
    }

    // Fills the tensor with random uniform values, using the mask generator.
    pub(crate) fn fill_tensor_with_random_mask<Scalar, Tensorable>(
        &mut self,
        output: &mut Tensorable,
    ) where
        Scalar: RandomGenerable<Uniform>,
        Tensorable: AsMutTensor<Element = Scalar>,
    {
        self.mask.fill_tensor_with_random_uniform(output)
    }

    // Sample a noise value, using the noise generator.
    pub(crate) fn random_noise<Scalar>(&mut self, std: impl DispersionParameter) -> Scalar
    where
        Scalar: RandomGenerable<Gaussian<f64>>,
    {
        <Scalar>::generate_one(
            &mut self.noise,
            Gaussian {
                std: std.get_standard_dev(),
                mean: 0.,
            },
        )
    }

    // Fills the input tensor with random noise, using the noise generator.
    pub(crate) fn fill_tensor_with_random_noise<Scalar, Tensorable>(
        &mut self,
        output: &mut Tensorable,
        std: impl DispersionParameter,
    ) where
        (Scalar, Scalar): RandomGenerable<Gaussian<f64>>,
        Tensorable: AsMutTensor<Element = Scalar>,
    {
        self.noise
            .fill_tensor_with_random_gaussian(output, 0., std.get_standard_dev());
    }
}

fn mask_bytes_per_coef<T: UnsignedInteger>() -> usize {
    T::BITS / 8
}

fn mask_bytes_per_polynomial<T: UnsignedInteger>(poly_size: PolynomialSize) -> usize {
    poly_size.0 * mask_bytes_per_coef::<T>()
}

fn mask_bytes_per_glwe<T: UnsignedInteger>(
    glwe_dimension: GlweDimension,
    poly_size: PolynomialSize,
) -> usize {
    glwe_dimension.0 * mask_bytes_per_polynomial::<T>(poly_size)
}

fn mask_bytes_per_ggsw_level<T: UnsignedInteger>(
    glwe_size: GlweSize,
    poly_size: PolynomialSize,
) -> usize {
    glwe_size.0 * mask_bytes_per_glwe::<T>(glwe_size.to_glwe_dimension(), poly_size)
}

fn mask_bytes_per_lwe<T: UnsignedInteger>(lwe_dimension: LweDimension) -> usize {
    lwe_dimension.0 * mask_bytes_per_coef::<T>()
}

fn mask_bytes_per_gsw_level<T: UnsignedInteger>(lwe_size: LweSize) -> usize {
    lwe_size.0 * mask_bytes_per_lwe::<T>(lwe_size.to_lwe_dimension())
}

fn mask_bytes_per_ggsw<T: UnsignedInteger>(
    level: DecompositionLevelCount,
    glwe_size: GlweSize,
    poly_size: PolynomialSize,
) -> usize {
    level.0 * mask_bytes_per_ggsw_level::<T>(glwe_size, poly_size)
}

fn noise_bytes_per_coef() -> usize {
    // We use f64 to sample the noise for every precision, and we need 4/pi inputs to generate
    // such an output (here we take 6 to keep a safety margin).
    8 * 6
}
fn noise_bytes_per_polynomial(poly_size: PolynomialSize) -> usize {
    poly_size.0 * noise_bytes_per_coef()
}

fn noise_bytes_per_glwe(poly_size: PolynomialSize) -> usize {
    noise_bytes_per_polynomial(poly_size)
}

fn noise_bytes_per_ggsw_level(glwe_size: GlweSize, poly_size: PolynomialSize) -> usize {
    glwe_size.0 * noise_bytes_per_glwe(poly_size)
}

fn noise_bytes_per_lwe() -> usize {
    // Here we take 3 to keep a safety margin
    noise_bytes_per_coef() * 3
}

fn noise_bytes_per_gsw_level(lwe_size: LweSize) -> usize {
    lwe_size.0 * noise_bytes_per_lwe()
}

fn noise_bytes_per_ggsw(
    level: DecompositionLevelCount,
    glwe_size: GlweSize,
    poly_size: PolynomialSize,
) -> usize {
    level.0 * noise_bytes_per_ggsw_level(glwe_size, poly_size)
}